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Abstract: The use of atomistic simulation techniques to
directly resolve the protein tertiary structure from the
primary amino acid sequence is hindered by the rough
topology of the protein free energy surface and the
resulting simulation time scales required. We explore here
the use of a molecular dynamics technique based on
swarm intelligence to identify the native states of two
peptides and a Trp-cage miniprotein. In all cases, the
presence of cooperative swarm interactions significantly
enhanced the efficiency of molecular dynamics simulations
in predicting the native conformation.

1. Introduction
Despite the vast conformational space available to them, globular
proteins are able to fold rapidly to their unique native geom-
etries.1 Accurate prediction of these folded states, using only
primary sequence information, is an important goal in pharma-
ceutical science, as knowledge of the structure of protein targets
is an important step in rational drug design. Knowledge-based2

and coarse-graining methods3 have had some success in
predicting protein structure. There are associated drawbacks,
however, for example, a dependence on available geometrically
similar structures in the former approach and a lack atomic
resolution for the latter, which may lead to omission of important
structural features.

Atomistic simulations are ideally placed to provide direct
molecular level insights into the structure and dynamics of
proteins. However, such approaches are hindered by the
simulation time scales required to observe folding events. The
free energy surface upon which protein simulations operate is
rugged and characterized by a broad range of barriers, at scales
both lower and higher than that of thermal energy kT. Advanced

simulation methods4-8 seek to increase the rate at which these
barriers are traversed, while maintaining the representative
features of the free energy surface; these methods offer the
potential to increase the rate at which folding events occur
during simulation, allowing the study of larger systems with
more complex folding mechanisms.

One route to enhanced sampling that has proved successful
in other areas of computational chemistry involves artificial
intelligence methods. Genetic algorithms have had a major
impact as conformational search tools in protein-ligand
docking.9,10 An alternative class of artificial intelligence meth-
odology is based on swarm intelligence, the emergent behavior
observed in nature when social animals, such as swarming
insects, flocking birds, or schooling fish, act together coopera-
tively. In groups, the animals are able to show a greater
searching efficiency than they would when acting individually.
A concept originally applied computationally in 1989 to cellular
robotic systems,11 the swarm behavior is modeled by a set of
simple rules which describe how individual agents act coop-
eratively within the system.

A recent swarm intelligence approach based on the behavior of
ant colonies has proved successful in guiding molecular docking12

and loop refinement.13 Another swarm intelligence approach,
particle swarm optimization,14 has been used in the development
of QSAR models15 and molecular docking.16,17 For the latter, the
swarm algorithm exhibited significant improvements in the RMSD
of pose for 37 protein-ligand complexes, when compared to
GOLD (Darwinian genetic algorithm), AutoDock (Larmakian
genetic algorithm), and the commonly used FlexX and DOCK
methods.16 The swarm intelligence approach has been extended
to molecular dynamics simulations using model potentials18 but
to our knowledge has yet to be applied to protein folding problems.
In this letter, therefore, we explore the use of a swarm algorithm
to guide protein structure prediction via multicopy molecular
dynamics (MD). The method is applied to two peptides and a Trp-
cage miniprotein.

2. Methodology
Our approach follows the SWARM-MD method of Huber and
van Gunsteren,18 using a swarm of replica simulations that
interact to cooperatively search phase space. This cooperation
occurs through the incorporation of a swarm potential into the
dynamics of each replica, which acts to drive each swarm
member toward the mean trajectory of the entire swarm. The
swarm potential is given as
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where drms(Oj) is the root-mean-square distance of swarm
member j from the average location of the swarm (in dihedral
space), given by

and φi
j is dihedral angle i in swarm member j, 〈φi〉swarm is the

average value of dihedral angle i over M members of the swarm,
and N is the number of dihedral angles used in calculation of
drms(Oj). A and B are parameters that we take to be the same for
each swarm member. A defines the maximum strength of the
swarm potential, while B defines the range over which it acts.
The total dynamics of the system are therefore described by
two sets of parameters: the social parameters, described by eq
1 above, which result in the cooperation between members of
the swarm, and the cognitive parameters that describe the
interatomic potentials of the molecular mechanics force field,
which act independently on each swarm member.

We have implemented the SWARM-MD algorithm into a
modified version of Amber 9.19 Details of implementation (in
particular, our treatment of 〈φi〉swarm) and associated parameters
are given in the Supporting Information. Following Huber and
van Gunsteren,18 we take range B to be 0.8 rad-1 and explore
specific values of strength A, as discussed below. On the basis
of trial calculations for AEK17 in an implicit solvent, we find
a swarm size of 16-20 as optimal (Supporting Information);
therefore, in this study, we employ 20-replica swarms. The
method is applied to the simulated annealing of polyalanine,
AEK17, and Trp-cage. Computational details of these annealing
simulations, including initial structure generation and subsequent
secondary structure analysis, are also provided in the Supporting
Information.

3. Results and Discussion
We evaluate the ability of swarm-enhanced MD to fold two
small peptides, polyalanine [Ac-(Ala)11-NH2] and AEK17
[Ac-Ala-(Glu-Ala-Ala-Ala-Lys)3-Ala-NH2], into their
known R-helical structures.20,21 We also consider the folding
of the Trp-cage miniprotein in an implicit solvent. In each of
the three systems, we compare the results of a 20-replica swarm-
enhanced MD simulation to those of 20 independent MD
simulations. We consider each test case in turn.

3.1. Polyalanine. Starting from extended conformations,
simulated annealing of gas-phase polyalanine was performed
over 1.2 ns. In the absence of a swarm potential (A ) 0.0 kcal/
mol) during annealing, most of the 20 independent polyalanine
replicas become kinetically trapped in nonhelical conformations,
with only five replicas reaching a fully helical conformation.
This results in a final average helicity of 29% (Figure 1a). Note
that polyalanine simulation replicas are described as folding to
a completely helical conformation if all nonterminal amino acid
residues are assigned as helical in the final annealed conforma-
tion (equivalent to a helical content greater than 82%).

Using a swarm potential of strength A ) -50.0 kcal/mol,
folding performance is significantly improved: the final average
helicity across polyalanine replicas is 75% (Figure 1a). Fifteen
of the 20 swarm members anneal to a fully helical structure by
the end of the simulation. A stronger swarm potential (A )-100

kcal/mol) was also applied in a separate multicopy MD
simulation and found to further improve performance. In this
case, all replicas adopted a fully helical conformation, resulting
in a final average helicity of 91% (Figure 1a).

3.2. AEK17. Second, we assess the ability of swarm-
enhanced MD to fold the 17-mer AEK17 peptide, with its
zwitterionic Glu-Ala-Ala-Ala-Lys repeat sequence, into an
R helix. The peptide was modeled in an aqueous generalized
Born (GB) solvent,22 and simulated annealing from extended
conformations was conducted over 12 ns. AEK17 replicas are
described as having successfully folded if they exhibit greater
than 80% average helicity over the final 2 ns of constant
temperature dynamics.

With no swarm potential applied, the final 20 annealed
structures of AEK17 have a final average helicity of 34% (Figure
1b); only one simulation replica reaches a folded helical
conformation. In the presence of a swarm potential (A ) -50.0
kcal/mol), 17 swarm replicas fold to completely helical con-
formations, resulting in final average helicity of 82% (Figure
1b). Interestingly, this agrees well with the experimentally
observed value of ∼80%, measured by circular dichroism
spectroscopy at 274 K and pH 7 in 0.01 M NaCl.21

A stronger swarm potential was also applied (A ) -100 kcal/
mol), but found in this case to produce a negative effect on the
observed folding rates. None of the simulation replicas was able
to fold to a helical conformation during the 12 ns of simulation,
resulting in an average final helicity of only 9% (Figure 1b).
One possible explanation for the difference between this result
and that of polyalanine, where the stronger potential was more

drms(O
j) ) ( 1

N ∑
i)1

N

(φi
j - 〈φi〉swarm)2)1/2

(2)

Figure 1. Average fractional helicity across 20 simulation
replicas for swarm potentials of strength A ) -50.0 (green)
and -100.0 kcal/mol (blue) and in the absence of the swarm
potential (A ) 0.0 kcal/mol, red) during simulated annealing
of (a) gas-phase polyalanine and (b) AEK17 in aqueous
solution.
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effective, may be found in the differing nature of the vacuum
and aqueous potential energy surfaces. In a vacuum, unshielded
interatomic Coulombic forces may be experienced at higher
temperatures during annealing, leading to early prefolded
nucleation steps in polyalanine. In contrast, in an aqueous
environment, these forces are dampened; this is evidenced in
independent MD simulations, where (un)folding transitions at
ambient temperatures were found to occur more frequently in
implicit aqueous solvent than in Vacuo. As the temperature is
lowered during annealing, the social swarm forces may dominate
before cognitive MM forces in individual replicas sufficiently
initiate physical folding processes. This results in the swarm
force biasing the swarm members toward non-native high-energy
minima, leading to premature convergence of the system. This
observation underlines the importance of balancing social and
cognitive potentials acting on the system.

3.3. Trp-cage. A more challenging model of protein
folding is provided by the Trp-cage miniprotein (sequence:
N20LYIQWLKDGGPSSGRPPPS39).23 This small fast-folding
(∼4.1 µs)24 20-residue protein forms a globular structure in
solution and consists of an R helix (residues 20-28), a short
310 helix (residues 30-33), and a polyproline II helix (residues
36-38). The small size, and fast folding nature, of Trp-cage
makes it an ideal test case to bridge the gap between studying
small peptide systems and larger proteins. Indeed, it has already
been the subject of much attention in protein folding and
structure prediction studies, both through molecular dynamics
simulation25-32 and nondynamical optimization.33-39

Starting from extended conformations, a 20-replica 40 ns
swarm-enhanced MD simulation of Trp-cage in GB solvent was
performed. We adopt the strength of swarm potential (A ) -50
kcal/mol) that gave the best folding performance for AEK17 in
an implicit solvent. As with polyalanine and AEK17, we
compare the performance of this simulation to that of 20
independent 40 ns molecular dynamics simulations.

For each simulation replica, the average root-mean-square
deviation (RMSD) of both the backbone atoms and the heavy
atoms, relative to the native NMR structure, was calculated,
over the final 5 ns of simulation. In the absence of a swarm
potential, the 20 independent replicas folded to conformations
with an average backbone RMSD across all 20 simulations of
3.3 Å (Figure 2a) and an average heavy atom RMSD of 4.8 Å
(Figure 2b). With the swarm potential applied, these values
improved to 1.6 and 2.6 Å, respectively (Figure 2a and b). More
specifically, of the 20 independent MD simulations, none was
able to fold to within an average backbone RMSD of 1.5 Å
(Figure 2a). In comparison, of the 20 swarm replicas, 16 folded
to a backbone RMSD below 1.5 Å (Figure 2a). The lowest
average backbone RMSD of any individual swarm member
was 1.3 Å, significantly lower than the best performing
independent replica, which had an average RMSD of 1.8 Å.
The 16 folded swarm replicas all display an average heavy
atom RMSD over the final 5 ns of below 2.3 Å (Figure 2b).
Again, this is a significant improvement over nonswarm
simulations, where the replica with the lowest average heavy
atom RMSD over the final 5 ns differed from the NMR
structure by 2.8 Å (Figure 2b).

The largest atomic deviations of the folded swarm members
from the NMR structure of Trp-cage occur in its N- and

C-terminal regions and the coil-310 helix-coil region (residues
29-35). These deviations are caused by the presence in the
simulated structures of two salt bridges: between the terminal
ammonium and carboxylate groups and between the side chains
of Asp28 and Arg35. The terminal salt bridge is not present in
any of the 38 NMR structures, while the Asp28-Arg35
interaction is present in approximately half the NMR structures.
The persistence of these two salt bridges in the simulations
results in the chain ends of Trp-cage lying closer in the folded
structures compared to NMR (Figures 3a and 3b). The presence

Figure 2. Mean RMS deviations of (a) backbone atom
positions and (b) heavy atom positions from the native NMR
structure of Trp-cage (conformer 11 from PDB code 1L2Y,
which lies closest to average of NMR ensemble) during the
final 5 ns of simulation for each simulation replica. Red
indicates the absence of swarm potential; blue is with swarm
potential present (A ) -50 kcal/mol). Standard deviations
during the final 5 ns of trajectories are shown as error bars.
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of these interactions in 15 and 16 of the 16 folded swarm
members suggests an overestimation of salt bridge strength,
perhaps due to the force field-implicit solvent model combina-
tion (a known problem30,40), which may be hindering further
improvement in the heavy atom RMSD of the folded Trp-cage
structures.

Four swarm members did not fold to within a backbone
RMSD of 1.5 Å (Figure 2). Two swarm replicas of Trp-cage
have a fairly high backbone RMSD (>3 Å) and contain only a
partial native secondary structure: in both cases, the polyproline
II helix was present. In one, the R helix was fully formed, while
in the other, the R helix was partially formed but the 310 helix
was present. It is possible that these replicas represent inter-
mediate structures in the folding mechanism of Trp-cage. The
remaining two Trp-cage replicas have a backbone RMSD of
less than 2.0 Å, corresponding to near-native states. However,
the Trp25 side chain displays an incorrect orientation, pointing
away from the cage (Figure 3c). It has been suggested25,26 that
the rate-limiting step of Trp-cage folding is the incorporation
of the Trp25 residue into the hydrophobic cage, followed by
the formation of the residue’s native contacts (Figure 3a). The
resulting loss of degrees of freedom in this residue produces an
entropic barrier in the free energy surface that must be overcome
for the simulations to attain a native conformation.

It appears that the swarm-based simulations effectively lower
this barrier: of the 18 swarm-enhanced Trp-cage replicas that

folded to a native backbone conformation (all with an average
backbone RMSD < 2.0 Å), 16 (89%) displayed a correctly
packed Trp25, pointing into the folded hydrophobic cage (Figure
3b), with just two showing the incorrect Trp25 geometry (Figure
3c). By contrast, only four of the nine (44%) independent MD
replicas that produced a folded, or partially folded, hydrophobic
cage (defined by an average backbone RMSD over residues
22-38 of less than 2.0 Å) displayed the correct Trp25
orientation. The addition of the cooperative swarm potential into
the dynamics of the system therefore guides the simulations
over the energy barrier associated with the entry of Trp25 into
the cage, driving them toward the native state.

Interestingly, because of the swarm potential, the presence
of a few replicas with mispacked Trp25 appears to slightly
influence the orientation of that amino acid in the other replicas.
While Trp25 packs correctly in these 16 replicas, the residue is
subtly displaced relative to the NMR structure (Figure 4). This
is clearly seen by direct comparison with the 168 NOE distance
constraints used to derive the native structure ensemble of Trp-
cage. In overall terms, the swarm-enhanced simulations violate
only 25% of the NOE constraints, as compared to 34% from
the independent simulations. However, the amino acid with the
highest number of experimentally observed constraints (49 of
the 168) is the core Trp25 residue. Consequently, because Trp25
tends to sit toward the back of the cage in the swarm, it is a
replica from the independent MD, not swarm MD, that has the
least NOE violations, with a value of 18% (replica 4, Figure
2). However, if the influence of the swarm on its replicas is
tapered to zero in a subsequent refinement step, the Trp25
residue is able to assume its correct position, such that the best
folded swarm member shows an NOE violation of only 14%.
(This was achieved by annealing parameter A from -50.0 to

Figure 3. Stereoscopic image giving a comparison between
the (a) Trp-cage NMR structure (PDB code 1L2Y; conformer
11), (b) best folded swarm member, and (c) a near-folded
conformation with incorrect Trp25 orientation. The side chain
of Trp25 is shown in blue; the side chains of hydrophobic cage
residues Pro31, Pro36, Pro37, Pro38, and Tyr22 are shown
in green.

Figure 4. Overlay of NMR-derived Trp-cage and swarm-
folded Trp-cage with the least NOE violations: Trp25 in NMR
structure (blue) and best swarm structure before (red) and
after refinement (yellow).
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0.0 kcal/mol over 3 ns, followed by 2 ns of simulation in the
absence of swarm potential.)

4. Conclusions
For polyalanine, AEK17, and Trp-cage, the incorporation of
the swarm intelligence potential into the simulation dynamics
is found to increase the folding performance of MD simulations.
The cooperative nature of the swarm protocol prevents the
swarm members from becoming trapped in local minima and
helps drive the simulated structures toward the native state.
Inhibition of AEK17 folding via the stronger swarm potential
shows that a correct balance of social and cognitive factors is
required for efficient conformational searching. However, this
balance appeared suitably transferable between two implicitly
solvated systems (AEK17 and Trp-cage).

For the study of Trp-cage folding, none of the 20 independent
40 ns molecular dynamics simulations anneal to a correctly
folded conformation, i.e., to within a backbone RMSD of 1.5
Å of the native structure. By allowing the trajectories to interact
cooperatively, 16 of the 20 trajectories adopt the native geometry
within the last 5 ns of the simulations. A final refinement step,
where the influence of the swarm potential was relaxed, was
found to be useful in obtaining the detailed orientation of Trp25
in the miniprotein core. Both the swarm and independent MD
calculations consume 800 ns of aggregate simulation time. To
estimate the time scale required to correctly fold Trp-cage via
unbiased molecular dynamics simulations at 300 K, we consider
two recent generalized Born studies of the miniprotein: in the
first study,25 77 independent 100 ns MD simulations of Trp-
cage obtained only five conformations folded to within a
backbone RMSD of 2.0 Å of the native state; a second MD
study by Snow et al.31 harvested in the region of 1000 trajec-
tories of length 30 ns, less than 1% of which folded to below
2.6 Å RMSD of the native CR structure. Simply considering
computational cost per folded structure and recognizing that the
SWARM-MD simulations also include the effect of annealing,
the study of Snow et al. required 1-4 µs per folded structure,
compared to 50 ns per folded structure via the swarm-enhanced
calculation, an improvement of 30- to 80-fold. In terms of
overall computing time such that misfolded structures are
included, the swarm simulations are 10 to 40 times shorter.

Other methods have been introduced to enhance the sampling
of phase space by molecular simulation methods, such as
metadynamics,41 locally enhanced sampling,42 and replica-
exchange schemes.4 Several of these techniques have been
applied to the folding of Trp-cage.27-29,32 Most recently, a
temperature REMD simulation27 was performed on Trp-cage
in generalized Born solvent using 16 40 ns replicates spanning
300-460 K; the 300 K trajectory latterly sampled mainly folded
Trp-cage (within ∼2 Å heavy atom RMSD of the native
structure). These calculation conditions and the method’s
performance are comparable to that of the SWARM-MD
simulation of Trp-cage presented here. Hamiltonian-based
replica exchange is also possible,27,28,32 and these methods have
proved particularly powerful, for example, obtaining folded Trp-
cage structures using five27 or six32 replicas of sub-100 ns
trajectories. An additional advantage of temperature-based and
Hamiltonian-based replica exchange schemes is the generation
of correct 300 K ensembles, providing information on folding

pathways and intermediates. However, neither of these methods
scale favorably with system size due to the constraint of the
exchange condition: efficient exchange between neighboring
replicas requires sufficient energy overlap between replicas.
Therefore, the number of required replicas grows rapidly with
the size of the simulation system, and correspondingly longer
simulation times are required to allow efficient sampling of the
temperature space. SWARM-MD does not incorporate an
exchange move and therefore does not suffer from this exacting
requirement. This difference may be of greater importance when
extending the method to study explicitly solvated systems, where
system size is greatly increased by the degrees of freedom of
water molecules. As mentioned previously with regard to salt
bridge stability in Trp-cage, the absence of an explicitly modeled
solvent can affect the free energy minima predicted through
simulation, due to an incorrect representation of charge
shielding.30,40 This overstabilization is not unique to Trp-cage.43,44

Existing implicit solvent models have also been found to
incorrectly predict the secondary structure preferences of
peptides45 and overestimate melting temperatures.29,46 It has also
been suggested that the absence of explicit water molecules may
incorrectly describe the effects of dewetting of solvent-exposed
hydrophobic residues in folded protein structures47 and the effect
of structural water molecules on the folding landscape.48 From
these observations, and the SWARM-MD algorithm’s suitability
for distribution of replicas over parallel architectures, a coopera-
tive swarm of trajectories appears well-placed to predict the
conformations of larger systems, particularly systems involving
the incorporation of explicitly modeled bulk solvent. However,
for future applications to predictive folding of larger polypeptide
structures and interaction of flexible protein receptors with
ligands, it will be useful to explore optimization schemes which
anneal the influence of the swarm, to prevent the undue biasing
effects of outlier replicas.
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Abstract: The intermolecular interaction driven structural
change is vital to molecular architecturing. In the Cam-
bridge Structural Database (CSD), we find that the prefer-
ence for geometrical conformations of electron-deficient
π systems is different from those of electron-rich π
systems. Indeed, ab initio calculations find that electron-
deficient π ring systems should involve different structures
and energetics, consistent with the CSD search, due to
the electric multipole moments and the decrease in the
spatial extent of π-electron density.

Introduction
The rational design of nanomaterials relies on an understanding
of noncovalent interactions, including hydrogen bonding and
π interactions,1 which enables the reversible self-assembly of
supramolecular aggregates,2 folding of proteins,3 and stacking
of DNA.4 Most studies conventionally employ electron-rich π
systems, such as the benzene dimer and mixed complexes with
substituted benzene, as a model of aromatic π interactions.5

Electron-deficient systems should involve different energetics
due to electric multipole moments and a decrease in the spatial
extent of π-electron density.6-12 Quadrupole moments (Qzz

perpendicular to the ring plane) become more positive relative
to benzene (Bz) in isoelectronic N-containing heterocycles
pyridine (Py), pyrazine (Pz), triazine (Tr), and tetrazine (Tt)
(-8.8 DÅ to 3.3 DÅ, Supporting Information). Therefore, it is
of importance to investigate the changes of conformational
preference against the number of N atoms in the ring (#N). The
structural change is vital to designing intriguing structures for
molecular architecture.13 Model systems that have been inves-
tigated include pyridine,7,8 pyrazine,9 pyrimidine,10,11 and
triazine.11,12

Stacking interactions is a recurring motif in crystal structures
containing heteroaromatic moieties, as demonstrated by crystal
database searches on nitrogen-containing heterocyclic systems.14

A survey of unsubstituted fragments of N-containing hetero-
cyclic pairs in organic crystals in the CSD indicates a preference
for geometrical conformations different from that of benzene
(see the Supporting Information for details). Figure 1 is a
scatterplot of the horizontal displacement (Rd) and vertical
separation (Rv) versus the interplanar angle.

Pairs of Bz moieties generally adopt a T-shaped orientation.
Pairs of Py moieties show a wide distribution of displaced-
stacked and T-shaped conformers. Pairs of Pz, Tr, and Tt
moieties show displaced-stacked, stacked, and nearly T-shaped
arrangements, respectively. Antiparallel orientations are ob-
served for stacked and displaced-stacked Py and Tr moieties.
T-shaped Py pairs involve C-H · · ·π interactions, while Tt pairs
have N · · ·π (Supporting Information).

Calculations on the pyridine dimer7,8 yield a lower binding
energy for the antiparallel conformer, and it was further shown
by Piacenza and Grimme8 using density functional theory with

* Corresponding author e-mail: kim@postech.ac.kr (K. S. K.),
jiten@postech.ac.kr (N. J. S.).

Figure 1. Scatterplots of the horizontal displacement (Rd) and
vertical separation (Rv) vs the interplanar angle for benzene
(Bz), pyridine (Py), pyrazine (Pz), triazine (Tr), and tetrazine
(Tt) for their homopairing in the CSD. Interplanar angles less
than 20° are labeled as stacked/displaced-stacked pairs, while
those above 60° correspond to T-shaped pairs. The displace-
ment angle is labeled as R. See the Supporting Information
(Table S3) for the deviation from coplanarity θ (positive for
upward tilt) in the displaced-stacked conformer and the
rotation from the xz plane � (counterclockwise direction taken
as positive) in the T-shaped conformer.
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empirical dispersion corrections that the fully optimized structure
is actually slightly bent from the perfect orientation at ∼160°.
A cross-displaced stacked dimer was found to be the most stable
geometry for pyrazine.9 The molecular electrostatic potential
of triazine suggests favorable binding for the stacked structure
for which the energy had been determined using rigid monomers
at a vertical separation of 3.4 Å.11 However, no direct com-
parison has been made with either fully optimized parallel12 or
antiparallel displaced-stacked conformers. The stacked con-
former, for which theoretical studies are rather limited, is
generally less stable and was shown to be a maximum in the
potential energy curve for the displaced-stacked pyridine dimer.7

Detailed symmetry-adapted perturbation theory (SAPT) calcula-
tions have been limited to pyridine dimers. Preference for the
antiparallel dipole orientation can be traced to electrostatic
effects, while induction effects were reported to be an important
stabilizing factor in T-shaped conformers. The potential energy
curve for the displaced-stacked conformer also shows a decrease
in the importance of exchange-repulsion contributions with in-
creasing distance.7

Without an understanding of the interactions between electron-
deficient π systems, one might still think that it is similar to
previously studied π interactions of electron-rich centers. To
clarify the issue, we carried out binding energy calculations for
diverse electron-deficient π systems comprised of isoelectronic
N-containing heterocyclic dimers at the complete basis set (CBS)
limit using the coupled cluster theory with single, double, and
perturbative triple excitations [CCSD(T)] and analyzed the
energy components using SAPT. The systematic and accurate
analysis enables us to distinguish the magnitude, directionality,
and nature of interaction of electron-deficient π systems from
those of well-known electron-rich π systems. To find the trend
and origin governing such structural preferences, we investigate
the impact of a progressive decrease in the π-electron density
of the arene on both geometry and energy. Dimers of Bz (#N )
0), Py (#N ) 1), Pz (#N ) 2), 1,3,5-Tr (#N ) 3), and 1,2,4,5-Tt
(#N )4) are used as prototypes.

Computational Method
The resolution of identity approximation of the second-order
Møller-Plesset perturbation theory (RI-MP2)15 using the aug-
cc-pVDZ (aVDZ) basis set with basis set superposition error
(BSSE) correction was used to optimize the geometries of
various parallel and T-shaped structures of pyridine, pyrazine,
1,3,5-triazine, and 1,2,4,5-tetrazine dimers. Single point energy
calculations were subsequently performed at the RI-MP2/aug-
cc-pVTZ (aVTZ) and CCSD(T)/aVDZ level with BSSE cor-
rection to obtain energies at the complete basis set (CBS) limit.
The MP2 CBS limit was evaluated by using the extrapolation
scheme based on the proportionality of the basis set error in
the electron correlation energy to N-3 for the aug-cc-pVNZ basis
set.16 This was then used to calculate the CCSD(T)/CBS limit.
The total interaction energy was decomposed into electrostatic
(Ees), induction (Ein), dispersion (Edp), and exchange-repulsion
(Ex) components based on SAPT.17 Here, Ein and Edp includes
the exchange-induction term and exchange-dispersion term,
respectively, while Ex excludes the aforementioned terms from
the exchange term. Edp also includes the correction of the
dispersion energy based on the difference between the CCSD(T)/

CBS and MP2/aVDZ binding energies (Supporting Information).
The CCSD(T)/CBS total energy was added to correct the basis
set dependency of the dispersion energy. SAPT calculations
were performed with SAPT200818 at the MP2/aVDZ′ level
where the p diffuse functions on H and the d diffuse functions
on heavy atoms are removed. RI-MP2 and CCSD(T) calcula-
tions were done by using Turbomole 6.0.219 and Molpro
2006.1,20 respectively.

Results and Discussion
Stacked (S), displaced-stacked (D), and T-shaped (TH, H · · ·π
interaction; TN, N · · ·π interaction) isomers of the Bz, Py, Pz,
Tr, and Tt dimers are illustrated in Figure 2. To obtain large
electrostatic interactions (either dipole-dipole or quadrupole-
quadrupole iteractions), the stacked or displaced-stacked Py and
Tr dimers show antiparallel orientations between two monomers,
while the stacked or displaced-stacked Pz and Tt dimers show
perpendicularly rotated orientations. Related binding energies
at RI-MP2 and CCSD(T)/CBS, along with the energy compo-
nents based on SAPT, are summarized in Table 1. Calculations
are based on counterpoise-corrected RI-MP2/aVDZ optimized
geometries. In order to estimate the errors in the above
calculations, we have performed counterpoise-corrected opti-
mization at the RI-MP2/cc-pVTZ and RI-MP2/aug-cc-pVTZ
levels. RI-MP2/CBS and CCSD(T)/CBS energies are also
estimated by using aVTZ-aVQZ extrapolation (Table 1, Table
S4 of the Supporting Information). We find that the results from
the counterpoise-corrected optimization at the RI-MP2/cc-pVTZ
level for the most stable dimers (Py-D, Pz-D, Tr-S, and Tt-TN)
are closer to those at the RI-MP2/aug-cc-pVDZ optimization.
Rc and Rv have an average absolute error of 0.01 Å, while Rd

and angle parameters show no significant changes. For the most
stable displaced-stacked and T-shaped dimers at the counterpoise-
corrected optimization at the RI-MP2/aug-cc-pVTZ level, Rc

and Rv have an average absolute error of 0.07 Å, while Rd and
angle parameters show no significant changes. RI-MP2/CBS
(most stable dimers) and CCSD(T)/CBS energies (Tr-D and Tt-

Figure 2. Basis-set-superposition-error (BSSE)-corrected RI-
MP2/aug-cc-pVDZ optimized geometries of dimers of Bz, Py,
Pz, Tr, and Tt. The lowest energy dimers are enclosed in
boxes.
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TN) derived from the aVDZ-aVTZ extrapolation have average
absolute errors of 0.09 and 0.04 kcal/mol, respectively, in
comparison with that derived from the aVTZ-aVQZ extrapola-
tion. Thus, there is no significant difference in geometrical
parameters and energies with increasing size of basis sets, and
hence subsequent discussion will be based on the counterpoise-
corrected RI-MP2/aVDZ optimized geometries and CBS ener-
gies obtained from the aVDZ-aVTZ extrapolation.

Variation of the binding energy and individual energy
components with increasing #N is shown in Figure 3. The
dominant attractive contribution in the binding energy of
benzene with either substituted monomers21 or heterocycles6 is
dispersion, which increases with increasing substitution. The
dispersion effects would render electrostatic contributions to the
total binding energy (Etot) less significant. The situation is
different for the present system and further complicated due to
the presence of multipole interactions. For the S series (Bz-S
f Py-Sf Pz-Sf Tr-Sf Tt-S, solid lines), the binding energy
increases only from Bz-S to Tr-S. While the variation in
induction binding energy (-Ein ) 0.7 ( 0.4 kcal/mol) is small
for all cases, the large dispersion binding energy (-Edp) levels
off at Pz-S. On the other hand, the electrostatic binding energy
(-Ees) becomes larger from Bz-S to Pz-S but decreases
thereafter. A similar trend is noted for the exchange repulsion
energy (Ex) except for a particularly small value for Tr-S.
Individual energy contributions do not correlate well with Etot

except for Ees and Edp, which have R2 ) 0.84 and 0.76,
respectively (Ein, R2 ) 0.17; Ex, R2 ) 0.48).

Displaced-stacked structures of the D series (Bz-D f Py-D
f Pz-D f Tr-D f Tt-D, dashed lines) are more stable than

the stacked S-series structures, with the exception of Tr-D, which
is almost isoenergetic to Tr-S. Stability increases from Bz-D to
Pz-D but decreases from Pz-D to Tt-D. As compared with Tz-
D, Tr-D has a smaller -Ees and -Edp but is more stable due to
a much smaller Ex. Correlation of each energy component with
the total binding energy is poor (R2 ) 0.44, 0.07, 0.01, and
0.001 for Ees, Edp, Ex, and Ein, respectively), reflecting the mixing
of Ees, Edp, and Ex.

A significant contribution to the stability of the T-shaped
isomer of the Bz dimer is C-H · · ·π interaction. Nitrogen
enhances electrostatic interaction by withdrawing electron
density from the ortho or para H, thus increasing its partial
positive charge.7 However, this is countered by the resulting
distortion in the π-electron cloud of the ring, which consequently
weakens the C-H · · ·π interaction. This trend was observed
following the TH series (Bz-TH f Py-TH f Pz-TH f Tr-TH

f Tt-TH; solid lines in Figure 3), with Tt-TH having a repulsive
electrostatic term. Electrostatic effects become more favorable
along the TN-series (Py-TN f Pz-TN f Tr-TN f Tt-TN, dash
lines), where the orientation is characterized by an N atom
pointing toward the positively charged or electron-deficient ring
center. In the TN series, the increase in -Ees, however, is
tempered by Ex as the vertical ring distance becomes shorter.
The change in Edp is relatively small from Py to Tt as the
distance from the N atom to the ring center is similar. The
binding energy for the TN series correlates well with the
electrostatic energy (R2 ) 0.99) and poorly with other contribut-
ing energy terms. The complexes become more stabilized/
destabilized with increasing #N for the TN/TH series. For the
TH series, all energy components have a good correlation with
the total binding energy with R2 f ∼0.9.

Predicted geometries and energetics reasonably explain the
N-containing heterocyclic pairs in organic crystals. The small
difference in binding energy of the displaced-stacked and
T-shaped isomers for Py pairs is demonstrated by nearly equal
distributions in the displaced-stacked and T-shaped regions in

Table 1. RI-MP2/CBS (-EMP2) and CCSD(T)/CBS (-Etot)
Binding Energies Using the aVDZ-aVTZ Extrapolation and
SAPT Energy Components (in kcal/mol) of the Selected
Low-Energy Dimers (with the Lowest Energy in Bold for
Each #N) at the BSSE-Corrected RI-MP2/aug-cc-pVDZ
Geometriesa

-EMP2 -Etot -Ees -Ein -Edp Ex

Stacked
Bz-S 3.38 1.53 0.71 0.32 5.96 5.46
Py-S 4.64 2.79 2.21 0.37 6.38 6.17
Pz-S 5.74 3.48 3.42 0.31 6.93 7.18
Tr-S 5.00 [5.13] 3.92 2.75 0.40 6.94 6.18
Tt-S 5.64 3.13 2.31 0.44 7.14 6.76

Displaced-Stacked
Bz-D 4.93 2.62 2.92 0.96 7.89 9.14
Py-D 6.19 [6.20] 3.80 4.48 0.99 8.11 9.78
Pz-D 6.76 [6.88] 4.09 4.94 1.06 8.48 10.39
Tr-D 5.22 [5.34] 3.82 [3.73] 3.00 0.52 7.39 7.09
Tt-D 6.47 [6.62] 3.67 3.46 1.19 8.25 9.23

T-Shaped
Bz-TH 3.72 2.84 2.15 0.64 4.63 4.57
Py-TH 4.46 [4.52] 3.56b 3.23 0.78 4.83 5.29
Pz-TH 3.50 2.70 2.20 0.65 4.42 4.56
Tr-TH 2.65 2.22 1.51 0.63 3.94 3.87
Tt-TH 1.40 0.91 -0.60 0.42 3.03 1.93
Py-TN 3.53 2.57 2.62 1.01 4.84 5.89
Pz-TN 4.65 [4.72] 3.36 4.76 0.93 5.23 7.57
Tr-TN 4.18 [4.25] 3.44 4.44 0.68 4.77 6.45
Tt-TN 5.70 [5.80] 4.27 [4.25] 6.19 1.11 4.66 7.69

a Values in brackets are calculated using the aVTZ-aVQZ
extrapolation calculated at the BSSE corrected RI-MP2/
aug-cc-pVTZ geometries. b Py-TH is nearly isoenergetic to Py-D.

Figure 3. Interaction binding energies and energy compo-
nents as a function of the number of N atoms (#N) in a series
of dimer complexes. Lowest energy dimers are enclosed in
boxes.
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Figure 1. Displaced-stacked Py and stacked Tr pairs have
antiparallel dipoles and staggered quadrupole orientations. A
Tt pair shows a T-shaped structure. Stable displaced-stacked
Pz pairs are observed in the gas phase9 (Supporting Information).

Conclusion
In summary, heterocyclic dimers preferentially form a stacked/
displaced-stacked arrangement, except for Tt, since Tt-TN is
more stable than Tt-D. Displaced-stacked isomers are more
stable than the stacked ones except for Tr. For T-shaped isomers,
the most stable Py-TH has C-H · · ·π interaction but changes to
N · · ·π interaction in the cases of Pz-TN, Tr-TN, and Tt-TN.
Dispersion effects dominate, particularly for stacked/displaced-
stacked conformers. But, relative stabilities can be inferred
mostly from the electrostatic contribution as envisaged by its
better correlation with binding energies of the complexes except
for the displaced-stacked conformers which are governed by
Ees, Edp, and Ex in a complicated manner.21 The present
understanding would be very useful for designing diverse
characteristic molecular models for intriguing molecular as-
sembling and engineering.
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Abstract: In serial generalized-ensemble simulations, the sampling of a collective coordinate
of a system is enhanced through non-Boltzmann weighting schemes. A popular version of such
methods is certainly the simulated tempering technique, which is based on a random walk in
temperature ensembles to explore the phase space more thoroughly. The most critical aspect
of serial generalized-ensemble methods with respect to their parallel counterparts, such as replica
exchange, is the difficulty of weight determination. Here we propose an adaptive approach to
update the weights on the fly during the simulation. The algorithm is based on generalized forms
of the Bennett acceptance ratio and of the free energy perturbation. It does not require intensive
communication between processors and, therefore, is prone to be used in distributed computing
environments with modest computational cost. We illustrate the method in a series of molecular
dynamics simulations of a model system and compare its performances to two recent
approaches, one based on adaptive Bayesian-weighted histogram analysis and the other based
on initial estimates of weight factors obtained by potential energy averages.

1. Introduction

In computer simulations of complex systems it is often
difficult to obtain accurate canonical distributions by con-
ventional Boltzmann sampling because simulated systems
tend to get trapped in local minimum-energy states. A
strategy to tackle the problem is to perform simulations using
non-Boltzmann probability weight factors, so that a random
walk in energy space can be realized. In this context, a new
class of simulation algorithms, generically termed general-
ized-ensemble algorithms,1 has been developed. In the
multicanonical approach,2,3 for instance, phase space is
sampled with a probability proportional to an approximate
estimate of the inverse potential energy density of states. In
the simulated tempering (ST) technique,4,5 weighted sam-
pling is used to produce a random walk in temperature space
thus allowing the system to overcome energy barriers. An
important limitation of ST is that an evaluation of the free
energy as a function of temperature is needed as input to
ensure equal visitation of temperatures, and eventually a

faster convergence of structural properties.6 The temperature
replica exchange method7-10 (REM), also known as parallel
tempering, was developed as an evolution of ST to eliminate
the need to know a priori temperature-dependent free
energies. Many other methodologies and combinations
thereof have also been proposed,1,11-19 including approaches
based on nonrandom walks in the ensemble space.20,21

The idea of ST and temperature-REM can be readily
extended to other ensemble parameters (e.g., pressure,
interatomic distances, torsional bond angles, switching
coordinate in alchemical transformations, etc.). The term
generalized-ensemble, used to refer to such methods, arises
from this generalization. The further classification of serial
generalized-ensemble (SGE) and parallel generalized-
ensemble algorithms is also used to distinguish between
schemes based on single-replica transitions (like in ST) and
on synchronous double-replica transitions (like in REM),
respectively.22 Among generalized-ensemble algorithms, ST
and temperature-REM allow an extensive exploration of
phase space without configurational restraints. This gives the
possibility of recovering not only the global minimum-energy* Author e-mail: riccardo.chelli@unifi.it.
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state but also any equilibrium thermodynamic quantity as a
function of temperature. The potential of mean force
(PMF)23,24 along a chosen collective coordinate can also be
computed a posteriori by multiple-histogram reweighting
techniques.25,26 In this case, however, many configurations
sampled at high temperatures will give small contribution
to the PMF at low (ordinary) temperature with the result of
making quite ineffective the algorithm. PMF calculation is
instead improved by performing generalized-ensemble ca-
nonical simulations in the space of the collective coordinate
(for example, the space of the end-to-end distance of a
biopolymer). In such a case, all system configurations will
contribute equally to construct the PMF at the given
temperature.17

Comparisons between ST and temperature-REM have been
reported recently.6,27,28 The overall conclusions of these
studies are that ST consistently gives a higher rate of
delivering the system between high- and low-temperature
states as well as a higher rate of transversing the potential
energy space. Moreover, ST is well-suited to distributed
computing environments because synchronization and com-
munication between replicas/processors can be avoided. On
the other side, an effective application of ST and, in general,
of SGE methods requires a uniform exploration of the
ensemble space. In order to satisfy this criterion, acceptance
rates must be not only high but also symmetric between
forward and backward directions of the ensemble space. This
symmetry can be achieved by performing weighted sampling,
where weights are correlated with the dimensionless free
energies of the ensembles. The knowledge of such free
energies is not needed in parallel generalized-ensemble
methods because replica exchanges occur between mi-
crostates of the same extended thermodynamic ensemble.
To achieve rapid sampling of the ensemble space through
high acceptance rates, we need to choose ensembles ap-
propriately so that neighboring ensembles overlap signifi-
cantly. This last requirement is common to both SGE and
parallel generalized-ensemble methods and in general does
not depend on the specific algorithm used in simulation.
Therefore the most critical aspect in applying SGE schemes
is the determination of weight factors (viz. dimensionless
free energy differences between neighboring ensembles).
This issue has been the subject of many studies, especially
addressed to ST simulations. The first attempts are based on
short trial simulations.5,29,30 The proposed procedures are
however quite complicated and computationally expensive
for systems with many degrees of freedom. Later, Mitsutake
and Okamoto suggested to perform a short REM simulation
to estimate ST weight factors31 via multiple-histogram
reweighting.25,26 A further approximated, but very simple,
approach to evaluate weight factors is based on average
energies calculated by means of conventional molecular
dynamics simulations.22 The weight factors obtained by the
average-energy method22 were later demonstrated to cor-
respond to the first term of a cumulant expansion of free
energy differences.27 Huang et al. used approximated esti-
mates of potential energy distribution functions (from short
trial molecular dynamics simulations) to equalize the ac-
ceptance rates of forward and backward transitions between

neighboring temperatures, ultimately leading to a uniform
temperature sampling in ST.32 The techniques illustrated
above have been devised to determine weight factors to be
used without further refinement31 or as an initial guess to
be updated during the simulation.22,32 In the former case,
these approximate factors should (hopefully) guarantee an
almost random walk through the ensemble space. However,
as remarked in ref 6, the estimate of accurate weight factors
may be very difficult for complex systems. Inaccurate
estimates, though unaffecting the basic principles of SGE
methods, do affect the sampling performances in terms of
simulation time needed to achieve convergence of structural
properties.6

As discussed above, dimensionless free energy differences
between ensembles (viz. weight factors) may also be the very
aim of the simulation.17 In such cases, accurate determination
of weight factors is not simply welcome but necessary. This
can be done a posteriori using multiple-histogram reweight-
ing techniques25,26 or using more or less efficient updating
protocols applied during the simulation.6,19,32-34

In this article we present an adaptive method to calculate
weight factors in SGE simulations based on generalized
expressions35,36 of the Bennett method37 and of the free energy
perturbation.38 Although the method may appear as a down-
grading of the multiple-histogram reweighting algorithm,25,26

it is asymptotically exact and requires a low computational
time per updating step. Moreover, since the overlap between
the distribution functions of the generalized dimensionless
work36 spent in the forward and backward transitions
between neighboring ensembles must be not negligible, the
accuracy of the method is comparable to the multiple-
histogram reweighting approach. The algorithm is suited not
only to calculate the free energy on the fly during the
simulation but also as a possible criterion to establish whether
equilibration has been reached. We illustrate the method on
a model system made of two particles interacting through a
double-well potential and solvated by a monatomic fluid. This
model system contains much of condensed-phase physics and
may be viewed as an elementary example of molecular
docking with an energy barrier between the initial and final
states. SGE simulations in temperature space (ST simula-
tions) and in the space of the interparticle distance are carried
out. The performances of our algorithm in recovering free
energies as a function of temperature and interparticle
distance (i.e., the PMF) are compared with those of various
approaches, including multiple-histogram reweighting as
reformulated in ref 39, the recent Bayesian weighted
histogram analysis method34 (ABWHAM), and the method
based on the initial estimates of the weight factors obtained
by averaging the potential energy of short trial simulations.22

The outline of the article follows. In Section 2, SGE
methods are introduced. The algorithm for computing optimal
weights is proposed in Section 3. Technical details on the
simulations and on the system are given in Section 4, while
the simulation results are reported and discussed in Section
5. Concluding remarks can be found in Section 6.
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2. Introduction to Serial
Generalized-Ensemble Methods

A SGE method deals with a set of N ensembles associated
with different dimensionless Hamiltonians hn(x, p), where x
and p denote the atomic coordinates and momenta of a
microstate40 and n ) 1, 2, ..., N denotes the ensemble. Each
ensemble is characterized by a partition function expressed
as

In ST simulations the dimensionless Hamiltonian is

where H(x, p) is the original Hamiltonian and �n ) (kBTn)-1,
with kB being the Boltzmann constant and Tn the temperature
of the nth ensemble. If we express the Hamiltonian as a
function of λ, namely a parameter correlated with an arbitrary
collective coordinate of the system (or even corresponding
to the pressure), then the dimensionless Hamiltonian associ-
ated with the nth λ-ensemble is

Here all ensembles have the same temperature. It is also
possible to construct a generalized ensemble for multiple
parameters41 as

In this example two parameters, T and λ, are employed, but
no restraint is actually given to the number of ensemble
spaces. Generalized-ensemble algorithms have a different
implementation dependent on whether the temperature is
included in the collection of sampling spaces (eqs 2 and 4).
Here we adhere to the most general context without specify-
ing any form of hn(x, p), except when we discuss implemen-
tation of ST (Section 2.1) and of the PMF calculation
(Section 2.2).

In SGE simulations, the probability of a microstate (x, p)
in the nth ensemble [from now on denoted as (x, p)n] is
proportional to exp[-hn(x, p) + gn], where gn is a factor,
different for each ensemble, that must ensure almost equal
visitation of the N ensembles. The extended partition function
of this “system of ensembles” is

where Zn is the partition function of the system in the nth
ensemble (eq 1). In practice SGE simulations work as
follows. A single simulation is performed in a specific
ensemble, say n, using Monte Carlo or molecular dynamics
sampling protocols, and after a certain interval, an attempt
is made to change the microstate (x, p)n to another microstate
of a different ensemble (x′, p′)m. Since high acceptance rates
are obtained as the ensembles n and m overlap significantly,
the final ensemble m is typically close to the initial one,
namely m ) n ( 1.42 In principle, the initial and final
microstates can be defined by different coordinates and/or

momenta (x * x′ and/or p * p′), though the condition x )
x′ is usually adopted. The transition probabilities for moving
from (x, p)n to (x′, p′)m and vice versa have to satisfy the
detailed balance condition:

where Pn(x, p) is the probability of the microstate (x, p)n in
the extended canonical ensemble (eq 5):

In eq 6, P(n f m) is a shorthand for the conditional
probability of the transition (x, p)n f (x′, p′)m, given the
system is in the microstate (x, p)n [with analogous meaning
of P(m f n)]. Using eq 7 together with the analogous
expression for Pm(x′, p′) in the detailed balance and applying
the Metropolis’s criterion, we find that the transition (x, p)n

f (x′, p′)m is accepted with probability:

The probability of sampling a given ensemble is

Uniform sampling sets the condition Pn ) N-1 for each
ensemble (n ) 1, ..., N) that leads to the equality:

Equation 10 implies that, to get uniform sampling, the
difference gm - gn in eq 8 must be replaced with fm - fn,
where fn is the dimensionless free energy related to the actual
free energy of the ensemble n by the relation fn ) �Fn )
-ln Zn, where � is the inverse temperature of the ensemble.
Here we are interested in determining such free energy
differences that will be referred as optimal weight factors,
or simply, optimal weights. Accordingly, in the acceptance
ratio we will use fn instead of gn.

2.1. SGE Simulations in Temperature-Space (Simu-
lated Tempering). In SGE Monte Carlo simulations con-
ducted in temperature space (ST simulations), eq 2 holds.
Specifically, since only configurational sampling is per-
formed, we have

where V(x) is the (potential) energy of the configuration x.
Therefore, transitions from n to m ensemble, realized at fixed
configuration, are accepted with probability:

When the system evolution is performed with molecular
dynamics simulations, the situation is slightly more com-
plicated. Suppose we deal with canonical ensembles (to
simplify the treatment and the notation we consider constant-
volume and constant-temperature ensembles, though exten-
sion to constant-pressure and constant-temperature ensembles
is straightforward). Usually, constant temperature is imple-
mented through the Nosé-Hoover method43,44 or extensions

Zn ) ∫ e-hn(x,p)dxdp (1)

hn(x, p) ) �nH(x, p) (2)

hn(x, p) ) �H(x, p;λn) (3)

hnl(x, p) ) �nH(x, p;λl) (4)

Z ) ∑
n)1

N ∫ e-hn(x,p)+gndxdp ) ∑
n)1

N

Zne
gn (5)

Pn(x, p)P(n f m) ) Pm(x', p')P(m f n) (6)

Pn(x, p) ) Z-1e-hn(x,p)+gn (7)

acc[n f m] ) min(1, ehn(x,p)-hm(x',p')+gm-gn) (8)

Pn ) ∫Pn(x, p)dxdp ) ZnZ
-1egn (9)

gn ) -ln Zn + ln( Z
N) (10)

hn(x) ) �nV(x) (11)

acc[n f m] ) min(1, e(�n-�m)V(x)+fm-fn) (12)
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of it.45 With the symbol pt, we will denote the momentum
conjugated to the dynamical variable associated with the
thermostat. Also in this case eq 2 holds, but it takes the form

In this equation, H(x, p, pt) ) V(x) + K(p) + K(pt) is the
extended Hamiltonian of the system, where V(x) is the
potential energy, while K(p) and K(pt) are the kinetic energies
of the particles and thermostat, respectively. As in the Monte
Carlo version, transitions from n to m ensemble are realized
at fixed configuration, while particle momenta are rescaled
as

As in REM,8 the scaling drops the momenta out of the
detailed balance, and the acceptance ratio takes the form of
eq 12. Note that, if more thermostats are adopted,45 then all
additional momenta must be rescaled according to eq 14.

2.2. SGE Simulations in λ-Space. In SGE simulations
conducted in a generic λ-space at constant temperature, the
dimensionless Hamiltonian is given by eq 3. In our molecular
dynamics simulations we use a Hamiltonian aimed to sample
the distance between two target particles. There are several
ways to model such a Hamiltonian. Our choice is

where, as usual, H(x, p, pt) is the extended Hamiltonian. In
eq 15, r is the instantaneous distance between the target
particles, and k is a constant. As in ST simulations, transitions
from n to m ensemble occur at fixed configuration. However,
in this case, there is no need of rescaling momenta because
they drop out of the detailed balance condition naturally.
The resulting acceptance ratio is

The same ratio is obtained using Monte Carlo sampling. In
this kind of simulation, the free energy as a function of λ
corresponds to the biased PMF23,24 along the coordinate
associated with λ. Biasing arises from the harmonic potential
being added to the original Hamiltonian (see eq 15).
However, reweighting schemes are available to recover the
unbiased PMF along the real coordinate.25,26,46,47

3. The Algorithm for Optimal Weights

3.1. Tackling Free Energy Estimates. The algorithm
proposed to calculate the optimal weight factors, namely the
dimensionless free energy differences between ensembles
(see Section 2), is based on the Bennett acceptance ratio37,48

and on the free energy perturbation formula.38 We start by
showing that the difference between the dimensionless
Hamiltonians appearing in the acceptance ratio (see eq 8)
can be viewed as the generalized dimensionless work done
on the system during the transition (x, p)n f (x′, p′)m. The
concept of generalized dimensionless work in systems subject
to mechanical and thermal nonequilibrium changes has been

extensively discussed recently.35,36,49 In particular it has been
shown (see eq 45 in ref 36) that, in a nonequilibrium
realization performed with extended-Lagrangian molecular
dynamics,50 the generalized dimensionless work is

where τ is the duration of the realization and

where H(x, p, pt) is defined in eq 13 and ν(xt) is a linear
function of the configurational variables xt associated with
the thermostat (see eq 42 in ref 36). For simplicity, in eq 18
we have only reported the explicit time dependence of the
temperature. Moreover, we have considered to deal with ther-
mal changes alone using constant-volume and constant-
temperature equations of motion. Extending the treatment
to constant-pressure and constant-temperature algorithms and
to systems subject to generic λ, e.g. mechanical, changes is
straightforward.36 Note that, when no changes are externally
applied to the system, H′ is exactly the quantity conserved
during the constant-volume and constant-temperature simula-
tion. Accordingly, the work W is zero. The above definition
of generalized dimensionless work is valid for arbitrary
values of τ. In the special case of instantaneous thermal
changes and variations of the microstate variables, as it
occurs in ST simulations, the times 0 and τ in eq 17 refer to
the states instantaneously before and after the (x, p)n f
(x′, p′)m transition, respectively. Therefore, according to the
notation introduced above, eq 17 can be rewritten as

where xt and x′t are the values of the configurational
thermostat-variables before and after the (x, p)nf(x′, p′)m

transition, respectively. In the first two terms on the right-
hand side of eq 19, we can recognize the dimensionless
Hamiltonians hm(x′, p′, p′t) and hn(x, p, pt). It is important to
observe that, in generalized-ensemble simulations, an arbi-
trary change of xt during a transition does not affect the
acceptance ratio or the dynamics of the system. Therefore,
by setting x′t ) xt and generalizing to λ changes, we recover
the equality:

This result is general and can be proved to be valid also for
Monte Carlo simulations. Using W[n f m], the acceptance
ratio of eq 8 becomes

where ∆fnfm ) fm - fn. The quantity W[n f m] - ∆fnfm

can be interpreted as the generalized dimensionless work
dissipated in the transformation (see eq 17 in ref 36).

Until now we have simply restated the acceptance ratio
of SGE simulations in terms of the generalized dimensionless
work W[nf m]. The truly important aspect of this treatment
is that the knowledge of W[n f m] and W[m f n] stored
during the sampling gives us the possibility of evaluating

hn(x, p, pt) ) �nH(x, p, pt) (13)

p' ) p(Tm/Tn)
1/2

p t′ ) pt(Tm/Tn)
1/2 (14)

hn(x, p, pt) ) �[H(x, p, pt) + k(r - λn)
2] (15)

acc[n f m] ) min(1, e�k[(r-λn)2-(r-λm)2]+fm-fn) (16)

W ) �τH'(τ) - �0H'(0) (17)

H'(τ) ) H(x, p, pt) + kBTτν(xt) (18)

W[n f m] ) �mH(x', p', p't) - �nH(x, p, pt) + ν(x't) - ν(xt)
(19)

W[n f m] ) hm(x', p', p't) - hn(x, p, pt) (20)

acc[n f m] ) min(1, e∆fnfm-W[nfm]) (21)
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the optimal weights ∆fnfm using the Bennett method37

reformulated with maximum likelihood arguments.36,48 For
example, in ST simulations we must take memory of the
quantities W[n f m] ) (�m - �n)Vn(x) and W[m f n] )
(�n - �m)Vm(x), where the subscripts of the potential energy
indicate the ensemble at which sampling occurs. Thus, for
each pair of neighboring ensembles n and m, we generate
two collections of “instantaneous generalized dimensionless
works”: W1[m f n], W2[m f n], ..., etc. and W1[n f
m], W2[nf m], ..., etc. Let us denote the number of elements
of such collections with Nmfn and Nnfm. So ∆fnfm can be
calculated by solving the equation (see eq 27 in ref 36):

that just corresponds to the Bennett acceptance ratio for
dimensionless quantities. It is important to point out that eq
22 is valid for nonequilibrium transformations, does not
matter how far from equilibrium, and is rigorous only if the
initial microstates of the transformations are drawn from
equilibrium. Therefore care should be taken in verifying
whether convergence/equilibrium is reached in the adaptive
procedure. It should be noted that eq 22 is a straightforward
generalization (to systems subject to thermal changes) of eq
8 in ref 48 that was specifically derived for systems subject
to mechanical changes.

Shirts et al.48 proposed a way of evaluating the square
uncertainty (variance) of ∆fnfm from maximum likelihood
methods by also correcting the estimate in the case of the
restriction from fixed probability of forward and backward
work measurements to fixed number of forward and back-
ward work measurements. They provided a formula for
systems subject only to mechanical work. However, by
following the arguments in ref 36, it is straightforward to
generalize the variance to a situation in which also thermal
work is performed

where ∆f ′ ) ∆fnfm + ln(Nmfn/Nnfm). The quantity σ2(∆fnfm)
can be calculated once ∆fnfm is recovered from eq 22.

It is obvious that, in order to employ eq 22, both n and m
ensembles must be visited at least one time. If statistics are
instead retrieved from one ensemble alone, say n, then we
have to resort to a different approach. The one we propose
is consistent with the previous treatment. In fact, in the limit
that only one work collection (specifically, the nfm col-
lection) is available, eq 22 becomes48 (compare with eq 21
in ref 36)

thus recovering the well-known fact that the free energy is
the expectation value of the work exponential average.51

3.2. Implementation of Adaptive Free Energy Esti-
mates in SGE Simulations. We now describe how the
machinery introduced in Section 3.1 can be employed in the
context of adaptive algorithms for SGE simulations. Suppose
we deal with N ensembles of a generic Λ-space, be it a
temperature space, a λ-space, or even a multiple-parameter
space. Without loss of generality, we order the ensembles
as Λ1 < Λ2 < ... < ΛN. Thus, N - 1 optimal weights,
∆f1f2, ∆f2f3, ..., ∆fN-1fN, have to be estimated adaptively.

(1) At the beginning of the simulation we assign the
system, i.e., the replica, to a randomly chosen ensemble and
start the phase space sampling with the established simulation
protocol (Monte Carlo or molecular dynamics). Note that
several simulations may run in the generalized-ensemble
space, each yielding an independent trajectory. Analogously
to REM, a single simulated system will be termed “replica”.
For the sake of simplicity, in the following presentation of
the method we will take into account one replica alone. A
discussion regarding multiple-replica simulations is reported
in the final part of this section.

(2) Every La steps and for each ensemble n, we store into
memory the quantities W[n f n + 1] and W[n f n - 1],
computed as described in Section 3.1. There is no well-
established recipe in choosing La, apart from the requirement
that it should ensure (as large as possible) uncorrelation
between work values. During the simulation we must also
record the number of stored W elements, Nnfn+1 and Nnfn-1.

(3) Every Lb steps, such that Lb . La (three orders of
magnitude at least), we try a free energy update on the basis
of eqs 22 or 24. The scheme we propose for ∆fnfn+1 follows:

(a) First of all we check if the conditions Nnfn+1 > N′
and Nn+1fn > N′ are met. In such a case, eq 22 is
applied (setting m ) n + 1) using the stored
dimensionless works (see point 2). The threshold N′
is used as a control parameter for the accuracy of the
calculation. Once ∆fnfn+1 is known, its square uncer-
tainty is computed according to eq 23. Then we set
Nnfn+1 ) 0 and Nn+1fn ) 0 and cancel W[nf n + 1]
and W[n + 1f n] from computer memory. Whenever
the free energy estimate and the correlated uncertainty
are computed, the optimal weight to be used in the
acceptance ratio (eq 21) is determined, applying
standard formulas from maximum likelihood consid-
erations (see Section 3.3). This step is realized for n
) 1, 2, ..., N - 1.

(b) If the criteria needed to apply eq 22 are not met and
no ∆fnfn+1 estimate is still available from point 3a,
then we try to apply eq 24. In particular, two
independent estimates of ∆fnfn+1 are attempted. One
comes from eq 24 by setting m ) n + 1, whereas the
other comes from eq 24 applied in the reverse direction
(replace n with n + 1 and m with n in eq 24). The
two estimates will be invoked in the acceptance ratio
of n f n + 1 and n + 1 f n ensemble transitions,

∑
i)1

Nnfm [1 +
Nnfm

Nmfn
eWi[nfm]-∆fnfm]-1

-

∑
j)1

Nmfn [1 +
Nmfn

Nnfm
eWj[mfn]+∆fnfm]-1

) 0 (22)

σ2(∆fnfm) ) 2{ ∑
i)1

Nnfm

[1 + cosh(Wi[n f m] - ∆f ′)]-1 +

∑
j)1

Nmfn

[1 + cosh(Wj[m f n] + ∆f ′)]-1}-1

- Nnfm
-1 -

Nmfn
-1 (23)

e-∆fnfm ) Nnfm
-1 ∑

i)1

Nnfm

e-Wi[nfm] (24)
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respectively (see next point 4). In the former case, we
need to resort to additional arrays (denoted as Nnfn+1

up

and Wup[nf n + 1]) to store Nnfn+1 and W[nf n +
1]. Separate arrays are necessary because they are
subject to different manipulation during the simulation.
Specifically, if the condition Nnfn+1

up > N′ is satisfied,
then we calculate ∆fnfn+1 via eq 24. This estimate is
employed as such in the acceptance ratio. Then we
set Nnfn+1

up ) 0 and cancel Wup[n f n + 1] from
computer memory. The same protocol is used to
calculate ∆fn+1fn from the quantities Nn+1fn

down and
Wdown[n + 1 f n]. The additional arrays introduced
here are updated as described in point 2. Note that in
this procedure the arrays of step 3a are neither used
nor changed. Note also that the procedure described
here corresponds to the way of calculating the finite
free energy differences in the free energy perturbation
method.38

(c) If none of the above criteria is met, then optimal
weights are not updated and conventional sampling
continues. Storage of dimensionless works, as de-
scribed at point 2, continues as well.
We point out that, if equilibrium is reached slowly
(as in the case of large viscous systems or systems
with very complex free energy landscape), then the
replicas may tend to get trapped in limited regions of
the ensemble space at the early stages of the simula-
tion. This is basically due to initially inaccurate
determination of ∆fnfn+1 from eq 22 (point 3a). If such
an event occurs, then subsequent free energy estimates
from eq 22 may become very rare or even impossible.
However, we can prevent this unwanted situation by
passing to the updating criteria of point 3b when the
criteria of point 3a are not met for a given (prior
established) number of consecutive times. When
equilibrium will be approached, the criteria of point
3b will favor transitions of the replicas between
neighboring ensembles (this issue will be discussed
in Section 5.3) and eventually the conditions to apply
again the criteria of point 3a.

(4) Every Lc steps, a transition (x, p)n f (x, p′)n(1 is
attempted on the basis of the acceptance ratio of eq 21 and
of the current value of ∆fnfn(1 (properly reweighted accord-
ing to the equations reported in Section 3.3). If the estimate
of ∆fnfn(1 is still not available from the methods described
at points 3a and 3b, then the transition is not realized. The
upward and downward transitions are chosen with equal
probability. If the transition is accepted and the sampling
occurs in the temperature space using molecular dynamics,
then the momenta/velocities of the extended system are
rescaled according to eq 14.

It is worthwhile stressing again that the procedures of point
3b are only aimed to furnish a reliable evaluation of optimal
weights when such factors are still not available from the
bidirectional algorithm (point 3a) or when the system is
trapped in one or few ensembles (point 3c). Moreover, we
remark that the free energy differences estimated via eq 24
tend to give larger acceptance rates in comparison to the
exact free energy differences, thus favoring the transitions

toward the ensemble that has not been visited. This is a well-
known (biasing) effect of exponential averaging,52 leading
to a mean dissipated (dimensionless) work artificially low.
As a matter of fact, this is a positive effect since it makes
easier ensemble transitions during the equilibration phase of
the simulation. This aspect will be further discussed in
Section 5.3.

In the above discussion, we have not mentioned the
number M of (independent) replicas that may run in the space
of the N ensembles. In principle, M can vary from 1 to ∞ on
the basis of our computer facilities. The best performance is
obtainable if a one-to-one correspondence exists between
replicas and computing processors. A rough parallelization
could be obtained performing M independent simulations and
then drawing the data from replicas at the end of the
simulation to get augmented statistics. However, the calcula-
tion of the optimal weights would be much improved if they
were periodically updated on the fly on the basis of the data
drawn from all replicas. This is just what we do. In this
respect, we notice that our version of multiple-replica SGE
algorithm is prone to work efficiently also in distributed
computing environments. The phase of the simulation where
information is exchanged is that described at point 3 (free
energy calculation). It should be noted that, when a free
energy estimate is performed, the work arrays stored for each
replica/processor (see point 2) do not need to be com-
municated to all other replicas/processors. Only the sums
∑i)1

Nnfm[ · ]-1 - ∑j)1
Nmfn[ · ]-1 (case of eq 22), ∑i)1

Nnfm[ · ]-1 +
∑j)1

Nmfn[ · ]-1 (case of eq 23), and ∑i)1
Nnfm exp (-Wi[n f m])

(case of eq 24), together with Nnfm and Nmfn, must be
exchanged for all N - 1 ensemble transitions. Then each
replica/processor “will think by itself” to reassemble the
global sums. Exchanging one information implies to send
M(M - 1)(N - 1) real/integer numbers through the net (∼60
kB of information using 20 replicas and slightly less than 1
MB of information using 50 replicas). Only in the case of
the iterative procedure of eq 22, one information has to be
sent several times per free energy calculation (i.e., the number
of iterations needed for solving the equation). The compu-
tational cost arising from computer communications can
however be reduced updating the free energy rarely. Fur-
thermore, in order to improve the first free energy estimate
and hence to speed up the convergence, the M simulations
should be started by distributing the replicas among neigh-
boring ensembles, namely replica 1 to Λ1, replica 2 to Λ2,
and so on. In the remainder of this paper, we will refer to
the algorithm described in this section as BAR-SGE.

3.3. Free Energy Evaluation from Independent Esti-
mates and Associated Variances. As discussed in Section
3.2, during a SGE simulation, optimal weights are evaluated
using eq 22, and only temporary values are obtained from
eq 24. Therefore, for each optimal weight, the simulation
produces a series of estimates, ∆f1, ∆f2, ..., ∆fP. At a given
time, the current value of P depends, on average, on the time
and the update frequency of optimal weights. In this section,
for convenience, the subscript in ∆fi labels independent
estimates. We also know that each ∆fi value is affected by
an uncertainty quantified by the associated variance δ2(∆fi)
calculated via eq 23. We can then write ∆f̂, the optimal
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estimator of P-1∑i)1
P ∆fi, by a weighted sum of the individual

estimates:53

Note that independent estimates with smaller variances have
greater weight, and if the variances are equal, then the
estimator ∆f̂ is simply the mean value of the estimates. The
uncertainty in the resulting estimate can be computed from
the variances of the single estimates as

4. Details on Methods and System

We illustrate the BAR-SGE method on two series of
simulations, one performed in the temperature space (ST
simulations) and the other in the space of the distance
between two particles, denoted as λ-space. In both cases,
the calculations have been carried out on a model system
made of two “solute” particles immersed into a Lennard-
Jones fluid of 1398 (“solvent”) particles. Additional ST
simulations have been performed on a larger sample made
of two solute particles and 13 998 solvent particles. The
solute particles interact each other through a double-well
potential whose expression is

where x ) |x2 - x1| is the X component of the interparticle
distance vector. Here and in the following all quantities are
in reduced units. The solute particles are also constrained to
move along the X direction through a combination of stiff
harmonic potentials: kyz(y1

2 + z1
2 + y2

2 + z2
2), where (x1, y1,

z1) and (x2, y2, z2) are the Cartesian coordinates of the
particles and kyz ) 5 × 103. With such a stiff potential, the
quantity x appearing into eq 27 well approximates the actual
interparticle distance, eventually eliminating the Jacobian
contribution from the PMF along the interparticle direction.
The same mass is used for both solute and solvent particles.
Unitary Lennard-Jones parameters are employed for solute-
solvent and solvent-solvent interactions, while only V(x)
accounts for the solute-solute interaction. All simulations
have been carried out in constant-volume and constant-
temperature ensembles using a cubic box with standard
periodic boundary conditions. The density is 0.85, while the
temperature is kept fixed by means of the Nosé-Hoover
chain technique45 with four coupled thermostats. Lennard-
Jones interactions are cut off smoothly in the 3.0-3.5
distance range by multiplying the potential energy by a
function s(r) such that s(r) ) 1 for r e 3, s(r) ) 0 for r g
3.5, and s(r) ) 16r3 - 156r2 + 504r - 539 for 3 < r < 3.5.
The time step (t-step) used in the small-sample simulations
is ∼9.15 × 10-3, while in the large-sample simulations t-step
is ∼1.373 × 10-2. For a given replica, initial positions of
the solvent particles are random, while the solute particles

are taken with coordinates (0, 0, 0) and (0.5, 0, 0) in ST
simulations and (0, 0, 0) and (λn, 0, 0) in λ-space SGE
simulations, where λn is the specific λ value associated with
the ensemble from which the replica starts the dynamics.

Small-sample ST simulations have been carried out using
15 ensembles covering the temperature interval 0.6-1.2. The
temperatures are spaced out on the basis of uniform steps of
T-1, namely T n

-1 - T n+1
-1 ) 5.95 × 10-2. In large-sample

simulations the same interval of temperature has been taken.
However preliminary simulations have revealed that the
above distribution of temperature provides negligible ac-
ceptance ratios. In order to get acceptance ratios greater than
10%, 30 ensembles/temperatures have been found necessary.
Moreover it has been shown54 that a better efficiency in terms
of acceptance ratios is obtainable by distributing the tem-
perature on the basis of the rule Tn+1 ) aTn, where a is a
constant dependent on the number of ensembles/temperatures
and on the difference between maximum and minimum
temperatures (in our case a ) 1.02419). The acceptance ratio
for ST simulations is given by eq 12.

SGE simulations in the λ-space have been carried out using
21 ensembles at T ) 0.6 covering the distance interval
0.5-3.5 with a constant step size, λn+1 - λn ) 0.15. In this
case, the acceptance ratio is given by eq 16 with a force
constant k of 25. The k value has been chosen on the basis
of short preliminary simulations to ensure overlap between
neighboring ensembles.

All SGE and small-sample ST simulations have been
carried out for a time of 1.5 × 106 t-steps per replica, while
the large-sample ST simulations have been carried out for a
time of 105 t-steps per replica. The various replicas in
multiple-replica simulations are initially distributed in order
of increasing temperature (ST simulations) or increasing λ
(λ-space SGE simulations). Other details, such as the number
of replicas M and the relevant parameters La, Lb, Lc, and N′
(see Section 3.2), will be reported below.

5. Applications

5.1. Simulated Tempering Simulations. 5.1.1. Small-
Sample Case. In the context of ST, we report on the results
of four multiple-replica simulations differing in the number
of replicas, i.e., M ) 1, 5, 10, and 15. The simulation
parameters in t-step units are La ) 2, Lb ) 2000, Lc ) 10,
and N′ ) 1000 (see Section 3.2 for details). Note that, in
the following, the 0 time corresponds to the starting random
configuration, generated as described in Section 4. In Figure
1 we report four representative optimal weights, ∆f1f2,
∆f6f7, ∆f10f11, and ∆f14f15, as a function of time per replica
(only the values computed by eq 22 are actually reported).
These weights are associated with the temperature transitions
T1 ) 0.600h T2 ) 0.622, T6 ) 0.730h T7 ) 0.764, T10 )
0.884 h T11 ) 0.933, and T14 ) 1.120 h T15 ) 1.200. In
Figure 1, the optimal weights calculated using the multiple
Bennett acceptance ratio (MBAR) estimator39 are also
plotted. MBAR is equivalent to the multiple-histogram
reweighting method25,26 in the limit that histogram bin widths
are shrunk to 0 and corresponds to the Bennett acceptance
ratio (eq 22) when only two states are considered. The

∆̂f )
∑
i)1

P

[δ2(∆fi)]
-1∆fi

∑
j)1

P

[δ2(∆fj)]
-1

(25)

δ2(∆̂f) ) { ∑
j)1

P

[δ2(∆fj)]
-1}-1

(26)

V(x) ) 6[(x - 1)2 - 0.1](x - 3)2 (27)
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potential energy employed in MBAR has been sampled with
a frequency of 50 t-steps from 15 independent equilibrium
simulations (one per ensemble/temperature) lasting 2.5 ×
106 t-steps each (for a total of 7.5 × 105 configurations).
The convergence of the MBAR optimal weights has been
verified by calculations realized with an increasing number
of analyzed configurations (the time-dependent MBAR
optimal weights are available upon request). Hence, sup-
ported by the statistical sound, we may reasonably assume
the MBAR weights as the “reference optimal weights”.
Overall, it is encouraging that BAR-SGE weights converge
to the reference ones already in the early stages of the
simulations (note the scale on the ordinate axis in Figure 1),
the number of replicas does not matter. In this respect, it is

important to consider that no initial guess for optimal weights
is actually employed.

For a more global view of the data, in Figure 2 we report
the difference ∆fnfn+1 - ∆f nfn+1

ref between BAR-SGE and
MBAR optimal weights as a function of n. Specifically, we
consider the differences obtained at the early stages and at
the end of the simulations (up to 1.5 × 104 and 1.5 × 106

t-steps, respectively). For understanding the quantities into
play, one should consider the large range of change of
∆f nfn+1

ref , which goes from ∼454 at n ) 14 to ∼503 at n )
1. For both times, |∆fnfn+1 - ∆f nfn+1

ref | does not exceed 0.1%
of ∆f nfn+1

ref . In general, the performances of the algorithm
increase with increasing the number of replicas, i.e., with
improving the statistics, above all at short times. It is

Figure 1. Representative BAR-SGE optimal weights as a function of time per replica obtained from small-sample ST simulations.
Panels a-d: ∆f1f2, ∆f6f7, ∆f10f11, and ∆f14f15. Black, red, magenta, and blue colors refer to multiple-replica simulations with
M ) 1, 5, 10, and 15, respectively. Dashed lines represent reference values calculated with MBAR method.39

Figure 2. Differences ∆fnfn+1 - ∆f nfn+1
ref between BAR-SGE optimal weights, ∆fnfn+1, and the reference ones, ∆f nfn+1

ref (from
MBAR39), as a function of n, computed from small-sample ST simulations. Panels a-d: M ) 1, 5, 10, and 15. The values for
two sampling times are reported (0: 1.5 × 104 t-steps and b: 1.5 × 106 t-steps). Dashed lines are drawn to highlight the zero.
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worthwhile observing the absence of several points in Figure
2 due to the fact that weight estimates are still not available.
This occurs at the shortest time (1.5 × 104 t-steps), for large
n and small M. Such a feature is explained considering that
replicas are initially distributed in order of increasing
temperature. This implies that the first available weight
estimates are associated with transitions between ensembles
at low temperature, corresponding to small n values. The
remaining weights are obtained when ensembles at high
temperature (large n values) start to be populated. In
particular, for M ) 15, optimal weights are available very
soon because all ensembles are populated at the beginning
of the simulation. This can be better appreciated in Figure
3, where we report the temperature of few replicas as a
function of time per replica. In the single-replica simulation,
a complete random walk in temperature is observable starting
from about 6 × 104 t-steps. This time is reduced to 2 ×
104, 1.5 × 104, and virtually, to 0 t-steps for M ) 5, 10, and
15, respectively. An interesting feature observable in Figure
3 is the stair-like increase of the temperature in the initial
part of the simulations. The step size is clearly correlated,
but not necessarily equal, to the update frequency of optimal
weights. After the highest temperature is reached, all replicas
start to move through the ensembles with typical random
walk. This can be observed for any M, though for large M,
random walk may start well before the highest temperature
ensemble is populated. This behavior highlights how the free
energy perturbation approach (point 3b in Section 3.2) may
enhance the exploration of ensembles in the early stages of
the simulation.

It is also insightful to compare BAR-SGE method with
other schemes, self-adaptive in principle, devised to update
the optimal weights in SGE simulations. Recently, an
interesting algorithm has been developed by Park, Ensign,
and Pande34 (ABWHAM) within the framework of Bayesian
inference. ABWHAM is based on an updated scheme in
which the information from previous data is stored in a prior

distribution, which is then updated to a posterior distribu-
tion according to the new data. The basic parameters of
ABWHAM are the frequency of the histogram update
(temperature histogram in ST and λ-histogram in a generic
SGE simulation), the duration of the cycle of adaptation and
sampling, the Ω factor which regulates the refresh of some
variables of the method,34 and most importantly, the initial
guess for optimal weights. In our tests the temperature
histogram is updated every 2 t-steps, while analysis is
performed every 2000 t-steps. According to ref 34, we set
Ω ) 1. No initial guess is actually used in ABWHAM,
namely fn ) 0 for n ) 1, 2, ..., 15. Transitions between
ensembles are attempted every 10 t-steps, while the simula-
tion time is 5 × 106 t-steps per replica. We remark that our
analysis is not aimed at establishing the superiority of one
approach over the other (indeed, a systematic analysis on
more complex systems would be needed) but rather to show
how the choice of simulation parameters in the BAR-SGE
method might not be as crucial for reaching convergence as
it seems to be in the ABWHAM. The numerical comparison
is shown in Figure 4. We observe that, while BAR-SGE
algorithm gives accurate weights much before 5 × 105 t-steps
(also see previous discussion), ABWHAM converges at very
large times. In the latter method, we note a two-fold behavior.
Noisy estimates are obtained up until a given threshold time,
after which convergence is achieved in a very short period.
This threshold time is variable and corresponds to the last
refresh step.34 The iterations before the last refresh step
improve the initial guess and those after refine the posterior
distribution. This feature was also observed in ST simulations
of other simple models.34 From Figure 4 we realize that
statistical sampling is fundamental in reducing the threshold
time. In fact, in the M ) 15 simulation, it occurs at about
1.8 × 106 t-steps, while in the single-replica simulation, it
is never reached during the whole simulation period. One
could reduce the threshold time, and hence get a faster
convergence, by increasing Ω.34 A thorough analysis of this

Figure 3. Temperature of selected replicas as a function of time per replica obtained from small-sample ST simulations. Panels
a-d: M ) 1, 5 (black and red replicas start from temperatures T1 and T5, respectively), 10 (black and red replicas start from
temperatures T1 and T10, respectively), and 15 (black and red replicas start from temperatures T1 and T15, respectively).
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aspect would require a separate investigation and is far from
the aim of the present work. Anyway, the most critical aspect
of ABWHAM is the choice of the initial guess. If weights
are comparable, then fast convergence can be achieved
without initial guess.34 However, when the optimal weights
differ significantly, other methods, such as preliminary
conventional simulations, are needed to obtain accurate initial
guess and eventually to improve the convergence.22 De facto,
this makes ABWHAM not fully self-consistent. On the other
side, BAR-SGE algorithm allows to reach convergence
without resorting to preliminary simulations. A good com-
promise between computational cost and convergence rate
is roughly obtained when the number of replicas is compa-
rable to the number of ensembles, a requirement that can be
satisfied also with distributed computing clusters of modest
size. Moreover, a positive fact is that the method is quite
insensitive to the La and Lb parameters, provided N′ is of
the order of a few thousands. No significant differences are
observed in convergence features by increasing N′ (data not
shown).

Concerning the computational cost of BAR-SGE, two
important aspects must be remarked. First we note that no
significant overhead is observed with respect to standard
molecular dynamics simulations. The most time demanding
task is the application of eq 22, which roughly takes a
computer time comparable to that of a simulation step. From
this point of view, ABWHAM is more efficient. However,
since the update of the optimal weights is realized rarely,
the overall elapsed times of BAR-SGE and ABWHAM
simulations are comparable. Second, it is remarkable that,
for a given simulation time per replica, the 5, 10, and 15
replica simulations are only 1.001, 1.002, and 1.003 slower
than the single replica simulation.55 These quite unexpected
ratios come from two opposite effects. From one side, the
use of many replicas/processors makes the simulation
globally slower due to net communications between proces-

sors. From the other side, the simulation becomes faster
because the sums of eqs 22-24 are distributed among the
replicas/processors. Since the computational cost per replica
is almost independent of the number of replicas/processors
used in the simulation, we infer that the two competing
effects are nearly balanced in our case. However, it is obvious
that multiple replicas are preferable to single replica simula-
tions if we want to enhance sampling for a given computer
elapsed time.

5.1.2. Large-Sample Case. The biochemical systems typi-
cally investigated with molecular dynamics simulations are
quite complex, not only because of the roughness of their
free energy landscape but also due to the large number of
degrees of freedom. Both aspects contribute to slow down
the rate of convergence of any equilibrium sampling scheme,
including generalized-ensemble methods. The complexity of
the free energy landscape is intrinsically related to the
kinetics of the sampling mechanisms, because strong struc-
tural rearrangements are often required. On the other side,
the system size affects directly our capabilities of performing
simulations long enough to produce adequate sampling. In
ST simulations of large systems, an additional problem
occurs. In order to get non-negligible acceptance ratios, a
large number of ensembles/temperatures must be employed,54

making the average transition rate between lowest and
highest temperatures, and hence between free energy minima,
slower. This is essentially due to the fact that the overlap of
the potential energy distributions at two different tempera-
tures decreases with increasing system size. Simulated solute
tempering18,19 was just devised to reduce the number of
atoms contributing to the potential energy distributions thus
enhancing their overlap and eventually increasing the ac-
ceptance ratios. As a matter of fact, this could be a drawback
when a SGE method, such as ABWHAM, is based on a
thorough exploration of the temperature space. Moreover, it
is unclear if ST simulations based on approximate estimates

Figure 4. Comparison between BAR-SGE and ABWHAM optimal weights as a function of time per replica obtained from small-
sample ST simulations (as in Figure 1). Red: BAR-SGE; black: ABWHAM. From top to bottom: ∆f1f2, ∆f6f7, ∆f10f11, and ∆f14f15.
Panels a-d: M ) 1, 5, 10, and 15. Dotted lines represent extensions of the last-time weights calculated with BAR-SGE approach;
they are drawn to make easier the comparison.
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of weight factors may yield effective sampling in the
necessarily limited time of the simulation (think, e.g., to
the replica exchange simulated tempering method31 or to the
method based on potential energy averaging proposed in ref
22). In the present section, we address these issues by
analyzing ST simulations of a medium-large sample (14 000
particles) realized with three sampling schemes, namely
BAR-SGE, ABWHAM, and the standard method employing
fixed weights obtained by averaging the potential energy
from short preliminary simulations22 (from now on denoted
with FW-SGE). In all cases, 30 ensembles/temperatures have
been used (N ) 30) with the temperature distribution rule
reported in Section 4. To speed up the sampling, we have
decided to use 30 replicas (M ) 30), initially distributed over
all ensembles (one replica per ensemble). The parameters
for the BAR-SGE simulation are La ) 1, Lb ) 1000, Lc )
10, and N′ ) 1000. In the ABWHAM simulation, the
temperature-histogram is updated every 1 t-step, while
analysis is performed every 1000 t-steps. The other param-
eters of ABWHAM are those adopted in small-sample
simulations. Reference optimal weights have also been
calculated using MBAR.39 Analogously to the small-sample
case, in MBAR calculations the potential energy has been
sampled with a frequency of 1 t-step from 30 independent
equilibrium simulations (one per ensemble/temperature)
lasting 5 × 105 t-steps each (five times longer than the ST
simulations). The reference optimal weights, ∆f nfn+1

ref , are
reported in Table 1. The weight factors used in the FW-
SGE simulations have been obtained following ref 22

for n ) 1, ..., N - 1. The quantities En and En+1 are average
potential energies estimated from standard simulations at the
temperatures Tn and Tn+1. Here we report on the results of
three FW-SGE simulations, indicated as FW-SGE-a, -b, and
-c, whose weight factors are calculated by averaging the
potential energy over 300, 1000, and 3000 t-steps, respec-
tively. The deviations of the three sets of weight factors from
the reference ones, gn+1 - gn - ∆f nfn+1

ref , are shown in Figure
5. We note that the absolute deviations are globally ordered
as FW-SGE-a > -b > -c. This is simply due to the time
interval considered for computing the average potential
energies, which follows the reverse order. It is also important
to note the almost systematic negative deviation of the

estimated weights from the reference ones, which is larger
at lower temperature (small n values in Figure 5). This feature
is clearly correlated with the fact that equilibrium is obtained
in longer time at low temperatures. Lack of equilibrium is
generally accompanied by an overestimate of the potential
energy and, according to eq 28, by an underestimate of gn+1

- gn. In spite of this, it is however worth noting that the
weight factors of the FW-SGE-c simulation well approximate
the reference ones, being the difference in most cases much
lower than 0.5. Also the weight factors for the FW-SGE-b
simulation approximate the reference weights quite satisfac-
torily, especially for temperatures higher than 0.744 (i.e., n
> 10). Marked deviations from the ideal conditions are
instead observed for the FW-SGE-a weights. In order to
evaluate the efficiency of the average energy approach
(summarized by eq 28) in producing random walks in
temperature space, temperature histograms have been cal-
culated from the FW-SGE-a, -b, and -c simulations. In
particular, four histograms related to different time intervals
are reported in Figure 6. The histograms obtained from a
ST simulation performed with fixed optimal weights (those
of Table 1) are also plotted for comparison (FW-SGE-ref in
the figure). As expected, the FW-SGE-ref simulation yields
almost flat histograms apart from the 0-25% time interval.
Probably, in this case, the histogram keeps significant
memory of the early stages of the simulation where equi-
librium is still not attained. The features of the histograms
computed from the FW-SGE-a, -b, and -c simulations are
consistent with the estimated weight factors. The ensemble
populations are inhomogeneous because weight factors
deviate from the reference ones. Considering the (negative)
deviations of gn+1 - gn (see Figure 5), we may also explain
the large population of the low-temperature states. In fact,
the apparent free energy difference between adjacent states,
corresponding to gn+1 - gn, is systematically smaller than
the real (reference) value, fn+1 - fn. As a consequence, the
state with higher free energy, namely the n + 1 state, is
sampled with a lower weight factor with respect to the ideal

Table 1. Reference Optimal Weightsa

n ∆f nfn+1
ref n ∆f nfn+1

ref n ∆f nfn+1
ref

1 3328.53 11 2536.52 21 1919.51
2 3240.23 12 2467.65 22 1865.84
3 3153.97 13 2400.49 23 1813.54
4 3069.99 14 2334.93 24 1762.54
5 2988.03 15 2270.98 25 1712.85
6 2907.98 16 2208.72 26 1664.35
7 2829.99 17 2147.93 27 1617.10
8 2753.77 18 2088.59 28 1571.02
9 2679.59 19 2030.86 29 1526.09
10 2607.14 20 1974.37

a Calculated from 30 independent equilibrium simulations using
MBAR.39 The temperatures are distributed following the rule Tn+1

) 1.02419 Tn, where T1 ) 0.6.

gn+1 - gn ) 1
2

(�n+1 - �n)(En + En+1) (28)

Figure 5. Deviations of the weight factors used in the fixed-
weight ST simulations of the large sample from the reference
ones calculated using MBAR39 (the latter from Table 1). The
weight factors have been calculated from eq 28, averaging
the potential energy over 300 (FW-SGE-a: /), 1000 (FW-SGE-
b: 9), and 3000 (FW-SGE-c: O) t-steps in 30 standard
simulations (one for each temperature). Dashed line repre-
sents the zero. Lines are drawn as a guide for eyes.
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case, ultimately leading to underpopulation of the state itself.
A quite surprising aspect of the histograms of Figure 6 is
instead the extent of inhomogeneity as compared to the
observed deviations gn+1 - gn - ∆f nfn+1

ref . In the FW-SGE-a
simulation, the population of states corresponding to n > 2
is practically 0. The flattening of the histograms slightly
enhances passing to FW-SGE-b and then to FW-SGE-c
simulations. However, also in the last case, although accurate
weight factors are employed, the inhomogeneity remains
significant. Note that the histograms observed in the 0-25%
time interval keep strong memory of the initial homogeneous
distribution of the replicas. The above observations suggest
that, in order to get homogeneous sampling in ST simulations
of large systems with fixed weight factors, temperature-
dependent free energies (viz. weight factors) need to be
estimated very accurately. Unluckily, adequate accuracy
cannot be gained without efficient sampling. This vicious
cycle supports the idea that only refinement protocols, such
as BAR-SGE or ABWHAM, may ensure exhaustive sam-
pling through the ensembles/temperatures. In the ABWHAM
simulation reported here, the initial weight factors are those
of the FW-SGE-b simulation, while no initial guess is
employed for the BAR-SGE simulation. In Figure 7 we
report the difference ∆fnfn+1 - ∆f nfn+1

ref between BAR-SGE/
ABWHAM and MBAR optimal weights as a function of n
(as resulting at the end of the simulations). The dispersion
of ∆fnfn+1 - ∆f nfn+1

ref about the zero obtained from AB-
WHAM is due to the occurrence of refresh steps (see also
discussion in Section 5.1.1). However, although full con-
vergence is not reached with ABWHAM, the weights
calculated by averaging the estimates over the whole
simulation run provide much better agreement with the
reference (see asterisks in Figure 7). The optimal weights
estimated from BAR-SGE are instead very accurate. These
convergence features are pretty mirrored by the temperature
histograms obtained from the two methods (see Figure 8).
The flattening of the histogram during the progress of the

simulation is more evident for BAR-SGE than for AB-
WHAM, consistently with the noisy trend of the ABWHAM
weights. Finally, it is remarkable that in the last time interval
(75-100%), BAR-SGE and FW-SGE-ref give comparable
results.

In BAR-SGE, the refinement of the optimal weights,
∆fnfn+1 (for n ) 1, ..., N - 1), is based on the periodic
estimate of free energy uncertainties (eq 23), employed in
the weighted average of eq 25 (see Section 3.3). For each
∆fnfn+1, the set of uncertainties calculated during the
simulation provides also the global error, δ(∆fnfn+1), via eq
26. In the present case, all δ(∆fnfn+1) fall in the range
0.0077-0.0105, the average value being 0.0092. The errors
on the optimal weights can give information about the
probabilities of visiting the various ensembles/temperatures.
We know that, if ∆fnfn+1 were not affected by error, then
all ensembles/temperatures would be populated with the same
probability. In such a situation, the ratio between the
probabilities of two ensembles, say n and m, can be written
as Pn/Pm ) Zn/Zm exp(∆fmfn) ) 1 (see eq 9). If ∆fmfn is

Figure 6. Ensemble/temperature populations as a function
of the temperature label, n, computed from the fixed-weight
ST simulations of the large sample. Panels a-d are FW-SGE-
a, -b, -c, and -ref, respectively.The colors refer to the
populations calculated in different time intervals (given as
percentage of the total simulation time per replica).

Figure 7. Differences ∆f nfn+1 - ∆f nfn+1
ref between BAR-SGE/

ABWHAM optimal weights, ∆fnfn+1, and the reference ones,
∆fnfn+1

ref (from MBAR39) as a function of n, computed from
large-sample ST simulations. The full circles (b) indicate the
differences of the BAR-SGE estimates. The open squares (0)
indicate the differences of the ABWHAM estimates performed
at the last simulation step. The asterisks (/) indicate the
differences calculated by averaging the ABWHAM estimates
done at each analysis (see text for details). Dashed line is
drawn to highlight the zero.

Figure 8. Ensemble/temperature populations as a function
of the temperature label, n, computed from the BAR-SGE/
ABWHAM ST simulations of the large sample. Panels a and
b are BAR-SGE and ABWHAM, respectively. The colors refer
to the populations calculated in different time intervals (given
as percentage of the total simulation time per replica).
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affected by the error δ(∆fmfn), then the ratio Pn/Pm will vary
the most in the range:

In the previous equation the error coming from histogram
sampling has been assumed negligible. Therefore, it repre-
sents the error associated with inaccurate determination of
the optimal weights rather than with inaccurate sampling of
the temperature space. From eq 29 we infer that errors in
determining optimal weights do affect the ratio in asymmetric
way. Symmetry is obtained in the limit of small δ(∆fmfn)
(expand the exponential of eq 29 in Taylor’s series about
the zero). Considering the maximum error on ∆fnfn+1 in our
simulation, i.e. 0.0105, the previous equation establishes that
the ratio Pn/Pn+1 ranges in the interval 0.99-1.01 (difference
of ∼1% with respect to the theoretical value of 1). An
overestimate of the maximum change in the ratio PN/P1

involving the end states can also be gained from eq 29
assuming that

We have found PN/P1 ) 0.77-1.31, which corresponds to a
maximum deviation from 1 by 31%.

5.2. SGE Simulations in λ-Space. As previously stated,
we also report on the results of a SGE simulation performed
in ensembles associated with a parameter, λ, bound to the
distance between two particles (λ-ensembles). Although
various SGE simulations have been carried out (M ) 1, 5,
and 10), we decided to report only the outcomes of the 10-
replica simulation, because the features dependent on M are
similar to those discussed for ST simulations. The relevant
parameters in t-step units are La ) 10, Lb ) 2 × 104, Lc )
100, and N′ ) 2000. The convergence features of the method

are shown in Figure 9, where we report four representative
optimal weights corresponding to the ensemble transitions
λ1 ) 0.5 h λ2 ) 0.65, λ10 ) 1.85 h λ11 ) 2.0, λ16 ) 2.75
h λ17 ) 2.9, and λ20 ) 3.35 h λ21 ) 3.5. Results from a
10-replica simulation using ABWHAM are also reported in
the figure for comparison. In this last simulation, the
λ-histogram is updated every 10 t-steps, while weight
analysis is performed every 2 × 104 t-steps. As usual, Ω )
1. Transitions between ensembles are attempted every 100
t-steps, while the simulation time is 1.5 × 106 t-steps per
replica. At variance with the ST case, in this ABWHAM
simulation we have used an initial guess for optimal weights,
drawn from a prior ABWHAM-based simulation of 1.5 ×
106 t-steps per replica, during which refresh was active. Note
that, in the present simulation, no refresh steps were
necessary. Reference optimal weights from thermodynamic
integration23 are also plotted in Figure 9. Thermodynamic
integration data are recovered from canonical simulations
of 5 × 106 t-steps (density ) 0.85 and temperature ) 0.6).
The dimensionless Hamiltonian associated with the various
ensembles is reported in eq 15, with a force constant k of
25. The λ-step size for numerical integration is 0.05. From
Figure 9 we note that the two update methods give
comparable convergence. We must, however, remember that
ABWHAM weights come from a longer simulation history
targeted to the initial guess. It is remarkable that, in the BAR-
SGE method, even the early estimates well agree with the
values obtained from thermodynamic integration and from
ABWHAM. Comparable to ST simulations, λ-ensembles are
populated very quickly. This is clearly shown in Figure 10,
where we report λ as a function of time per replica. The
features of Figure 10 strongly resemble those of Figure 3,
whether in the random walk through the various ensembles
or in the stair-like trend characterizing the λ evolution at
early times.

Figure 9. Representative optimal weights as a function of time per replica obtained in 10-replica SGE simulations in λ-space.
Panels a-d: ∆f1f2, ∆f10f11, ∆f16f17, and ∆f20f21. Solid and dot-dashed lines are obtained from simulations using BAR-SGE
scheme and ABWHAM, respectively. Dashed lines represent reference values calculated by thermodynamic integration.

Pn

Pm
)

Zn

Zm
e∆fmfn(δ(∆fmfn) ) e(δ(∆fmfn) (29)

δ(∆f1fN) ) ∑
n)1

N-1

δ(∆fnfn+1) (30)
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Furthermore, it is instructive to analyze how the PMF
along the λ coordinate is built up during the sampling. The
PMF is recovered from the optimal weights as

In Figure 11, we plot the PMF calculated at various times
with BAR-SGE and ABWHAM approaches and compare
such profiles to the reference one. The most evident feature
is that BAR-SGE method, at variance with ABWHAM,
needs a certain time to complete PMF construction. This time
may depend on the system type and, in general, can be
reduced by increasing the number of walking replicas (see
discussion in Section 5.1). On the other side, the PMF curve
at early times (see t ) 0.1 curve in Figure 11a), although
incomplete, is very accurate and would not seem to require
further refinement. However, for better evaluating the relative
(though not optimized) performances of the BAR-SGE
scheme and the ABWHAM, we must remember that in the
latter case a preliminary simulation has been carried out to
recover an initial guess. We finally note that the errors on

the free energy differences between adjacent states calculated
by eq 26 fall well below 0.01. The maximum error on the
free energy difference between the end states calculated from
eq 30 is 0.07.

Unbiased PMF profiles along the collective coordinate
associated with λ (the interparticle distance in our case) can
also be calculated in posterior analysis (data not shown) using
multiple-histogram reweighting techniques25,26 or other
recent approaches developed in the framework of nonequi-
librium statistical mechanics.46,47

5.3. How Eq 24 Does Affect the Acceptance Ratio in
SGE Simulations. The effect of using eq 24 in SGE
simulations is that of enhancing the acceptance ratio for those
transitions that promote a replica toward ensembles that have
not been visited. Suppose, for instance, to set up a M-replica
ST simulation with N ensembles (with N > M) by associating
replica 1 to the ensemble with temperature T1, replica 2 to
the ensemble with temperature T2, and so on, until the
ensemble with temperature TM. As usual, we assume that
the temperatures are in order of increasing index and that
transitions occur only between neighboring temperatures. On
the basis of the BAR-SGE scheme, the transition TMf TM+1

can be attempted only using an estimate of ∆fMfM+1 from
eq 24. In fact, works W[M + 1 f M], needed to employ eq
22, are not available because the ensemble M + 1 has never
been visited. A similar situation would occur if the replicas
were distributed with reverse order. Therefore, the free
energy estimates provided by eq 24 are important in the early
stages of the simulation because they affect directly the
diffusion of replicas through the ensembles.

As an example, we calculate the distribution function of
the acceptance ratio for the transition T13f T14 in our model
system. To this aim, we consider all W[13f14] work values
recorded during the 15-replica ST simulation. For our
purpose, since we are interested only in a set of work values,
M does not matter. Then we have partitioned the set of works
in several independent subsets, each made of D elements
(here D ) 100, 300, and 1000). For each subset we have
calculated ∆f13f14 according to eq 24, thus obtaining a
collection of reliable optimal weights. These weights have
then been employed to compute the average acceptance ratio
from the whole original set of works. In such a way it is
possible to construct distribution functions of average ac-
ceptance ratios. The distribution functions recovered using
D ) 100, 300, and 1000 are plotted in Figure 12. They are
very broad, but the relevant fact is the shift toward higher
values of the acceptance ratio with decreasing D, namely
the number of work samples used for calculating ∆f13f14.
The average acceptance ratio is 0.31, 0.27, and 0.24 for D
) 100, 300, and 1000, respectively. These differences arise
from the fact that ∆f13f14 is as much overestimated as D is
smaller, in agreement with previous observations on the
convergence properties of work exponential averages.52

When D increases, ∆f13f14 approaches the exact value as
well as the resulting acceptance ratio. This conclusion is also
supported from the average acceptance ratio obtained using
the reference optimal weight (from MBAR). Its value, 0.22,
is ∼9% smaller than that obtained from 1000 samples. This
difference, though not negligible, reveals that already 1000

Figure 10. Value of λ as a function of time per replica for
two replicas taken from the BAR-SGE-based 10-replica
simulation. Black and red lines are related to replicas starting
from λ1 and λ10, respectively.

Figure 11. Potential of mean force (adimensional units) as
a function of λ calculated from 10-replica SGE simulations at
various times (in 106 units). Open circles (O): data from SGE
simulations, and solid lines: data from thermodynamic integra-
tion. Panels a and b: simulations adopting BAR-SGE scheme
and ABWHAM, respectively. For the sake of clarity PMF
profiles are shifted.

f(λn) ) ∑
i)1

n-1

∆fifi+1 (31)
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samples are sufficient to get good free energy estimates from
eq 24. In fact, the reference value of ∆f13f14, 459.79, is only
0.12 smaller than the average value calculated using D )
1000.

6. Concluding Remarks

In serial generalized-ensemble simulations, such as simulated
tempering, weight factors must be determined somehow to
allow a random walk in the space of the chosen collective
coordinate (the temperature in simulated tempering). In this
respect, adaptive methods, such as BAR-serial generalized-
ensemble (BAR-SGE) and Bayesian weighted histogram
analysis method (ABWHAM), may provide effective routes
to the fast determination of weight factors without resorting
to preliminary simulations. This is indeed an advantageous
feature of BAR-SGE and ABWHAM because, as we have
shown in the present work (Section 5.1.2), initial estimates
of weight factors from preliminary simulations must be very
accurate to ensure an almost random walk of the replicas
through the ensemble space. Even a small underestimate of
the weight factors, which typically occurs as equilibrium is
still not achieved, may lead to significant inhomogeneous
sampling. In this respect, the BAR-SGE method offers
interesting perspectives in enhancing the convergence of
optimal weights with minimal introduction of tunable
parameters. The truly relevant parameter entering into play
is the update frequency of weights, which must ensure the
storage of a sufficient number of work samples (see eq 20)
needed to get accurate free energy estimates (see eq 22).
The minimum value of the number of samples ranges from
one thousand to a few thousand. It is also important to remark
that in a suitable adaptive method, each update should in
principle account for the uncertainty associated with the
individual estimates. BAR-SGE scheme includes such a
feature by a variance-weighted sum of the individual
estimates (Section 3.3). In SGE simulations realized in the
space of a collective coordinate of the system, the possibility
of calculating the uncertainties of the free energy differences
between neighboring ensembles provides a way of estimating
the error in the potential of mean force. Furthermore, since
the update of a single weight involves data from only two

neighboring ensembles, the computational cost of BAR-SGE
is much smaller than that of multiple-histogram reweighting.
In the case of our BAR-SGE simulations, using 5, 10, and
15 replicas leads to an increase of the elapsed time per replica
by only 1.001, 1.002, and 1.003, respectively, with respect
to the single-replica simulation. This put forward the BAR-
SGE algorithm as a suitable methodology for large comput-
ing distributed environments.
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Abstract: Given the recent developments in methodology associated with the accurate
computation of molecular systems with weak interactions, it is of particular interest to revisit
systems that are notoriously challenging for determining reliable potential energy surface (PES)
descriptions. Additionally, challenges associated with carrying out complete basis set extrapola-
tion procedures and treatment of basis set superposition error (BSSE) are of importance in
these descriptions. In this work, investigation into the ability to accurately predict the potential
energy surfaces of the main Rg3 molecules (Rg ) He, Ne, Ar) is made across a range of wave
function types and large basis sets, including the use of several established extrapolation
procedures and counterpoise corrections. Wave function types span most classes of density
functional types, including the newest DFT-D schemes, and are benchmarked against high
accuracy CCSD(T)/CBS methodology. Study of such systems is valuable, as they serve as
simple models for many complex properties, most importantly n-body weak interaction energies.

Introduction

Rare gas compounds are, in many cases, simple models for
the study of complex properties. In particular, weak interac-
tions of van der Waals bound dimers, n-body interaction
energies in trimers, tetramers, etc., and complex aggregations
of large clusters, are of significant importance. Few-body,
rare gas compounds are heavily used for parametrizations
of semiempirical potentials, for example, in empirical force
fields or ab initio molecular dynamics methods. In these
cases, highly accurate ab initio potential energy surfaces
(PES) are extremely important for such parametrizations.
Also significant are three-body atomic systems, which present
intriguing properties, such as “Efimov physics”,1-4 and
“Borromean states”,5,6 with the presence of bound states even
when the analogous two-body systems are unbound.

Homodimers present a well-known, simple, one-dimen-
sional PES,7 commonly used in parametrizations. Equilateral
homotrimers present an analogous one-dimensional PES but
with a much larger (Borromean) bound state. Because of a
less profound knowledge of the nature of the bonding, their

use in parametrizations is restricted mainly to three-body
correction components.8,9 For similar reasons, while accu-
rate results of rare gas dimers are used as test systems for
theoretical models, homotrimers are very rarely used in this
sense.

The study of rare gas trimers is nevertheless a very well
established first step in the investigation of the stability of
large clusters, and both experimental and theoretical studies
have contributed data in this direction.10-20 Several experi-
mental studies have been carried out on rare gas triatomic
systems,21 indicating less sensitivity in measurements than
the weaker binding dimers. There is very little in the literature
detailing accurate calculations of the potential energy surfaces
of the rare gas trimers, however. Additionally, none of the
more recent dispersion-enabled DFT functionals have been
tested on these systems, despite their relevance for under-
standing intermolecular interactions and the implications on
the overall computational cost savings compared to tradi-
tional benchmark level methods. Rare gas trimers represent
ideal candidates for parametrization and validation of new
theoretical models, in the same way that dimers have been
used up to now.
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There are now a growing number of theoretical models
that are appropriate for treating the structure and properties
of weakly bound clusters, enabling greater understanding of
the importance and representation of short-, intermediate-,
and long-range interaction, particularly since the introduction
of entire new generations of approximations for the exchange-
correlation potential (e.g., see Table 1 and references therein).
The local density approximation (LDA) and its analogue,
local spin density approximation (LSDA), as the first
approximations to the exchange-correlation potential νxc used
by Kohn and co-workers with high success, were particularly
applicable in solid-state physics. Initial strategies to improve
LDA/LSDA enhanced the exchange-correlation functional
terms that depend on the gradient of the density, leading to
generalized gradient approximation (GGA) functionals.
Despite their great success, GGA approximations fail in the
description of properties that depend mainly on the correla-
tion of electrons, such as is the case for rare gas trimer
complexes. To overcome the main limitations of GGA
functionals, various strategies have been developed (Table
1), which offer a high degree of reliability in these cases.

In this work, we have evaluated the latest dispersion
sensitive density functional theory (DFT) based methodolo-
gies for their ability to accurately represent the potential
energy surfaces for a series of rare gas trimer systems. After
establishing MP2, CCSD, and CCSD(T) benchmark poten-
tials, a general assessment of DFT trimer potential energy
surfaces is made. Two technical issues concerning grid size
and BSSE are addressed, before concluding remarks.

Theoretical Methodology and Approach

All calculations reported here used a locally modified version
of the GAMESS electronic structure program, running on
our group cluster hardware. Associated visualization and
analysis was carried out using MacMolPlt39 and Qutemol.40

In the present work, we apply our recently implemented
semiempirically corrected density functionals,41 in addition
to key functionals implemented by several other GAMESS
DFT contributors. Moreover, to carry out a full analysis on
the series of rare gas trimers across various classes of density

functional types, we have implemented a large variety of
additional functionals of different class types. In the process,
we have facilitated testing of parameters, future implementa-
tions of new functionals, updates of existing functionals, and,
from the earlier work, the ability to include the semiempirical
dispersion correction in various functionals. Initially, two new
routines for the calculation of the B97 family of function-
als42-45 were implemented. The B97-D functional is a special
reparameterization of the original Becke 1997 functional,42

produced by Grimme33 with the purpose of avoiding the
effect of double-counting in the vdW region. The power
expansion series coefficients of the original functional
description were optimized by Grimme to restrict the density
functional representation of the shorter electron correlation
ranges, while the medium- to long-range representation is
handled by the semiempirical correction term.

Following the formulation of the original B97 functional,42

we separate exchange and correlation contributions. For the
correlation, a FORTRAN routine was generated via a
modified version of the dfauto program of Knowles et al.46

The expansion in the gradient up to five terms was used,
and the numerical coefficients were passed to the routine as
parameters. This correlation routine enables calculation of
correlation energy for all implemented functionals. The
exchange component of the B97 functional has been
implemented as a separate routine, composed of three distinct
blocks, (1) the LSDA component, implemented using the
previous LSDA routine of GAMESS that includes the range-
separation of the Coulomb operator (for the ωB97 family
of functionals), (2) the GGA component, implemented using
the modified dfauto program, as done for the correlation
component, and (3) the τ-dependency for the τ-HCTH family
of functionals. All three components are accumulated
together appropriately, and the global functional derivatives
are calculated using a simple chain-rule formula. The new
routines enable the implementation of a large number of
different reparameterizations of the same basic functional
form, and because of their modular nature, new sets of
parameters can be easily added in the future, either for the
purpose of refinement of the existing formulations based on

Table 1. Strategies for Density Functionals beyond GGA

density functional type main feature examples reference

meta-GGA depend on the Kohn-Sham
kinetic energy density

M0X family Zhao et al.22-25

τ-HCTH family Handy and Boese26

BMK Boese/Martin27

range-separated hybrid (RSH) Coulomb operator is separated
into long-range and short-range terms,
the extent of which determines
the exact variant of the functional

LC-BLYP, CAM-B3LYP Savin et al.28,29

HSE Scuseria and Heyd30,31

ωB97 Chai and Head-Gordon32

empirical/semiempirical vdW dispersion interactions described
empirically with a damped
interatomic R-6 potential

B97-D Grimme33

double-hybrid includes terms derived from
correlated wave function
methods (e.g., MP2 theory)

B2-PLYP, mPW2-PLYP Grimme and Schwabe34,35

MC3BB, MC3MPW Zhao et al.36

B2K-PLYP, mPW2K-PLYP Martin et al.37

Andersson-Langreth
-Lundqvist functional

long-range exchange correction
scheme together with the
Andersson-Langreth-Lundqvist
vdW functional

vdW-DF Langreth et al.38
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new data or for the formulation of new functionals. In
addition, our recent implementation of semiempirical disper-
sion correction capabilities41 can also be readily accessed
for the functionals, enabling, for example, the B97-D and
the ωB97X-D dispersion corrected forms.

Several functionals are hybrid functionals, with the
percentage of HF exchange appropriately added via an array
value option. The range-separated HF and DFT exchange
of the RSH functionals are calculated with the long-range
correction scheme of GAMESS, but using a slightly modified
routine to allow the multiplication with the GGA correction.
The LR-HF integrals are calculated directly using Savin et
al.’s operator47 in the two-electron integrals module of
GAMESS. According to the formula of Head-Gordon and
Chai,32 the ωB97X functional is calculated as

The scaled SR-HF exchange for the ωB97X functional is
obtained in our implementation indirectly by using the
factorization of the total HF exchange (calculated without
Savin et al.’s modified Coulomb operators) as

The ωB97X functional is then implemented in a slightly
unconventional way, as

This particular reformulation of the functional definition of
eq 1 provides additional insight, since it shows more clearly
the similarities between the range separated hybrids and the
simple meta-GGA functional form of τ-HCTH, as well as
other derived functionals.

In eq 3, in fact, the τ-dependent term of eq 4 is substituted
by the long-range Hartree-Fock term (nonlocal by defini-
tion), and the GGA exchange is limited to short-range in eq
3. The other terms, the GGA correlation and the scaled HF
exchange, are exactly the same for both functional forms.
Written in this form, it is also clear that ωB97 is closely
related to nonhybrid functionals (cx ) 0), while ωB97X is
related to hybrid functionals (cx * 0). A summary of all
B97-related functionals available in the new release of
GAMESS through the described new routines can be found
in the Supporting Information.

Evaluated functionals for the present work include B97,42

B97-1,43 B97-2,45 B97-3,44 B97-D,33 B98,48 HCTH/93,43

HCTH/120 and HCTH/147,49 HCTH/407,50 τ-HCTH,26

τ-HCTHhyb,26 BMK,27 ωB97 and ωB97X,32 ωB97X-D,32

BLYP,51-53 B3LYP,22,54,55 B2-PLYP,34 CAM-B3LYP,29

VS98,56 PKZB,57 TPSS,58,59 TPSSH,60,61 TPSSM,62 M05,22

M05-2X,63 M06 and M06-2X,24 M06-L,64 M06-HF,65 and
M08-HX and M08-SO.25 The functionals in bold are our
most recently implemented functionals to the GAMESS suite.
All computations have been carried out using the (96, 1202)
Lebedev grid66 (called the ‘army’ grid in GAMESS), and

an additional set using the (400, 770) Lebedev grid. A general
grid convergence investigation was carried out for the meta-
GGA functionals using several other grid specifications as
detailed in the text. In accord with our previous study on
the performance of the B97-D functional,41 the scaling factor
for the semiempirical dispersion was taken as s6 ) 1.00 for
all the double-� basis sets considered and s6 ) 1.25 for all
the triple-� basis sets considered. Basis set superposition error
(BSSE) is corrected with the counterpoise (CP) method.67

A detailed analysis of the BSSE results is also reported in
this work.

In addition to density functional theory, computations were
carried out using Hartree-Fock (HF); Møller-Plesset per-
turbation theory of order 2 (MP2);68 coupled-cluster with
single and double excitations (CCSD);69 and two methods
of coupled-cluster with single, double, and iterative triple
excitations CCSD[T] (also known as CCSD+T(CCSD)69)
and CCSD(T),70,71 as implemented in GAMESS. The latter
is the highest level of theory applied in this study, and
arguably one of the best methods available for single-
reference computations.

Several basis sets were employed in this study in order to
investigate consistency and predictability across the full set
of molecules studied. The basis sets include the correlation
consistent basis set of Dunning,72 with augmented functions,
denoted aug-cc-pVnZ, with n ) D for double, T for triple,
Q for quadruple, and 5 for quintuple, as implemented in
GAMESS (g functions for He and h functions for Ne and
Ar are dropped for aug-cc-pV5Z). We note that relative
contractions for each split shell differ from He to Ne and
Ar and refer readers to the original articles for more details.
Extrapolation to the complete basis set (CBS) limit has been
carried out for He3.

Coupled Cluster Reference Calculations

The potential energy surfaces (PESs) of three Rg3 systems
(Rg ) He, Ne, Ar) have been investigated with high-level
computational methods up to CCSD(T) with complete basis
set extrapolation (CBS). The potential energy surface of each
D3h Rg3 molecule is determined with respect to the ground
state of the three separated Rg atoms along the radial
coordinate of the trimer (Figure 1). In greater detail, the He3

molecule is used to carefully investigate performance across
all methods, the results of which are then extended to the
other two systems, Ne and Ar trimers. For highly accurate
comparison, we carry out an extrapolation to the complete

EXC
LC-GGA ) EX

SR-GGA + EC
GGA + EX

LR-HF + cxEX
SR-HF (1)

cxEX
SR-HF ) cx(EX

HF - EX
LR-HF) (2)

EXC
LC-GGA ) EX

SR-GGA + EC
GGA + (1 - cx)EX

LR-HF + cxEX
HF

(3)

EXC
meta-GGA ) EX

GGA + EC
GGA + EX

τ + cxEX
HF (4)

Figure 1. Radial coordinate of the Rg3 D3h trimer molecule.
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basis set limit with coupled cluster, as described in the next
sections, for all three trimers.

Convergence Studies for the He3 Trimer. Accurate
calculations have been carried out for He3 at the CCSD(T)
level of theory, establishing convergence of the PES with
respect to increasing basis set size, including extrapolation
to the complete basis set limit. Additional calculations were
carried out with the aug-cc-pVnZ (n ) 2-5) series to
investigate the convergence properties of this family of basis
sets. The correlation consistent basis sets of Dunning and
co-workers are used to minimize error associated with finite
one-particle expansions. These together with extrapolation
to the complete basis set (CBS) limit provide high accuracy
for electronic energies, enabling quantitative comparison
between different ab initio methods.

An important component in establishing reliable potential
energy surface data involves consistent extrapolation to
complete basis set and complete correlation limits.72-90

While there has been much discussion associated with
carrying out complete basis set extrapolation procedures in
the literature across a variety of molecular systems, including
challenges associated with the type of molecule, family of
basis sets being used, treatment of BSSE, and/or properties
being extrapolated, the most accurate and reliable extrapola-
tion methodology is not a matter of consensus. In this work,
we compare several of the important extrapolation schemes
used in the literature, and therefore we first briefly discuss
the different approaches in what follows.

The original purpose of Dunning72 in the construction of
the aug-cc-pVnZ basis sets was to enable the extrapolation
of properties using a simple three-points exponential formula,
denoted here as [n,n′,n′′;Feller]-CBS, with [n,n′,n′′, the
cardinality of the employed basis]:

where n is the cardinal number of the basis set, for example,
n ) 2 for DZ, 3 for TZ, etc.; f(n) is the property (in this
case, energy) obtained using the aug-cc-pVnZ basis set, and
f CBS is the extrapolated value for the same property. Several
authors assert that eq 5 is suitable for the extrapolation of
energies at the Hartree-Fock (HF) level, while in many cases
the effective decay for a correlated method (e.g., coupled-
cluster) is reasonably slower than the exponential decay.75,88

Many other extrapolation techniques have been developed
as alternatives to [n,n′,n′′;Feller]-CBS. In 1962, Schwartz86

proposed an extrapolation procedure for energies of atoms
that incorporates an inverse power series function of the basis
set extension, n. While this extrapolation has quite a simple
expression for atoms, it tends to become very complicated
for molecules containing different types of nuclei, requiring
further approximations.79,91 In the simple case of the helium
homotrimer, however, such a formulation can be applied as

Truncation of eq 6 leads to simple n-points formulas. In the
present study, we denote the simple two-point formula as
[n,n′;Schwartz]-CBS, the three-point formula as [n,n′,n′′;
Schwartz]-CBS, and so on.

Also of interest here is the extrapolation technique
proposed by Truhlar88 and by Halkier et al.,75 which couples
HF together with correlation methods to obtain a formulation
of the type

The HF component, ECBS(HF), and the correlation compo-
nent, ECBS(corr), are obtained using different power expan-
sion extrapolations for their respective methods. In the
method of Truhlar, a power expansion n-A with variant
coefficients is used, while Halkier et al. use an exponential
+Schwartz-type expansion. In the present work, we also
employ a hybrid three-point Feller exponential formula for
the HF component, [TQ5;Feller]-CBS, together with a three-
point Schwartz formula, [TQ5-Schwartz]-CBS, for the cor-
relation component. This method will be denoted simply as
[TQ5;Mixed]-CBS.

Results for all extrapolation techniques at the CCSD(T)
level of theory are presented in the Supporting Information
and only summarized here in Figure 2 and Table 2 for the
He3 trimer system. Comparing results without extrapolation
using aug-cc-pVQZ and aug-cc-pV5Z basis sets, one ob-
serves evidence of reaching the complete basis set limit. A
suitable extrapolation technique with these large basis sets

f(n) ) fCBS + A exp(-Bn) (5)

E(n) ) ECBS + An-3 + Bn-5 + Cn-7 + ... (6)

Figure 2. CCSD(T) dissociation energies De (µEh) of the He3

molecule along the radial coordinate R (Å) as a function of
the basis set and CBS extrapolation formula. Dashed black
lines are aug-cc-pVQZ and aug-cc-pV5Z.

Table 2. Convergence of Dissociation Energies De (µEh) at
the Equilibrium Distances Rmin (Å), as a Function of
Extrapolation Formulas (from above, converging to the
middle), and Wave Function Method (from below,
converging to the middle)a

basis set wave function De (µEh) Rmin (Å)

aug-cc-pVQZ -96.165 1.72
aug-cc-pV5Z -96.696 1.72
[TQ;Schwartz]-CBS CCSD(T) -99.753 1.71
[Q5;Schwartz]-CBS -97.253 1.73
[TQ5;Mixed]-CBS -98.739 1.74

[TQ5;Feller]-CBS CCSD(T) -96.829 1.74

CCSD[T] -96.843 1.74

[TQ5;Feller]-CBS CCSD -84.872 1.74
MP2 -66.325 1.80
HF -0.261 2.80

a The [TQ5;Feller]-CBS/CCSD(T) method is chosen as the
reference for all subsequent calculations.

ECBS(TOT) ) ECBS(HF) + ECBS(corr) (7)
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should therefore provide results very close to that of the
complete basis set limit. The simple two-point [TQ;Schwartz]-
CBS extrapolation method, although an improvement over
formulas containing double-� basis sets (e.g., see the
Supporting Information), which are completely outside a
monotonically decreasing behavior, still shows substantial
error in the minimum region (Figure 2, inset graph). The
best results are achieved with the exponential [TQ5;Feller]-
CBS and the simple two-point [Q5;Schwartz]-CBS extrapo-
lation procedures.

Basis set convergence and overall extrapolation behavior
can also be viewed by evaluating the interaction energies at
a fixed distance near the minimum, R ) 1.75 Å (Figure 3).
Figure 3 shows that the convergence of the He3 trimer energy
with the aug-cc-pVnZ basis sets is very well approximated
by the original exponential formula of Feller. These results
are perhaps not a great surprise due to the simple nature of
the high-symmetry trimer, with only six electrons. For similar
reasons, however, the mixed extrapolation technique appears
to be slightly overbound for this simple case, while it might
provide more accurate results for more complicated molec-
ular systems. The Feller extrapolation formulation will be
used for the other trimer systems in the series.

We next consider optimization of the wave function
method, including Hartree-Fock (HF) up to coupled cluster
methods. In particular, the dissociation energies, De, of the
He3 trimer along the radial coordinate R are calculated using
the [TQ5;Feller]-CBS extrapolation with different wave
function methods. The full set of computational results across
all different wave function types considered can be found
in the Supporting Information and is only summarized here
in Figure 4 and Table 2.

From the results, we find that HF predicts an essentially
unbound system, as expected. MP2 theory shows differences
on the order of 30 µEh in the region of the minimum, with
respect to the more accurate wave function types. As such,
both HF and MP2 wave functions are largely insufficient
for the description of the PES of this trimer. A slight
improvement is observed with CCSD, which shows a

difference on the order of 12 µEh in the region of the
minimum. It is clear that triple excitations are necessary to
achieve an accurate description of the trimer system. Both
CCSD[T] and CCSD(T) show essentially the same descrip-
tion in the region of the minimum, on the order of 0.02 µEh.

CCSD(T)/[TQ5;Feller]-CBS Calculations for He3,
Ne3, and Ar3 Trimers. From the conclusions obtained for
He3 in the previous sections, the potential energy surfaces
for all three Rg3’s are determined, using the CCSD(T)
method and the [TQ5;Feller]-CBS extrapolation, as detailed
in Table 3. The predicted minimum radial coordinate
distances are 1.75 Å, 1.80 Å, and 2.20 Å, for He3, Ne3, and
Ar3, respectively. The dissociation energies show the sig-
nificant difference in binding characteristics along this series.
In particular, while the radial distance difference between
the He3 trimer and Ne3 trimer is only 0.05 Å, the difference
in dissociation energy is 284 µEh. Progressing to the Ar3

trimer, the radial distance increases by a significant amount,
0.40 Å (0.45 Å), as does the dissociation energy, with a
difference of 973 µEh (1257.3 µEh), compared to Ne3 (He3).
These reference calculations will be used in the comparative
analysis across density functional classes discussed below.

Figure 3. Evaluation of extrapolation formulas at the com-
plete basis set limit as a function of the basis set size, n, for
He3 at R ) 1.75 Å.

Figure 4. Dissociation energies De (µEh) of the He3 molecule
along the radial coordinate R (Å) using the [TQ5;Feller]-CBS
extrapolation procedure as a function of wave function type.

Table 3. CCSD(T) Reference Dissociation Energies De

(µEh) of the Rg3 Molecules along the Radial Coordinate R
(Å) Using the [TQ5;Feller]-CBS Extrapolation Procedure

He Ne Ar

R [Å] De [µEh] R [Å] De [µEh] R [Å] De [µEh]

1.00 16 907.2 1.00 132 743.7 1.00 1 035 602
1.20 3250.1 1.20 25 043.9 1.20 351 542.3
1.40 400.2 1.40 3794.8 1.40 105 027.2
1.60 -65.200 1.60 57.43 1.60 26 759.2
1.65 -87.120 1.70 -310.907 1.80 4589.3
1.70 -95.933 1.80 -380.858 2.00 -657.443
1.75 -96.829 1.90 -336.865 2.20 -1354.108
1.80 -93.023 2.00 -265.582 2.30 -1247.063
1.90 -78.645 2.20 -155.338 2.40 -1068.008
2.00 -61.991 2.40 -97.182 2.50 -881.626
2.20 -35.794 2.60 -62.580 2.60 -714.031
2.40 -21.478 2.80 -41.109 2.80 -458.702
2.60 -13.472 3.00 -27.786 3.00 -296.944
2.80 -8.537 4.00 -4.331 4.00 -50.669
3.00 -5.508 6.00 -0.342 6.00 -3.599
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We should point out that the largest source of error in the
reported data in Table 3 is associated with the omission of
core/valence correlation energies, which would result in some
increase in these numbers. Comparison with the limited data
in the literature is very difficult due to the different focus of
the studies, resulting in a wide variation in predicted
energetics across this set of trimers. This has less to do with
the quality of results presented in the literature than the fact
that the reference state used is quite different from one
investigation to another (e.g., referenced with respect to the
energy of the three separated atoms, to the energy of the
respective dimer plus atom, to the three-body components,
etc.). There is also considerable variance in the reporting of
internal coordinates for the systems. This lack of consistency
limits reliable comparison, and for our current purpose, it is
only necessary to have one consistent set of data to
benchmark against the variety of DFT functionals.

One might, however, consider comparison with the cor-
responding rare gas dimers, which instead emphasizes the
much larger energies found for the trimers. Full-CI results
of van Mourik and van Lenthe report a binding energy for
He2 of 34.68 µEh at 2.96 Å,92 data in accord with those
proposed by Komasa and Rychlewsky using an explicitly
correlated Gaussian function approach.93 Other calculated
values range from those obtained by Hobza and co-workers
(32.2 µEh with CCSD(T) level, 30.32 µEh with Full-CI
level94), to 35.02 µEh obtained by Szalewicz and co-workers
using SAPT calculations.95 A more detailed discussion by
Specchio et al.96 on the full set of available potentials can
also be found. An accurate analysis of the potential energy
surface of Ne2 was conducted by Gdanitz.97 The reported
binding energy is 131.53 µEh at R ) 3.10 Å. Other accurate
calculations on this system range from the 130.33 µEh at R
) 3.10 Å of Cybulski and Toczłowski (aug-cc-pV5Z+bonding
function/CCSD(T) level)98 to 133.96 µEh at R ) 3.09 Å.99

Finally, Aziz reported the most accurate value to date for
Ar2, 453.99 µEh at R ) 3.75 Å, obtained using a semiem-
pirical potential fit to accurate measured data, within
experimental error.100 With a comparison across this set of
reported dimers, one can see a relatively consistent 33-34%
increase in interaction energy for the trimers from that of
the respective dimer system, which is quite substantial.

DFT Potential Energy Surfaces of Rare Gas
Trimers

Performance across several density functional class types for
the prediction of the potential energy surfaces of the Rg3

trimers, as referenced against the accurate CCSD(T)
[TQ5;Feller]-CBS extrapolated results, is provided in Table
3. The aug-cc-pVnZ family of basis sets, with n ) D and T,
is used for all reported calculations here, in combination with
34 different exchange-correlation functional approximations.
The ultrafine (96, 1202) (corresponds to the “army” grid in
GAMESS) and (400, 770) Lebedev grids66 have been used
for all calculations. Basis set superposition error (BSSE) is
accounted for using the counterpoise (CP) method101 and
further elaborated upon in the discussion.

To facilitate evaluation of the performance of each
functional, a mean absolute deviation with respect to the

accurate CCSD(T)/CBS data (Table 3) has been calculated
on the usual 15-point grid used for the PES calculation. For
this evaluation, one could argue that the mean absolute
deviation, MAD, evaluated as

is not the best parameter for evaluation of the functional
performance, due to the fact that it accounts for equal
weighting of each point on the grid. To establish a single
reliable evaluation parameter for the problem at hand, errors
in the region of the minimum should count more than errors
in regions far from the minimum. For example, points in
the repulsive region at short-range should be more heavily
weighted. For this reason, a weighted mean absolute devia-
tion, denoted wMAD, is calculated in addition to the usual
MAD. The wMAD values are calculated by giving a weight
factor to each point of the grid according to the distance of
that point from the equilibrium, and the relative shape of
the accurate PES. The weight factors are calculated with the
CCSD(T)/CBS PES by scaling each point according to the
relative heights of the PES at that point and by renormal-
ization of the total weight to the total number of points in
the grid (see the Supporting Information).

In addition to the mean absolute deviation parameters, the
difference from the absolute CCSD(T)/CBS value (deviation
from reference, abbreviated DFR) in the region of the
minimum (R ) 1.75 Å for He3, R ) 1.80 Å for Ne3, and R
) 2.20 Å for Ar3) is also determined in the evaluation of
the performance of each density functional approximation.
The MAD and wMAD values with respect to the accurate
PES for 34 different DFT functionals and two basis sets are
collected in Table 4 for He, Ne, and Ar.

For the He3 trimer, the two functionals that appear to
perform the best are the τ-HCTHhyb and ωB97X functionals.
Relative to the majority of the data, reasonable performance
is also obtained with several of the other functionals,
including B97, B97-2, B98, TPSS, TPSSH, M05 and M05-
2X, M08-HX and M08-SO, and ωB97X and ωB97X-D.
Interestingly, the semiempirical dispersion correction does
not seem to improve the results in the two cases it was used,
B97-D and ωB97X-D, compared to their uncorrected coun-
terparts. In several cases, we also note that the BSSE does
not necessarily improve the results, a point that will be
revisited below.

Moving on to the heavier trimers, Ne3 and Ar3, which have
larger atomic polarizabilities than He2, we see a difference
in the trends of the set of functionals. This might be
anticipated on the basis of the difference in bonding in these
heavier trimers. In the case of the Ne3 trimer, the B97 family
of functionals performs very well, particularly the B98, B97,
B97-1, and B97-K functionals. Other functionals also have
relatively good performance, including M05, M05-2X, M06-
HX and M06-SO, TPSS and TPSSH, and τ-HCTHhyb.
However, while the DFR value is fairly low, the wMAD
values are noticeably large. Additionally, several of these
functionals need to be used with caution given the known
spurious oscillatory behavior having to do with the kinetic

MAD ) ∑
X)1

Xtot |De
xc(X) - De

CCSD(T)(X)

Xtot | (8)

1956 J. Chem. Theory Comput., Vol. 6, No. 7, 2010 Peverati et al.



energy density component.102-104 This is addressed in more
detail in the next section.

Finally, for the Ar3 trimer, we notice that considerably
fewer functionals provide reasonable performance. In this
case, the ωB97X functional stands out, with the M05-2X
functional being also reasonable relative to the other func-
tionals. This would indicate a type of bonding in this trimer
that is not well represented by most of these functionals.

Across all trimers, several meta-GGA functionals, such
as VS98 and PKZB, show results that are highly dependent
on the system as well as the basis set, with acceptable results
in many cases, but quite poor results in others. As with the
other meta-GGA functionals, these two functionals also show
oscillating behavior. The BLYP, B3LYP, CAM-B3LYP, and
BMK functionals also have overall poor performance,
something that could be a result of specialized parametriza-
tion for specific properties, e.g., for kinetic data, rather than

Table 4. MAD, wMAD, and Deviation from Reference near
the Equilibrium Distance for 34 Different Density
Functionals and (a) He3, (b) Ne3, (c) Ar3

a

aug-cc-pVTZ

helium trimer MAD wMAD DFR R ) 1.75

B97 201.0 (201.8) 65.7 (68.9) -78.2 (-81.7)
B97-1 132.3 (134.3) 113.6 (116.7) -125.7 (-128.9)
B97-2 453.5 (449.6) 43.3 (39.8) 32.4 (28.7)
B97-3 707.1 (690.5) 518.2 (510.9) 583.7 (576.9)
B97-D 679.6 (681.3) 73.3 (78.6) -102.4 (-108.9)
B97-K 276.9 (283.6) 118.5 (122.3) -119.8 (-123.2)
B98 134.5 (135.1) 73.4 (76.5) -84.2 (-87.5)
HCTH/93 1227.9 (1,220.7) 306.2 (298.8) 318.5 (310.4)
HCTH/120 436.9 (438.1) 318.2 (324.2) -368.1 (-374.7)
HCTH/147 515.3 (515.5) 149.5 (155.7) -183.6 (-190.5)
HCTH/407 696.9 (700.3) 637.8 (644.9) -732.7 (-740.4)
τ-HCTH 487.5 (489.9) 271.0 (277.3) -325.6-(332.7)
τ-HCTHhyb 313.4 (312.0) 13.9 (15.2) -17.2 (-21.0)
BMK 1128.9 (1,085.6) 871.6 (854.3) 947.9 (932.3)
ωB97 147.8 (148.2) 185.9 (180.6) 214.1 (208.6)
ωB97X 31.4 (26.9) 13.7 (14.6) -5.6 (-10.6)
ωB97X-D 549.1 (541.0) 73.3 (71.1) 46.9 (41.8)
BLYP 516.6 (511.1) 400.7 (395.4) 457.1 (451.4)
B3LYP 253.8 (248.9) 258.1 (254.2) 297.7 (293.8)
B2-PLYP 111.4 (112.6) 147.8 (141.6) 174.3 (168.3)
CAMB3LYP 221.7 (221.0) 75.8 (71.2) 95.6 (90.7)
VS98 501.9 (505.4) 224.7 (227.5) -224.5 (-231.4)
PKZB 796.2 (796.8) 209.3 (216.0) -256.8 (-264.2)
TPSS 166.7 (166.3) 69.7 (74.4) -87.1 (-92.6)
TPSSH 141.8 (141.2) 46.0 (49.5) -58.7 (-63.0)
TPSSM 219.9 (219.3) 87.2 (92.3) -106.71 (-112.6)
M05 140.3 (148.7) 82.2 (84.5) -63.1 (-68.8)
M05-2X 128.5 (126.2) 49.6 (49.1) 5.9 (-1.7)
M06 278.9 (250.0) 317.6 (332.6) -422.9 (-438.9)
M06-2X 226.7 (226.5) 314.8 (319.2) -383.5 (-387.5)
M06-L 140.7 (109.8) 60.5 (92.9) -98.7 (-134.5)
M06-HF 497.4 (492.7) 365.7 (382.3) -422.9 (-439.3)
M08-HX 104.8 (108.7) 65.3 (61.9) 70.1 (62.5)
M08-SO 87.9 (54.8) 37.8 (42.5) -33.4 (-48.7)

aug-cc-pVTZ

neon trimer MAD wMAD DFR R ) 1.80

B97 1378.3 (1252.5) 107.2 (51.5) 27.5 (-3.0)
B97-1 808.5 (735.8) 50.7 (101.4) -12.6 (-41.7)
B97-2 1938.4 (1786.4) 391.3 (323.3) 146.7 (106.9)
B97-3 1786.3 (1652.3) 1082.0 (1024.8) 703.9 (668.8)
B97-D 2850.1 (2726.7) 242.8 (266.5) -390.4 (-430.1)
B97-K 731.6 (689.0) 147.7 (189.2) 12.0 (-13.4)
B98 980.5 (848.8) 74.3 (21.6) 30.6 (-3.1)
HCTH/93 4,098.9 (3969.8) 990.5 (931.3) 413.6 (381.5)
HCTH/120 1827.5 (1771.6) 316.0 (365.9) -314.4 (-341.0)
HCTH/147 2328.1 (2231.7) 133.5 (121) -114.0 (-142.4)
HCTH/407 2417.0 (2374.8) 840.4 (893.3) -707.6 (-733.5)
τ-HCTH 2157.1 (1987.3) 187.3 (220.8) -250.1 (-315.0)
τ-HCTHhyb 1404.2 (1233.8) 259.6 (184.0) 90.9 (45.7)
BMK 1439.0 (1242.8) 1831.5 (1750.6) 1033.8 (974.0)
ωB97 503.4 (464.5) 404.6 (358.5) 402.4 (379.2)
ωB97X 418.2 (275.7) 209.4 (147.0) 187.5 (150.8)
ωB97X-D 1580.1 (1372.4) 326.2 (258.9) -49.3 (-114.8)
BLYP 1855.3 (700.0) 749.6 (700.0) 579.4 (555.7)
B3LYP 926.8 (445.5) 501.6 (445.5) 415.6 (385.9)
B2-PLYP 454.1 (191.7) 287.4 (191.7) 265.2 (200.4)
CAMB3LYP 499.3 (122.2) 137.9 (122.2) 238.7 (211.7)
VS98 1220.3 (444.0) 457.3 (444.0) 573.0 (548.8)
PKZB 3163.1 (137.6) 125.7 (137.6) -171.4 (-193.5)
TPSS 1383.9 (112.0) 157.3 (112.0) -11.1 (-52.3)
TPSSH 1182.3 (110.6) 184.0 (110.6) 39.0 (-4.5)
TPSSM 1677.4 (108.4) 138.2 (108.4) -36.2 (-73.5)
M05 608.8 (193.0) 143.0 (193.0) 79.8 (35.2)
M05-2X 402.3 (219.6) 172.1 (219.6) 134.7 (78.9)

Table 4. Continued

aug-cc-pVTZ

helium trimer MAD wMAD DFR R ) 1.75

M06 996.4 (269.6) 218.3 (269.6) -310.1 (-400.5)
M06-2X 552.9 (392.5) 315.5 (392.5) -306.8 (-356.5)
M06-L 183.7 (303.2) 178.4 (303.2) -128.4 (-256.4)
M06-HF 551.9 (560.3) 292.9 (560.3) -410.5 (-655.9)
M08-HX 529.8 (72.5) 214.3 (72.5) 87.4 (-21.3)
M08-SO 590.8 (47.1) 108.4 (47.1) 15.6 (-52.4)

aug-cc-pVTZ

argon trimer MAD wMAD DFR R ) 2.20

B97 2912.7 (2837.5) 916.3 (848.6) 1268.1 (1186.7)
B97-1 2028.4 (1952.3) 513.2 (445.3) 643.2 (561.0)
B97-2 4035.9 (3955.6) 1466.5 (1395.3) 2101.4 (2015.9)
B97-3 3701.8 (3486.0) 1981.4 (1889.8) 2573.0 (2458.1)
B97-D 4722.7 (4670.1) 377.2 (350.0) 528.0 (439.7)
B97-K 5986.0 (5850.1) 460.5 (403.2) 541.4 (470.4)
B98 2286.4 (2200.8) 773.4 (698.6) 1041.9 (951.7)
HCTH/93 7934.2 (7868.7) 2690.4 (2626.7) 3905.5 (3830.6)
HCTH/120 4941.3 (4938.9) 363.0 (334.0) 539.2 (485.2)
HCTH/147 5610.7 (5,559.5) 1008.0 (956.0) 1479.6 (1418.9)
HCTH/407 5901.9 (5900.4) 733.8 (767.0) -614.0 (-665.6)
τ-HCTH 6003.0 (5985.4) 773.9 (675.1) 1204.6 (1089.7)
τ-HCTHhyb 3191.2 (3169.4) 1146.1 (1056.9) 1617.8 (1511.5)
BMK 5738.6 (5302.1) 3258.8 (3090.5) 4430.9 (4217.3)
ωB97 1015.7 (1021.3) 658.0 (616.8) 581.1 (489.8)
ωB97X 729.9 (733.2) 242.6 (205.4) 80.9 (-9.9)
ωB97X-D 2114.3 (1991.7) 666.3 (569.4) 1087.3 (957.5)
BLYP 4259.9 (4,185.0) 2293.3 (2226.4) 3077 (2998.8)
B3LYP 3402.2 (3248.0) 1780.2 (1713.6) 2369.9 (2290.3)
B2-PLYP 2517.8 (1979.8) 1086.3 (970.6) 1426.7 (1278.9)
CAMB3LYP 1477.1 (1331.0) 1110.6 (1049.7) 1418.5 (1345.6)
VS98 2732.7 (2706.4) 1778.7 (1813.2) -2847.6 (-2905.2)
PKZB 5547.3 (5502.8) 1089.1 (1041.2) 1615.0 (1559.5)
TPSS 3294.5 (3268.6) 1204.5 (1119.3) 1766.3 (1665.3)
TPSSH 2822.0 (2794.2) 1208.2 (1123.2) 1751.3 (1650.8)
TPSSM 3455.6 (3371.8) 1194.2 (1116.3) 1753.4 (1661.5)
M05 3157.4 (3072.1) 443.6 (364.9) 425.7 (334.0)
M05-2X 1054.6 (753.1) 196.6 (120.3) 87.3 (-62.6)
M06 1724.4 (1497.2) 610.6 (439.3) 897.1 (646.2)
M06-2X 621.8 (503.3) 241.0 (167.3) 472.5 (346.0)
M06-L 1456.6 (1157.1) 347.0 (113.5) 436.9 (42.5)
M06-HF 1299.9 (1678.5) 534.8 (351.2) 878.4 (511.3)
M08-HX 1645.6 (1337.4) 719.6 (570.5) 797.6 (598.2)
M08-SO 1639.2 (1279.9) 463.6 (284.3) 496.0 (272.0)

a Results shown are BSSE corrected (BSSE uncorrected).
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structural, in the case of BMK. The B2-PLYP functional also
provides relatively unsatisfactory results in all cases.

Quality of Density Functional Theory Integration
Grid. The noted oscillatory behavior observed in several
regions of the PES for some of the represented density
functionals, in particular the meta-GGA functionals, is not an
unknown phenomenon within the context of density functional
theory and has been discussed in the literature.102,103,105-107

Such behavior was discussed in a recent article by Johnson
and co-workers,102 specifically in reference to the meta-GGA
functional analysis of the PES for a set of dispersion-bound
complexes, including the Ar trimer. This erroneous behavior
is thought to originate from the divergence of the τ-dependent
term in these functionals. The suggestion from Johnson and
co-workers of how to avoid this spurious behavior is to use
an ultrafine grid.

To illustrate the effect of grid specification, we have
carried out computations using a variety of standard as well
as other more and less stringent grid specifications, specif-
ically for the Ar3 system and the M06-L funtional, which
showed oscillatory behavior even when using the relatively
stringent army grade grid (96, 1202). Table 5 shows the
results for two geometry specifications of the Ar3, one
relatively far from the PES minimum, R ) 1.0 Å, and a
geometry near the PES minimum, R ) 2.2 Å, where we find
a region of some functional oscillation problems. Two types
of grid quadratures are represented in the table, an older polar
coordinate grid108 and the newer Lebedev grid.66 The latter
grid has been found to be more efficient for use in DFT,
due to the reduction in the number of quadrature points
needed to obtain convergence, compared to other grids.108-110

The exchange, correlation, and kinetic energy correction
contributions to the energy are determined by summing the
contributions from grids centered on each nuclei.111,112 The
quadrature specification for the angular component is com-
bined with the 1D integration for the radial component and
enables the numerical construction of the required integrals.
The polar grid specification has been predominantly replaced
by the Lebedev grid due to the rather poor distribution of
points on the spherical grids, which requires considerably
more grid points to obtain a reasonable invariance to rotation.

Analysis of the data in Table 5 shows the sensitivity of
the grid to energy, gradient, and associated computational
cost, for this functional. In the region specified by R ) 1.00

Å, a reasonable choice of angular and radial specification
(e.g., at least the default (96, 302) specification), shows quite
good convergence. Use of a very loose grid clearly results
in poor representation of the PES. However, near the
observed oscillatory behavior in the PES, R ) 2.2 Å, one
readily sees the need for a tighter grid specification,
particularly associated with the angular component. An
optimal tight grid choice is typically observed with an angular
component of at least 770. Therefore, using 770 or the typical
“army grid” specification of 1202 is expected to provide
relatively good convergence in structure and property.

The radial grid and associated weights are a function of
the Bragg-Slater radius of the atom, and therefore the
number of grid points is expected to vary with the atom type.
While typical values are 96 (or 99) for most molecules
investigated, higher specifications (e.g., 150-250) may be
necessary with heavier atoms or, likewise, much smaller grid
specifications for very small atoms. However, if overly large
radial specifications are made for the particular atom, the
points can become so dense and the extent of the spheres so
extreme that numerical instabilities can be observed. This is
the case, for example, in the raw data of Table 5, where one
sees small oscillations in the data beyond a radial specifica-
tion of about 250. The effect appears to be much smaller
than for the angular component (e.g., Figure 5).

Results displayed in Figure 5 show a comparison of data
from (400, 770) and (96, 1202) grid specifications for the
M06-L functional. Despite the fact that this more extreme
nonstandard radial specification provided by a (400, 770)
grid provides a much smoother shape of the PES (and in
general, for functionals that have oscillations in some areas
of the PES), the underlying behavior and overall performance
of the affected functionals does not improve. For example,
wMAD for He3 using M06-L is 60.5 with an army grade
grid (96, 1202) and 62.3 with a (400, 770) grid; for the TPSS
functional, wMAD is 166.7 and 166.1, respectively. This
could be indicative of an overly large value for the radial
component, which does result in a smoothing of the PES
with the use of the tighter grid but likely has too many points,
resulting in a small degradation in overall performance.

In a more recent publication by Wheeler and Houk104

focusing only the M06 suite of functionals, it was concluded
that such spurious behavior originates from grid sensitivity
in the kinetic energy density enhancement factor used in the

Table 5. M06-L/aug-cc-pVTZ Energy, RMS Gradient, and Computational Time for Ar3 Trimer, as a Function of Grid
Specification

grid specification R ) 1.00 Å R ) 2.2 Å

grid radial angular energy RMS CPU E RMS CPU

Lebedev SG1 24 1-94 (variable) -1581.58670477 0.5132730 17.9 D.N.C.a

polar coordinate 96 Theta ) 12, Phi ) 24 -1581.58369967 0.5142771 11.1 -1582.61268820 0.0004244 5.1
Lebedev default 96 302 -1581.58406747 0.5136053 12.1 D.N.C.
Lebedev R1,tight 96 590 -1581.58406691 0.5138834 16.7 -1582.61268238 0.0002371 24.6
Lebedev R1,U-tight 96 770 -1581.58409109 0.5139260 17.7 -1582.61270112 0.0002315 31.5
Lebedev R2,U-tight 200 770 -1581.58409833 0.5139036 42.7 -1582.61259280 0.0001795 61.5
Lebedev R3,U-tight 250 770 -1581.58409854 0.5139029 32.6 -1582.61259277 0.0001564 41.3
Lebedev R4,U-tight 300 770 -1581.58409812 0.5139005 46.3 -1582.61259271 0.0001701 71.7
Lebedev R5,U-tight 400 770 -1581.58409862 0.5138996 63.3 -1582.61259271 0.0001701 71.7
Lebedev Army 96 1202 -1581.58409655 0.5139938 31.9 -1582.61269837 0.0002469 39.6
Lebedev R6, Army 250 1202 -1581.58410481 0.5139705 46.4 -1582.61259482 0.0001570 64.1

a SCF procedure did not converge.
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exchange component of these functionals. While it is clear
that the grid specification is quite important, the balance of
radial and angular grid specification probably warrants a
more systematic investigation, particularly as it is an inherent
problem of the meta-GGA class of functionals. In general,
sufficiently tight grids should always be used when calculat-
ing structure and properties to avoid erroneous behavior.

Assessment of DFT Surfaces. For a global view of the
behavior of the series of density functionals, Figure 6 shows
the results of PES data for the set of density functional class
types. The first class consists of nonhybrid functionals,
including B97-D, HCTH/407, and BLYP, as well as τ-H-
CTH, TPSSH, and M06-L, that are nonhybrid meta-GGAs.
The second class consists of a selection of hybrid functionals,
as well as range-separated hybrids, including the most
complete reparameterization of the B97 functional (called
B98), the commonly used B3LYP functional, the double-
hybrid B2-PLYP, the range-separated CAM-B3LYP, and the
new ωB97 functionals of Chai and Head-Gordon:32 ωB97,
ωB97X, and ωB97X-D. The third class includes a selection
of hybrid meta-GGA functionals, including TPSSH, M05,
M05-2X, M06, M06-2X, M08-HX, and M08-SO.

For helium, very few functionals provide a dissociation
curve close to the reference data. The ωB97X functional is
the only functional that comes close to the reference data.
Within the local functionals, the meta-GGA M06-L (only
with a tight radial specification) and TPSS are the only
functionals of the set that present at least a reasonable overall
curve shape, albeit strongly overbinding. The B97-D curve
is shifted to longer equilibrium geometry and also is strongly
overbinding. Many of the common GGA functionals are
either dissociative or weakly bound for this system. It is
interesting to compare ωB97X, which does a good job close
to the minimum, with the dispersion corrected version,
ωB97X-D, which shows a drastic shift to longer equilibrium
but now has the correct dissociation. The class of hybrid
meta-GGA functionals has quite widely variant behavior
from one functional to another, making it unclear if any
particular result is fortuitous or due to a correct description
of the physics. All essentially have defects that would be
unacceptable for accurate prediction, which is perhaps
disappointing considering the formulation of these function-

als. The TPSSH functional has the most reasonable prediction
of the whole set, but it is strongly overbinding.

Looking at the classes of functionals for Ne3, we observe
some improvements in functional performance, which may
be attributed to the increased binding energy for this heavier
rare gas trimer. The M06-L (only with a tight radial grid)
and TPSS nonhybrid meta-GGA’s again show the most
reasonable overall binding curves, albeit now the TPSS
functional is slightly displaced to a longer equilibrium
position and is underbinding. The B98 hybrid GGA func-
tional is also reasonable, yet slightly underbound. The
ωB97X functional in this system now is considerably
underbinding, which is corrected with the semiempirical
dispersion, but again ωB97X is shifted to a longer equilib-
rium distance. The performance of meta-GGA functionals
is once again far from acceptable, despite some small general
improvements.

Finally, we look at the three classes of functionals for Ar3,
which has the largest atomic polarizability of the series. This
fact is reflected in the behavior of many functionals, which
show more reasonable binding curves in comparison to the
other two trimers. In particular, B97-D, M06-L (with a tight
radial grid), and τ-HCTH nonhybrid functionals perform
well, but HCTH/407 is still overbinding, and TPSS is
progressively more under-binding than in Ne3. Of the hybrid
GGA functionals, ωB97X and ωB97-D show again this trend
of the former having reasonable prediction around the
equilibrium geometry, and the latter only having reasonable
dissociation but considerably underbinding. Mostly all of the
meta-GGA functionals are underbinding, but many more
have overall correct behavior, predicting curves that are at
least within the region of the correct reference data, indicating
a more correct description of the physics of this system.

Across all systems, the ωB97X functional (with the
exception of an estimated underbinding curve for Ne3) and
the M06-L nonhybrid meta-GGA functional with a suf-
ficiently tight radial grid, show a relatively consistent
performance across all trimers. It is evident that the choice
of the functional as well as the grid extent must be seriously
considered for reliable results. It is interesting to note the
general very poor behavior of some commonly used func-
tionals, for example, BLYP, B3LYP, and the double hybrid
B2-PLYP. For all three rare gas trimers, these three func-
tionals predict a dissociative or very underbinding phenom-
enon, indicating more general problems than associated with
the variation in binding phenomena in the three systems.

Elaboration on BSSE. Looking carefully at the results
in Table 4, in some cases, the BSSE uncorrected results are
moderately better than those that are BSSE corrected.
However, it is well-known that BSSE plays a key role for
accurate treatment of weakly bound complexes, where too
small basis sets result in poor prediction of binding energies
and intermolecular distances.113,114 Although it is generally
believed that DFT is much less affected by BSSE than other
wave function types, a basis set of at least triple-� quality is
typically necessary to significantly reduce the BSSE.115 The
counterpoise correction (CP)67 is a standard method used to
correct for BSSE, and while the procedure itself has an
associated error (typically results in an overestimation of

Figure 5. Effect grid size with the M06-L functional for the
He3 potential energy surface.
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BSSE) and requires additional effort, the method generally
provides good results for the vast majority of cases where it
is used.

Table 6 shows the BSSE as a function of interatomic
distance across five common DFT functionals using the aug-
cc-pVDZ basis set for the He3 trimer. The data are expressed
as both an absolute value and a percentage of the total
binding energy. The absolute value of the BSSE at the
binding distance is, in general, larger than 13 µEh for all of
the considered functionals, in the order M06 > B2-PLYP >
BMK > BLYP > B3LYP > 13 µEh. Considering that the
dispersion energy near the equilibrium distance, evaluated
using the semiempirical dispersion formula of Grimme33

(namely, the unscaled -D contribution of the B97-D func-
tional), is -140.2 µEh, the BSSE energy is always larger
than 10% of the dispersion energy. With the exception of
the B2-PLYP method, the value of the BSSE in the region
close to the minimum represents about 5-7% of the total
binding energy. The B2-PLYP method, on the other hand,
shows a value considerably larger, representing about 35%
of the binding energy, with a large basis set dependency.
This is most likely due to the presence of the MP2 term.
The general behavior of the BSSE with respect to the
interatomic distance is fairly unpredictable, ranging signifi-

cantly across the various functionals, as perhaps seen more
clearly in Figure 7. These results show that BSSE plays a
substantial role in the determination of the binding energies
of the rare gas trimers, particularly with double-� quality
basis sets, although to a different extent across the functionals.

A reasonable question on the noted effective performance
of the BSSE uncorrected combination of DFT and double-�
quality basis sets arises from this analysis. The proliferation of
the use of DFT/double-� methods in computational chemistry
is primarily due to the relatively cheap computational cost of
the combination for a general good performance. However, in
many cases, the good performance is amplified by a cancellation
of errors in the parametrization of the DFT functional and any
associated semiempirical dispersion correction, in combination
with the BSSE and the incompleteness of the basis set. In
particular, we have previously shown, for small basis sets, that
BSSE can be on the same order of magnitude as the dispersion
corrections in those functionals that have semiempirical cor-
rections, but the two corrections have different asymptotic
behaviors.41 As such, care should be taken in the selection of
the method and basis set, in particular, for computations
involving weak interactions. No additional information is
revealed in a similar analysis of BSSE effects in the description
of the PESs of the other two trimers, Ne3 and Ar3. However,

Figure 6. Dissociation energies, De (µEh) of the Rg3 trimers [a-c, He (blue); d-f, Ne (red); and g-i, Ar (green)] along the radial
coordinate R (Å) using the aug-cc-pVTZ basis set together with local GGA [a, d, g], hybrid GGA [b, e, h], and hybrid meta-GGA
[c, f, i] DFT functionals, referenced against the CCSD(T)/CBS results in Table 3. Results are presented on the same relative
scale; the (96, 1202) Lebedev grid has been used for all but the meta-GGA class of functionals, for which the (400,770) Lebedev
grid is used due to the noted oscillatory behavior in these functionals.
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all tables and graphics associated with this analysis are available
as Supporting Information, for those interested in the details.

Conclusions

A systematic investigation into potential energy surfaces
characteristics of a series of rare gas trimers across a wide
range of methodologies has been presented. Because of the
much smaller amount of literature compared to that for rare
gas dimer counterparts, it is of interest to investigate this
series for a better understanding of n-body interaction
energies, but also for the evaluation of model chemistries.

In the equilateral D3h case, the trimer series presents a simple
one-dimensional potential energy surface, from which the
methodology can be compared. These systems represent a
challenging test for new methodologies, as all three trimers
are van der Waals, or dispersion-bound, systems, with
varying degrees of atomic polarizability.

For this study, we have implemented a large set of
Kohn-Sham DFT density functionals into the GAMESS
software package to fully test performance across a wide
range of functional class types, including several of the new
dispersion enabled functional strategies. In the process, we
also facilitate future implementations and parameter testing
of a variety of density functional types. Reference data for
the He3 trimer are investigated in detail using CCSD(T)
dissociation energies, De (µEh), of the trimer along the radial
coordinate R (Å) for the aug-cc-pVnZ (n ) 2-5) series of
basis sets and CBS extrapolation. Several well-established
extrapolation procedures are compared. Optimal results are
achieved with the exponential [TQ5;Feller]-CBS and the
simple two-point [Q5;Schwartz]-CBS extrapolation proce-
dures. The [TQ5;Feller]-CBS was subsequently used to
establish reference calculations for all three rare gas trimer
systems.

Benchmarked against the reference data, investigation is
then made across a set of 34 DFT functionals of varying
classes, evaluated on the same PES points, using double-
and triple-� quality basis sets, for all three rare gas trimers.
Results with and without correction for basis set superposi-
tion error are discussed. Because of spurious oscillation in
the potential energy surfaces obtained with meta-GGA
functionals, a detailed investigation of the DFT integration
grid was also carried out. The tightest grid, (400, 700), was
used for all meta-GGA reported results reported here. In
general, we propose a sequence of increasing accuracy in
terms of (radial, angular) points for Lebedev-type integration
grids, as (96,302), (125,590), (250,770), and potentially
(400,770), however such a large radial component can easily
be overkill, resulting in no additional convergence, but
considerable CPU time.

Criteria for the evaluation of calculated potentials for any
method on systems of this type should encompass good
prediction of the equilibrium distance, dissociation energy,

Table 6. BSSE as a Function of Interatomic Distance for Five Common DFT Functionals, Expressed As Absolute Value in
µEh, ABS, and as Percentage of the Total Binding Energy, %

BLYP B3LYP BMK M06 B2-PLYP

R ABS % ABS % ABS % ABS % ABS %

1 60.24 0.31 63.81 0.36 161.38 0.85 295.65 1.80 179.00 1.05
1.2 29.84 0.64 22.38 0.59 30.92 0.52 71.28 2.15 68.56 2.05
1.4 34.63 2.47 29.01 3.15 26.14 0.80 48.94 27.40 54.96 9.08
1.6 24.75 4.30 22.16 6.85 26.98 1.57 54.80 13.84 42.92 30.40
1.65 21.89 4.60 19.16 7.26 25.59 1.88 52.62 11.07 38.14 35.25
1.7 19.26 4.83 15.99 7.27 22.98 2.22 47.98 8.91 32.83 37.52
1.75 17.08 5.00 13.01 6.88 19.46 2.61 41.55 7.38 27.43 36.23
1.8 15.52 5.36 10.53 6.54 15.54 2.92 34.23 7.45 22.40 34.50
1.9 14.34 6.79 7.64 6.43 8.34 3.43 20.31 5.12 14.64 29.74
2 14.92 9.73 7.24 8.37 3.74 4.07 10.49 3.77 10.35 28.80
2.2 15.69 19.45 8.63 19.36 1.37 30.43 2.85 2.21 7.76 45.87
2.4 12.58 28.70 7.74 33.34 1.49 39.72 1.37 2.34 6.18 84.21
2.6 8.08 32.54 5.28 41.92 1.17 38.03 0.68 2.81 4.09 130.13
2.8 4.50 30.52 3.09 42.36 0.75 41.23 0.33 2.95 2.37 165.88
3 2.24 23.91 1.61 35.05 0.44 53.45 0.19 3.48 1.25 159.86

Figure 7. BSSE as a functional of interatomic distance,
expressed as (a) absolute value and (b) percentage of the
total binding energy.
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and long-range behavior. However, what we see from the
reported results across DFT classes is that predictions
strongly vary depending on the rare gas system, such that
no unique best functional can be recommended across the
whole series. Local functionals provide a generally poor
behavior across all criteria, while hybrid GGAs are somewhat
better overall. Meta-GGA functionals are largely unsatisfac-
tory but still represent the best functionals in specific cases,
for one or more of the criteria. Oscillations in the behavior
of the PES are found for many meta-GGA functionals,
despite the use of an ultrafine Lebedev integration grid. We
therefore suggest that these functionals be used with caution.
A correct long-range behavior should fit to a c6/r6 + c8/r8

like behavior, as is expected from the semiempirical, -D,
corrected versions of the functionals, which do quite well
for the Rg2 dimer systems. However, only a few of the
potentials calculated with the semiempirically corrected
functionals have better long-range behavior, probably the best
example being ωB97X-D. The newly implemented range-
separated hybrids and semiempirical corrected functionals
project the most reasonable global results, relatively speaking.
The same does not hold for the B2-PLYP double hybrid
functional, which performs quite poorly for all considered
cases. The trends in BSSE were considered in more detail,
posing a reasonable question on the effective performance
of the BSSE uncorrected combination of DFT with double-�
quality basis sets.
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Lundqvist, B. I. Phys. ReV. Lett. 2004, 92, 246401.

(39) Bode, B. M.; Gordon, M. S. Mol. Graphics Modell. 1999,
16, 133–138.

Rare Gas Trimers J. Chem. Theory Comput., Vol. 6, No. 7, 2010 1963



(40) Tarini, M.; Cignoni, P.; Montani, C. IEEE Trans. Visual.
Comput. Graphics 2006, 12, 1237–1244.

(41) Peverati, R.; Baldridge, K. K. J. Chem. Theory Comput.
2008, 4, 2030–2048.

(42) Becke, A. D. J. Chem. Phys. 1997, 107, 8554–8560.

(43) Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C.
J. Chem. Phys. 1998, 109, 6264–6271.

(44) Keal, T. W.; Tozer, D. J. J. Chem. Phys. 2005, 123, 121103.

(45) Wilson, P. J.; Bradley, T. J.; Tozer, D. J. J. Chem. Phys.
2001, 115, 9233–9242.

(46) Strange, R.; Manby, F. R.; Knowles, P. J. Comput. Phys.
Commun. 2001, 136, 310–318.

(47) Miehlich, B.; Stoll, H.; Savin, A. Mol. Phys. 1997, 91, 527.

(48) Becke, A. D. J. Chem. Phys. 1998, 108, 9624–9631.

(49) Boese, A. D.; Doltsinis, N. L.; Handy, N. C.; Sprik, M.
J. Chem. Phys. 2000, 112, 1670–1678.

(50) Boese, A. D.; Handy, N. C. J. Chem. Phys. 2001, 114, 5497–
5503.

(51) Becke, A. D. Phys. ReV. A 1988, 38, 3098.

(52) Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B 1988, 37, 785–
789.

(53) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys.
Lett. 1989, 157, 200–206.

(54) Stephens, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J.
J. Phys. Chem. 1994, 98, 11623–11627.

(55) Hertwig, R. H.; Koch, W. Chem. Phys. Lett. 1997, 268,
345–351.

(56) van Voorhis, T.; Scuseria, G. E. J. Chem. Phys. 1998, 109,
400–410.

(57) Perdew, J. P.; Kurth, S.; Zupan, A.; Blaha, P. Phys. ReV.
Lett. 1999, 82, 2544–2547.

(58) Tao, J. M.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E.
Phys. ReV. Lett. 2003, 91, 146401–146404.

(59) Perdew, J. P.; Tao, J. M.; Staroverov, V. N.; Scuseria, G. E.
J. Chem. Phys. 2004, 120, 6898–6911.

(60) Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P.
J. Chem. Phys. 2003, 119, 12129–12137.

(61) Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P.
J. Chem. Phys. 2004, 121, 11507.

(62) Perdew, J. P.; Ruzsinszky, A.; Tao, J.; Csonka, G. I.;
Scuseria, G. E. Phys. ReV. A 2007, 76, 042506-042511.

(63) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2006,
2, 1009–1018.

(64) Zhao, L.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101–
194119.

(65) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A. 2006, 110,
13126–13130.

(66) Lebedev, V. I.; Laikov, D. N. Dokl. Math. 1999, 477–478.

(67) Su, P.; Li, H. J. Chem. Phys. 2009, 131, 014102.

(68) Møller, C.; Plesset, M. S. Phys. ReV. 1934, 46, 618–622.

(69) Piecuch, P.; Kucharski, S. A.; Kowalski, K.; Musial, M.
Comput. Phys. Commun. 2002, 149, 71–96.

(70) Bentz, J. L.; Olson, R. M.; Gordon, M. S.; Schmidt, M. W.;
Kendall, R. A. Comput. Phys. Commun. 2007, 176, 589–
600.

(71) Olson, R. M.; Bentz, J. L.; Kendall, R. A.; Schmidt, M. W.;
Gordon, M. S. J. Comput. Theor. Chem. 2007, 3, 1312–
1328.

(72) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007–1023.

(73) de Lara-Castellis, M. P.; Krems, R. V.; Buchachenko, A. A.;
Delgado-Barrio, G.; Villarreal, P. J. Chem. Phys. 2001, 115,
10438.

(74) Feller, D. F.; Sordo, J. A. J. Chem. Phys. 2000, 112, 5604.

(75) Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Koch,
H.; Olsena, J.; Wilson, A. K. Chem. Phys. Lett. 1998, 286,
243.

(76) Martin, J. M. L. Chem. Phys. Lett. 1996, 262, 97–104.

(77) Martin, J. M. L. Chem. Phys. Lett. 1996, 259, 669–678.

(78) Martin, J. M. L. Chem. Phys. Lett. 1998, 292, 411.

(79) Martin, J. M. L.; Taylor, P. R. J. Chem. Phys. 1997, 106,
8620–8623.

(80) Nyden, M. R.; Petersson, G. A. J. Chem. Phys. 1981, 75,
1843.

(81) Peterson, K. A.; Dunning, T. H., Jr. J. Phys. Chem. A 1997,
101, 6280–6292.

(82) Peterson, K. A.; Woon, D. E.; Dunning, T. H., Jr. J. Chem.
Phys. 1994, 100, 7410.

(83) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham,
M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988,
89, 2193.

(84) Petersson, G. A.; Frisch, M. J. J. Phys. Chem. A 2000, 104,
2183.

(85) Petersson, G. A.; Yee, A. K.; Bennett, A. J. Chem. Phys.
1985, 83, 5105.

(86) Schwartz, C. Phys. ReV. 1962, 126, 1015.

(87) Schwartz, C. Computaitonal Physics; Academic: New York,
1963; Vol. 2.

(88) Truhlar, D. G. Chem. Phys. Lett. 1998, 294, 45–48.

(89) Wilson, A. K.; Dunning, T. H., Jr. J. Chem. Phys. 1997,
106, 8718.

(90) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1994, 100,
2975.

(91) Martin, J. M. L. Chem. Phys. Lett. 1996, 259, 679–682.

(92) van Mourik, T.; van Lenthe, J. H. J. Chem. Phys. 1995,
102, 7479.

(93) Komasa, J.; Rychlewski, J. Mol. Phys. 1997, 91, 909.

(94) Burda, J. V.; Zahradnik, R.; Hobza, P.; Urban, M. Mol. Phys.
1996, 89, 425.

(95) Korona, T.; Williams, H. L.; Bukowski, R.; Jeziorski, B.;
Szalewicz, K. J. Chem. Phys. 1997, 106, 5109.

(96) Specchio, R.; Famulari, A.; Raimondi, M. THEOCHEM
2001, 549, 77.

(97) Gdanitz, R. J. Chem. Phys. Lett. 2001, 348, 67.

(98) Cybulski, S. M.; Toczłowski, R. R. J. Chem. Phys. 1999,
111, 10520.

(99) Aziz, R. A.; Slaman, M. Chem. Phys. 1989, 130, 187–194.

(100) Aziz, R. A. J. Chem. Phys. 1993, 99, 4518.

(101) Jansen, H. B.; Ross, P. Chem. Phys. Lett. 1969, 3, 140.

(102) Johnson, E. R.; Becke, A. D.; Sherrill, C. D.; DiLabio, G. A.
J. Chem. Phys. 2009, 131.

1964 J. Chem. Theory Comput., Vol. 6, No. 7, 2010 Peverati et al.



(103) Johnson, E. R.; Wolkow, R. A.; DiLabio, G. A. Chem. Phys.
Lett. 2004, 394, 334.

(104) Wheeler, S. E.; Houk, K. N. J. Chem. Theory Comput. 2010,
DOI: 10.1021/ct900639.

(105) Dunlap, B. I. J. Phys. Chem. 1986, 90, 5524.

(106) Werpetinski, K. S.; Cook, M. Phys. ReV. A 1997, 52, R3397.

(107) Wheeler, S. E.; Houk, K. N. J. Chem. Theory Comput. 2009,
5, 2301.

(108) Murray, C. W.; Handy, N. C.; Laming, G. L. Mol. Phys.
1993, 78, 997–1014.

(109) Treutler, O. T.; Ahlrichs, R. J. Chem. Phys. 1995, 102, 346.

(110) Wang, X.-G.; Carrington Jr, T. J. Theor. Comput. Chem.
2003, 2, 599–608.

(111) Lebedev, V. I. Zh. Vychisl. Mat. Mat. Fiz. 1975, 15, 48.

(112) Lebedev, V. I. Zh. Vychisl. Mat. Mat. Fiz. 1975, 16, 293.

(113) Kestner, N. R.; Combariza, J. E. In ReViews in Computa-
tional Chemistry; Boyd, D. B., Lipkowitz, K. B., Eds.;
Wiley-VCH: New York, 1999; Vol. 13, pp 99-132.

(114) Grimme, S. J. Comput. Chem. 2004, 25, 1463–1473.

(115) Paizs, B.; Suhai, S. J. Comput. Chem. 1998, 19, 575–584.

CT100061F

Rare Gas Trimers J. Chem. Theory Comput., Vol. 6, No. 7, 2010 1965



A Comparison of Three Variants of the Generalized
Davidson Algorithm for the Partial Diagonalization of

Large Non-Hermitian Matrices

Marco Caricato,* Gary W. Trucks, and Michael J. Frisch

Gaussian, Inc., 340 Quinnipiac Street, Bldg. 40,
Wallingford, Connecticut 06492

Received February 24, 2010

Abstract: The solution of the equation of motion coupled cluster singles and doubles problem,
that is finding the lowest lying electronic transition energies and properties, is fundamentally a
large non-Hermitian matrix diagonalization problem. We implemented and compared three
variants of the widely diffuse generalized Davidson algorithm, which iteratively finds the lowest
eigenvalues and eigenvectors of such a matrix. Our numerical tests, based on different molecular
systems, basis sets, state symmetries, and reference functions, demonstrate that the separate
evaluation of the left- and right-hand eigenvectors is the most efficient strategy to solve this
problem considering storage, numerical stability, and convergence rate.

1. Introduction

This work originates from our attempts to implement the
most efficient algorithm to find the lowest eigenvalues of
the approximate Hamiltonian in the equation of motion
coupled cluster singles and doubles method (EOM-CCSD).1

The latter is one of the most accurate and yet affordable
methods for the calculation of one-electron transition energies
and properties. Its basic equation for the k-th excited state
can be written as:

where Hj ) e-THeT is the similarity transformed Hamiltonian,
Rk is an excitation operator toward the k-th state, Φ0 is the
reference function, ωk is the transition energy, and the
notation (...)c indicates that only connected diagrams are
considered. In principle, this equation can be solved directly
by diagonalization of Hj , whose eigenvalues are the transition
energies, and the eigenvectors are Rk, for all the states. In
practice, this is not possible because the matrix dimension,
roughly o2V2, with o and V being the numbers of occupied
and virtual orbitals, is very large. Another complication is
that the similarity transformed Hamiltonian is not Hermitian
and, hence, has different left and right eigenvectors:

If the transition energies are of interest, then only eq 1
(or equivalently eq 2) need be solved. However, both left
and right eigenvectors are necessary in order to obtain
transition properties. For example, the dipole strength
between the ground and the k-th excited state is

Since the dimension of the Hj matrix prevents a direct
diagonalization, the most effective computational approach
is a modified version of the Davidson algorithm to treat non-
Hermitian matrices.2–4 A brief overview of the algorithm is
presented in Section 2. However, the basic concept is that
the eigenvalues and eigenvectors of interest are obtained
through an iterative procedure which avoids the computation,
storage, and diagonalization of the complete matrix and stops
when certain criteria of convergence are satisfied.

In this work, we compare three variants of the algorithm
in ref 4 for the evaluation of the first k eigenvalues and left
and right eigenvectors. We implemented these in the Gauss-
ian 09 suite of programs.5 In the first two variants, the left
and right eigenvectors are converged simultaneously, in the
first case expanding them in two sets of biorthonormal trial
vectors and in the second expanding them in one set of
orthonormal vectors. In the third variant, the right eigen-* Corresponding author. E-mail: marco@gaussian.com.

(HjRk)c|Φ0〉 ) ωkRk|Φ0〉 (1)

〈Φ0|LkHj ) ωk〈Φ0|Lk (2)

〈Φ0|L0µRk|Φ0〉〈Φ0|LkµR0|Φ0〉 (3)
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vectors are found first and then the left eigenvectors. The
results in Section 3 show that the last variant is the most
efficient in terms of storage, convergence rate, and numerical
stability.

2. Algorithms Description

The algorithms presented in this section can be applied to
any non-Hermitian square matrix A of dimension n. Let us
start with the algorithm that finds the left and right eigen-
vectors simultaneously by using two sets of biorthonormal
expansion vectors Bj and B, which satisfy:

where I is the unit matrix. We want to find the lowest k
eigenvalues (ωk) and left (Lk) and right (Rk) eigenvectors of
the A matrix, where k , n. We start with i initial Bj and B
vectors (which can be the same) as a guess for the
eigenvectors, with i g k. A is projected onto the subspace
of dimension i:

where the superscript i indicates the number of initial vectors.
The projected matrix Ai can be diagonalized with standard
techniques (its dimension is small), and the eigenvalues and
eigenvectors for the subspace are found: ωk

i , lk
i , and rk

i ,
producing approximate eigenvectors:

This approximation can be tested by checking the norm of
the residual vectors Wj k and Wk:

Convergence is achieved when the norm of the residuals is
below a certain threshold �; otherwise, new vectors are added
to the expansion space based on the residuals:

where AD are the diagonal elements of the A matrix.2 This
is a good guess for a new set of vectors as long as A is
diagonally dominant. This is typically the case for the
similarity transformed Hamiltonian.

The vectors Qj i and Qi are then biorthonormalized among
each other and with respect to the previous vectors Bj i and
Bi. A set of expansion vectors is thus created, Bj2i and B2i,
twice as large as the initial one. With this new set, the matrix
A is projected onto a larger subspace:

and the whole process is repeated until convergence. Since
the eigenvectors do not converge all at the same rate, a
smaller number of new vectors can be created in later
iterations as more and more roots converge. More impor-

tantly, this algorithm avoids the explicit calculation and
storage of the A matrix, since only products AB and A†Bj are
necessary.6

Although this algorithm seems a straightforward extension
of the Davidson algorithm, it may encounter numerical
instabilities. For instance, complex eigenvalues can be found
in intermediate steps, even if the final eigenvalues are real.7

A robust way to deal with this issue and to eliminate the
intermediate complex eigenvalues in the following cycles is
to create twice the number of W and Wj (and thus Q and Qj )
vectors for these eigenvalues, one for the real and one for
the imaginary parts, which share the same Rk

(i) and Lk
(i), eqs

7 and 8. We also found that it is more stable to create two
distinguished projected matrices Ai and Ai† and to diagonalize
them separately in order to evaluate the eigenvectors in the
subspace rk

i and lk
i (note that the relation Ai ) (Ai†)† is not

exactly satisfied for numerical reasons). This does not add
much to the computational time, since the matrix-vector
products ABi and A†Bj i are needed anyway for the calculation
of the residuals in eq 7, and the final projection has O(o2V2)
cost, which is much cheaper than the evaluation of ABi and
A†Bj i (which scales as O(o2V4 + o3V3)).

Another source of instability arises when approaching
convergence. At this point, the right eigenvector for one state
may satisfy the convergence criterion, while the correspond-
ing left eigenvector does not or vice versa. One might think
that the convergence criteria must be satisfied by the vectors
in both spaces before interrupting the creation of new vectors.
However, we have found that very small residuals can
generate noise that may prevent the convergence of the
algorithm. A more robust strategy is to take all the new
vectors, Qi and Qj i, and biorthonormalize them with respect
to the left space, Bj i, and right space, Bi, expansion vectors
and then among themselves. In this way, the same number
of new vectors is created for both spaces, which limits the
noise. The same strategy can be used, for example, when a
complex eigenvalue is found for one space but not for the
other or when the diagonalization of the projected matrices
gives eigenvalues that differ more than a certain ratio.
Although rare, the latter situation may happen due to the
numerical precision of the various operations during the
iterative cycles. In the following, we shall refer to this
algorithm as “B-Biorth”.

An alternative to the previous algorithm is to orthonor-
malize the Qi and Qj i with respect to the previous series of
Bi and Bj i and with respect to each other. Since for the first
guess Bj i ) Bi, the same set of expansion vectors is used for
both spaces for all iterations. We shall call this variant “B-
Orth”. Note that twice the number of vectors is created for
both spaces at each iteration for B-Orth in comparison to
B-Biorth. For symmetric matrices, it is known that creating
a larger number of expansion vectors than number of target
roots helps to increase the convergence rate.8 An advantage
of this variant compared to the previous algorithm is that it
is intrinsically more stable, since the same number of new
vectors is created at each iteration for both spaces. However,
the possibility of complex eigenvalues at intermediate steps
holds, and it is dealt with the same strategy as above.

Bj†B ) I (4)

Ai ) Bj i†ABi (5)

Lk = Lk
(i) ) Bj ilk

i

Rk = Rk
(i) ) Birk

i (6)

(A - ωk
i )Rk

(i) ) Wk

(A† - ωk
i )Lk

(i) ) Wj k

(7)

Qi ) (ωk
i - AD)-1Wk

Qj i ) (ωk
i - AD)-1Wj k

(8)

A2i ) (Bj2i)†AB2i (9)
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A third variant, that we shall refer to as “B-1Space” is to
evaluate the eigenvectors separately. In this way, only one
set of orthonormal Bi vectors is used. This approach can
encounter intermediate complex eigenvalues, but does not
raise the issue of unbalanced description of the subspaces,
as they are spanned separately. Furthermore, the second
diagonalization can start with the converged eigenvectors
from the first diagonalization, which is usually much better
than the initial CIS-based guess. The B-1Space variant does
not guarantee that the same eigenvalues are found in the two
separate diagonalizations, and a check is necessary after
convergence in both spaces. A final biorthonormalization of
the converged eigenvectors is performed once the equiva-
lence of both spaces is verified.

For all the algorithms, a maximum subspace dimension
can be set according to the details of the calculation and the
machine setup. If convergence is not achieved before the
subspace limit is reached, then the diagonalization can be
restarted by using the last updated eigenvectors as a starting
guess. We choose a limit equal to 20 × nstates, where nstates is
the number of states (eigenvalues) to be computed.

If one set of eigenvectors is found, say the right-hand ones
and the corresponding eigenvalues, then the left eigenvectors
can be also evaluated by solving a linear equation for each
root k, eq 2.1 Standard iterative algorithms can be used to
solve these equations.1,9 As for EOM-CCSD, eq 2 is very
similar to the ground-state Λ vector equation of gradient
theory:10,11

in the sense that the same matrix-vector products are
involved. Technically, eq 10 is an Ax ) b problem with b
corresponding to the 〈ij||ab〉 integrals, whereas eq 2 is an
A′x ) 0 problem; nevertheless, the algorithms employed in
the solution of both problems are similar. We shall refer to
this alternative as “B-LinSys”. The cost of each step of the
iterative diagonalization and the iterative solution of the linear
system is comparable. The matrix-vector product A†Bj i is
the same, and the extra work (evaluation of the residuals in
B-1Space) is much cheaper than the building of A†Bj i. Thus,
the difference in efficiency of the two approaches arises from
the different rate of convergence of the iterations.

B-Biorth requires the largest amount of storage with two
sets of matrices used for the two spaces: Bj and B, A†Bj and
AB, Wj and W, and Qj and Q. The largest of those are Bj , B,
A†Bj , and AB, given that the number of vectors is as large as
the maximum dimension of the subspace. Wj , W, Qj , and Q
only require a number of vectors corresponding to the
number of target roots. B-Orth is much less demanding, as
only one set of B vectors is necessary. B-1Space is the least
demanding, as only one set of B, AB, W, and Q matrices are
necessary, and the solution of the left-hand problem reuses
the same storage. B-LinSys is equivalent to B-1Space. Both
storage requirement and computational time can be reduced
by exploitation of the equivalence of R and � electrons for
closed shell calculations and of Abelian molecular point
group symmetry.

The recommended convergence criteria found in the
literature is that the norm of the residual vectors must be

below a certain threshold �. For EOM-CCSD, Stanton and
Bartlett1 proposed that � ) 10-5 is sufficient to obtain
convergence for transition properties. We prefer to use
slightly more conservative criteria, thus we check: (i) the
norm of the residual vectors; (ii) the change in the eigen-
values (<� × 10-2); and (iii) the absolute change in the
current eigenvectors (<�).

3. Results

We report results for four molecular systems: formaldehyde
(C2V), ethene (D2h), acetone (C2V), and trans-1,3-butadiene
(C2h) and six basis sets: 6-31G*, 6-31+G*, 6-31++G**,
6-311++G**, aug-cc-pVDZ, and aug-cc-pVTZ. We com-
puted 3 states for each irrep, thus 12 states for formaldehyde,
acetone, and butadiene and 24 for ethene. Restricted closed
shell and unrestricted open shell (with a +1 charge)
Hartree-Fock (HF) wave functions were considered as
reference functions. This range of options allows to test the
behavior of the algorithms in a variety of different conditions.
The geometries of all the systems were optimized at MP2/
6-311+G** level of theory and used for all the excited state
calculations.12

The results for the closed shell calculations are reported
in Table 1. The B-1Space algorithm requires the smallest
number of matrix-vector products in all cases, in part
because of the use of the converged right eigenvectors as a
starting guess for the left eigenvectors.

B-Orth is the least-efficient algorithm, since orthonormal-
izing the new vectors for both spaces in order to create a
single set of vectors seems not to help the convergence. The
iterative procedure is also restarted several times, as the
expansion subspace is more quickly filled; this further
increases the number of cycles necessary to reach conver-
gence and is the reason why in many cases the number of
matrix-vector products is more than twice as large as the
B-1Space variant. A fairer comparison would be to use a
subspace limit twice as large as for the other two algorithms,
since twice the number of vectors is added at each cycle,
but B-Orth would still be the least efficient choice, and the
storage requirement would become even larger than for
B-Biorth.

B-Biorth is much closer to B-1Space for the right-hand
diagonalization than B-Orth. A slightly larger number of
iterations is usually required even in well-behaved cases,
since close to convergence some vectors in one space can
satisfy the convergence criteria, while the corresponding ones
in the other space are slightly off for numerical reasons. Thus,
a step where the new vectors of both spaces are orthonor-
malized to each other is performed in order to add the same
number of vectors to both spaces as discussed in Section 2.
A larger number of vectors than for B-1Space is, on the other
hand, always necessary for the left-hand diagonalization,
since the same starting point (CIS eigenvectors) is used for
both spaces for B-Biorth. Furthermore, numerical instabilities
prevented the convergence for the A1 irrep of acetone with
the 6-31+G* basis set and for the Bu irrep of butadiene with
the 6-311++G** basis set. Such instabilities arose close to
convergence when numerical noise in the creation of new

〈Φ0|(1 + Λ)Hj ) 0 (10)
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vectors unevenly propagated in the two subspaces and the
algorithm failed in correcting this effect.

The results for the open shell calculations are reported in
Table 2. The same trend as in the closed shell case is
observed. We note that the B-Biorth algorithm showed
numerical instability for the Ag irrep of ethene with the
6-31G* basis and for the A2 irrep of acetone with the aug-
cc-pVTZ basis (which did not converge). Tables 1 and 2
also report the number of cycles necessary for the conver-
gence of the ground state (GS) CCSD equations. These
numbers are close to the average number of cycles per state
for the EOM-CCSD equations at least for the right space
with the B-1Space algorithm, although the convergence
criterion for the ground state equations is one order of
magnitude tighter than for the excited state calculation. This
is due to the increasing difficulty in converging higher states.

As mentioned in Section 2, when the solution for the two
spaces is sought separately, the left eigenvectors can be found
by solving a linear system of equations (B-LinSys algorithm)
once the eigenvalues for the right space are found with the
diagonalization. The number of matrix-vector products for
this case are reported in Table 3. A larger number of vectors

than for B-1Space is required. However, the convergence
criterion for this algorithm is the root-mean-square (rms) of
the norm of the new vectors created in the orthogonalization
step (<� × 10-4). This is the same as the orthogonalization
step for the diagonalization algorithms, but since in B-LinSys
no residuals are created at each cycle, there is no other criteria
to decide when convergence is reached. In order to test the
efficiency of B-LinSys, we reduced the threshold for the
formaldehyde case, see Table 4. Although the number of
matrix-vector products decreases, the transition properties
are not converged for thresholds smaller than � × 10-3, with
differences of the order of 10-4-10-3 for the oscillator

Table 1. Number of Matrix-Vector Products for the Ground State (GS) and for Right + Left Eigenvectors with the Three
Variants of the Diagonalization Algorithma

GS B-1Space B-Orth B-Biorth GS B-1Space B-Orth B-Biorth

6-31 G* 6-31+G*
formaldehyde (12) 14 159 + 152 323 + 323 214 + 214 15 178 + 157 364 + 364 429 + 429
ethene (24) 12 292 + 252 579 + 579 308 + 308 13 299 + 254 615 + 615 314 + 314
acetone (12) 16 199 + 176 451 + 451 205 + 205 16 208 + 171 467 + 467 nc +156
butadiene (12) 17 204 + 179 485 + 485 606 + 606 17 201 + 172 449 + 449 203 + 203

6-31++G** 6-311++G**
formaldehyde (12) 15 174 + 147 357 + 357 177 + 177 15 174 + 152 363 + 363 182 + 182
ethene (24) 13 324 + 267 660 + 660 335 + 335 13 323 + 266 665 + 665 327 + 327
acetone (12) 16 218 + 177 468 + 468 221 + 221 17 220 + 179 492 + 492 220 + 220
butadiene (12) 17 208 + 168 478 + 478 211 + 211 17 206 + 173 491 + 491 149 + nc

aug-cc-pVDZ aug-cc-pVTZ
formaldehyde (12) 15 178 + 159 388 + 388 183 + 183 15 190 + 165 420 + 420 210 + 210
ethene (24) 13 339 + 289 733 + 733 355 + 355 13 347 + 286 734 + 734 348 + 348
acetone (12) 17 227 + 180 502 + 502 228 + 228 17 228 + 188 521 + 521 515 + 515
butadiene (12) 17 215 + 173 523 + 523 225 + 225 17 208 + 165 486 + 486 213 + 213

a Reference wave function is the restricted HF. Total number of excited states is indicated in parentheses next to the molecule, and nc
indicates that the diagonalization is not converged for one of the irreps.

Table 2. Number of Matrix-Vector Products for the Ground State (GS) and for the Right + Left Eigenvectors with the Three
Variants of the Diagonalization Algorithma

GS B-1Space B-Orth B-Biorth GS B-1Space B-Orth B-Biorth

6-31 G* 6-31+G*
formaldehyde (12) 17 169 + 154 366 + 366 190 + 190 17 183 + 156 390 + 390 219 + 219
ethene (24) 11 370 + 283 846 + 846 nc+303 12 357 + 299 775 + 775 376 + 376
acetone (12) 22 181 + 152 409 + 409 215 + 215 22 182 + 153 416 + 416 198 + 198
butadiene (12) 17 166 + 141 356 + 356 173 + 173 17 171 + 143 369 + 369 171 + 171

6-31++G** 6-311++G**
formaldehyde (12) 17 182 + 155 394 + 394 229 + 229 17 180 + 157 395 + 395 202 + 202
ethene (24) 12 367 + 301 776 + 776 374 + 374 12 360 + 298 776 + 776 368 + 368
acetone (12) 22 185 + 153 420 + 420 191 + 191 22 185 + 156 434 + 434 191 + 191
butadiene (12) 17 172 + 143 369 + 369 175 + 175 17 172 + 145 373 + 373 174 + 174

aug-cc-pVDZ aug-cc-pVTZ
formaldehyde (12) 17 182 + 157 393 + 393 194 + 194 19 179 + 159 394 + 394 206 + 206
ethene (24) 12 367 + 299 790 + 790 377 + 377 13 356 + 293 782 + 782 365 + 365
acetone (12) 22 184 + 155 433 + 433 703 + 703 24 183 + 159 438 + 438 nc + 138
butadiene (12) 17 172 + 144 373 + 373 177 + 177 18 175 + 147 374 + 374 176 + 176

a Reference wave function is the unrestricted HF, and the total charge for each molecule is +1. Total number of excited states is
indicated in parentheses next to the molecule, and nc indicates that the diagonalization is not converged for one of the irreps.

Table 3. Number of Matrix-Vector Products for the Left
Eigenvectors with the B-LinSys Algorithm for the Closed
Shell Case

6-31 G* 6-31+G* 6-31++G** 6-311++G**
aug-cc-
pVDZ

formaldehyde 193 215 211 212 223
ethene 342 360 384 379 396
acetone 197 213 232 230 239
butadiene 204 197 209 210 218

Large Non-Hermitian Matrices J. Chem. Theory Comput., Vol. 6, No. 7, 2010 1969



strength. With a threshold of � × 10-3, B-1Space and
B-LinSys are basically equivalent. Therefore, there seems
not to be a particular advantage in using the solution of the
system of equations over the diagonalization. The latter
choice requires the construction of the residuals at each cycle,
but this is O(o2V2) work for EOM-CCSD and negligible
compared to the A†Bj i work, which scales as O(o2V4 + o3V3).
For the reasons above and for the practical advantage of using
the same code for both spaces, we prefer the B-1Space
algorithm to the B-LinSys one.

4. Conclusions

In this paper we present a comparison of three variants of
the generalized Davidson algorithm for the iterative diago-
nalization of large non-Hermitian matrices applied to the
EOM-CCSD equations. Two variants seek the right and left
eigenvectors simultaneously by using one set of orthonormal
trial vectors, B-Orth, or two sets of biorthonormal trial
vectors, B-Biorth. A third variant, B-1Space, diagonalizes
the matrix from both sides separately and biorthonormalizes
the final eigenvectors.

Our numerical tests indicate that the three variants provide
the same final results (EOM-CCSD transition energies and
properties). The B-1Space option is the most efficient in
terms of storage, numerical stability, and convergence rate.
The same trend is consistently obtained by varying molecular
system, basis set, and reference function (restricted or
unrestricted HF). Therefore, the separate left- and right-hand
iterative diagonalization is the preferred strategy to find the
lowest eigenvalues and eigenvectors of a large non-Hermitian
matrix.

Supporting Information Available: Transition ener-
gies and oscillator strengths for all the systems are reported
in Tables 1-8. This material is available free of charge via
the Internet at http://pubs.acs.org.
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Table 4. Number of Matrix-Vector Products for the Left
Eigenvectors with the B-LinSys Algorithm for the Closed
Shell Formaldehyde by Changing the Convergence
Threshold (� ) 10-5) in the Orthonormalization of the New
Vectors

6-31 G* 6-31+G* 6-31++G** 6-311++G**
aug-cc-
pVDZ

� × 10-4 193 215 211 212 223
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� × 10-2 146 155 157 154 153
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Abstract: We demonstrate how the functional derivatives appearing in perturbative time-
dependent density functional theory can be calculated using automatic differentiation. The
approach starts from a computer implementation of the exchange-correlation energy functional,
from which arbitrary-order derivatives are generated automatically. Automatic differentiation is
shown to provide an accurate, general, and efficient implementation of higher-order exchange-
correlation functional derivatives that is easy to maintain. When used in combination with an
arbitrary-order response solver, the methodology allows us to generate arbitrary-order response
functions from time-dependent density functional theory.

1. Introduction

Time-dependent density functional theory1-4 (TDDFT) has
become a popular method for the calculation of excited states,
due to its low computational cost and, for certain types of
excitations, high accuracy. This is despite the fact that present
day TDDFT approximations suffer from well-known defi-
ciencies, e.g., in the description of Rydberg excitations, the
underestimation of charge-transfer excitations that are as-
sociated with significant density transfer, the failure to access
explicit many-electron excitations in the adiabatic ap-
proximation, and the overestimation of the dynamic polar-
izability in conducting polymers due to the locality of
standard exchange-correlation (XC) kernels. Significant
improvements must be made to the approximate energy
functionals before TDDFT becomes as reliable for excited
states as DFT is for the ground state.5 We will here consider
response theory, i.e., time-dependent and time-independent
perturbation theory based on DFT. We use the term TDDFT
to refer to all such approaches, even if the perturbations under
consideration may not always be time-dependent. Linear

response TDDFT is the simplest and most commonly used
method, but the perturbation theory can be carried out to
arbitrary order in the perturbation strengths. An application
where the present day functionals may be safely used in
conjunction with high order perturbation theory is in the
calculation of geometric derivatives. In this case, the
perturbation expansion converges (within its radius of
convergence) to the same DFT ground state potential energy
surface that may be obtained from separate DFT calculations
at different molecular geometries.

Several implementations of response theory within TDDFT
have been reported,6-14 and the calculation of electronic
excitation energies and lower-order molecular electromag-
netic properties has become routine.15-18 In this paper, we
discuss the extension of analytic response theory within
TDDFT to (in principle) arbitrary order in the Taylor
expansion of the energy (or the quasi-energy in the Floquet
formalism19) with respect to field amplitudes (perturbation
strengths). This generalization makes it possible to study a
wealth of nonlinear optical properties and spectroscopic
parameters with (approximate) inclusion of electron correla-
tion effects.

The implementation of TDDFT is technically challenging
since, in contrast to the Hartree-Fock exchange matrix
within time-dependent Hartree-Fock theory, the expansion
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† VU University.
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of the XC potential in orders of the density variables does
not vanish for second- and higher-order corrections. Repeated
application of the chain rule leads therefore to the need for
evaluating a large number of derivatives: XC functional
derivatives with respect to density variables and derivatives
of density variables with respect to the perturbing field
strengths. In addition, we may have geometric and magnetic
derivatives of basis functions for perturbations which modify
the overlap of basis functions such as geometric displace-
ments20 or magnetic perturbations with London atomic
orbitals.21-23

The XC energy density derivatives are needed to the same
order as the order of the (quasi-) energy derivative. Since
most of the modern XC functionals involve rather compli-
cated expressions, higher-order derivatives are often out of
reach for manual differentiation. The required derivatives
can alternatively be generated using symbolic differentiation
techniques (see, e.g., refs 24 and 25), but this approach still
requires manual intervention and verification and typically
generates rather lengthy code (since every necessary deriva-
tive is implemented separately for each functional). In
practice, the computer algebra systems do not take issues
related to numerical stability into account and may “opti-
mize” statements into numerically unstable forms, something
that we will return to in section 4.

Generating functional derivatives via automated symbolic
manipulation is therefore not likely to be a practical approach
for calculating higher-order XC contributions, although
implementations of response functions based on this scheme
have been presented in the literature.26

We have for this reason adopted a different approach for
calculating higher-order XC energy density derivatives based
on automatic differentiation (AD).27,28 The basic idea of AD
is that every computer program, no matter how complicated,
performs a (possibly long) series of simple operations: these
are the usual arithmetic operations, together with a small
number of intrinsic mathematical functions for exponentials,
logarithms, trigonometric functions, etc. AD then makes use
of the fact that a computer implementation of an analytical
function f contains all information needed for the calculation
of derivatives of f, to arbitrary order. This calculation can
either be done by taking the source code implementing f as
input, and automatically generating the code for the deriva-
tive f ′, or can be done using operator overloading features
of the programming language itself. In both cases, f ′ is
generated from an existing implementation of f without
manual intervention.

AD has typically been applied to calculate low-order (first
and second) derivatives of models with a large number of
variables (see for example the applications described in ref
29). In the field of quantum chemistry, we note the
application of AD to the calculation of molecular gradients
for semiempirical wave functions,30 an application where a
large number of low-order derivatives are calculated.

For the present application, the situation is different: we
need high-order derivatives of a large number of functions
of a few variables. For example, to calculate the cubic
response function using a GGA functional, we need to
evaluate fourth-order derivatives of the XC energy density

a function of five local variables that depend on the spin-up
(nR) and spin-down (n�) parts of the number density n and
their Cartesian gradients, at about a million different grid
points for a medium-sized molecule. These derivatives are
then multiplied with products of perturbed density variables
and integrated to form derivatives of the XC energy with
respect to perturbation field strengths, according to the chain
rule as described in section 2.

Because of these unusual requirements, we have imple-
mented an AD library based on operator overloading,
optimized for high-order derivatives of a small number of
variables. The implementation is described in section 3.
Numerical stability and performance are tested in sections 4
and 5, respectively, and results of sample applications are
presented in section 6. We give some concluding remarks
in section 7.

2. Arbitrary-Order Adiabatic Time-Dependent
Density Functional Theory

The atomic orbital-based, arbitrary order adiabatic TDDFT
formalism employed in this work has recently been presented
by Thorvaldsen et al.31 The general formalism needed to
accommodate response theory in the Kohn-Sham approach
was discussed in ref 31, but this paper did not give explicit
expressions for the contributions arising from the derivatives
of the XC functionals. For future reference, we will present
these explicit expressions here for a closed-shell reference
state up to the quartic response functions. In the following
discussion of the working equations, we will restrict our-
selves to the extension from TDHF to TDDFT and, for the
sake of clarity, neglect the spin density contributions in this
presentation. Our ansatz is thus the XC energy

where we have introduced the square gradient norm, Z )
∇n ·∇n, of the density. Compared to eq 1, we can work with
the total density n instead of the spin-up and spin-down parts
and set the spin density s ) nR - n� to zero. We will,
however, point out where and how additional spin density
contributions would show up in the working equations. In
the case of electric perturbations for a closed-shell reference,
as studied in this paper, spin-density contributions are strictly
zero for static perturbations but are in general nonzero if
the perturbation is frequency dependent. These expressions
can be implemented as a straightforward extension of the
method described here. Although neglected in this presenta-
tion, the reported library for arbitrary-order XC functional
derivatives does implement spin-polarized functionals (and
derivatives), applicable both to the spin-unrestricted formal-
ism and the spin-restricted formalism with a spin-polarized
response.

The additional terms that appear in the working equations
when moving from TDHF to Kohn-Sham TDDFT enter in
two specific contributions: the first term appears in the XC
contribution to the electronic Hessian during the solution of

εxc(r) )

εxc(nR(r), n�(r), |∇nR(r)|2, |∇n�(r)|2, ∇nR(r) · ∇n�(r)) (1)

εxc(r) ) εxc(n(r), ∇n(r) · ∇n(r)) ) εxc(n(r), Z(r)) (2)
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the set of linear response equations; the second term arises
as an additional XC contribution to the perturbed Fock matrix
(or matrices) in the contraction of two-electron integrals with
the perturbed density matrix expansion. Both contributions
require a numerical integration to form Fock-type matrices
in the AO basis, Kxc;κλ, with an integrand that can be
expressed in the following computationally advantageous
form

containing the AO distribution, Ωκλ ) φκ
†φλ, its Cartesian

gradient, ∇Ωκλ, and the scalar and vector prefactors u and
v, respectively, which depend on the chosen XC functional
and contain functional derivatives of εxc with respect to n
and Z, as well as products of functional derivatives and
derivatives of (perturbed) density variables. The factor of 2
appearing in eq 3 comes from a product rule differentiation
of Z in the AO representation, with respect to the AO density
matrix coefficients. In the unperturbed case, the prefactors
u and v are given by

where d1,0 and d0,1 represent first-order XC functional
derivatives using the short-hand notation:

The compact notation of eqs 4 and 5 will be convenient
when giving the expressions for the higher-order contribu-
tions. The implementation of the XC contribution in the
solution algorithm of linear response equations requires the
evaluation of derivatives of the prefactors u and v with
respect to a field amplitude b

where we have introduced the notation di, j
b ) (d/db)di, j etc.,

for field-perturbed quantities. d1,0
b and d0,1

b are to be expanded
using the chain rule:

where Z0,b (0 meaning unperturbed) is short-hand notation
for the dot product of two density gradients: Za,b )
2∇na ·∇nb. This means that the first-order field-perturbed
prefactors ub and vb contain first- and second-order functional
derivatives as well as first-order perturbed density variables,
nb and Z0,b. These working equations for the XC contribution
to the linear response functions have been given in the
literature numerous times with varying notations.6-14 Explicit
expressions closest to our implementation can be found in
ref 32. Note, however, that the expressions in this reference
contain additional contributions due to spin magnetization,
which we exclude in this presentation. The higher-order XC
contributions to the perturbed Fock matrices can be obtained

in a similar manner by straightforward differentiation using
the chain rule. The contributions up to the quartic response
functions are given in the Appendix.

3. Automatic Differentiation

Our implementation of automatic differentiation is based on
replacing all “scalar” floating point operations with operations
acting on finite-order Taylor polynomials with floating point
coefficients. Each intrinsic mathematical function (exp, log,
sin, cos, etc.) of the programming language is first extended
to return not only the function value f(x) for a particular
argument x, but also the derivatives f (i)(x) for i up to a given
order. The derivatives can typically be evaluated using less
computational effort than the function value f(x) itself, as is
for example the case for the logarithmic function, where the
derivative is simply 1/x. The first derivative of sin(x) requires
the computation of cos(x), but for the second derivative we
obtain again the factor sin(x), which does not need to be
evaluated twice. Similar simplifications can be made for all
intrinsic mathematical functions of common programming
languages.

Using this code for calculating Taylor expansions of
intrinsic mathematical functions f, we are in a position to
evaluate expressions f(g(x)), where f(z) and g(x) are analytical
functions. This is done by first Taylor expanding g(x) up to
the desired order as the finite polynomial P(x). This
polynomial is then inserted into the Taylor expansion of f(z)
around z ) P(0). The resulting polynomial is the Taylor
polynomial of the composite function. Similar results are
obtained for products of functions, i.e., the Taylor expansion
of a product of functions can be obtained by first expanding
the two functions to a given order and then multiplying their
truncated Taylor polynomials. We note that the obtained
Taylor coefficients are numerically exact, as they do not arise
from any kind of finite difference approximation.

We have implemented efficient arithmetic on multivariate
Taylor polynomials in the C++ programming language.
Multiplication is performed with a fixed truncation level in
every polynomial operation, so that all intermediate values
of compound expressions have the same complexity. Using
operator overloading techniques, we can convert existing
code, working in floating point arithmetic, to a code that
works using Taylor polynomials with floating point coef-
ficients. [Operator overloading means that the programmer
can give meaning to programming statements such as z )
x*y, when x, y, and z are of some user defined type. This
technique has long been used to implement matrix algebra,
and we here use it for Taylor series arithmetic.] As long as
the parent code defines an analytical function as a composite
expression of intrinsic mathematical functions and arithmetic
operations, we can in this way obtain arbitrary-order deriva-
tives of the function. It may seem that this approach is
equivalent to rederiving the derivative formula every time
the program is run. This is however not the case, since we
only compute derivatives at a single expansion point. This
is a much simpler task than deriving an analytical expression
valid for derivatives at arbitrary points.

In our C++ implementation, we have used the template
feature of the language to make the number of variables and

kxc;κλ(r) ) u(r) Ωκλ(r) + 2v(r) · ∇Ωκλ(r) (3)

u ) d1,0 (4)

v ) d0,1∇n (5)

di,j ) ( ∂

∂n)i( ∂

∂Z)j
εxc (6)

ub ) d1,0
b (7)

vb ) d0,1
b ∇n + d0,1∇nb (8)

di,j
b ) di+1,jn

b + di,j+1Z
0,b (9)
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polynomial degree compile-time constants. This makes the
code very efficient but limits the applicability of the
implementation to problems where the number of variables
is known at compile time. This is not a limitation for our
present application where the number of variables is set by
the DFT functional type (two variables for LDA, five for
GGA, etc.). The advantage of using templates is that they
allow the compiler to produce much more efficient code
when the polynomial sizes are known at compile time. This
is particularly important for multivariate polynomial multi-
plication, which has to be formulated recursively. Here, a
naive recursive implementation not using templates was
found to be 50 times slower than the template-based code.

3.1. Example. In order to illustrate the operating principles
of the approach described above, we will give an example
of automatic differentiation applied to the simple Slater
exchange functional

where C ) -0.93 is a constant. To better illustrate the
principles of the approach, we will evaluate the exchange
functional as εx(n) ) C(n4)1/3.

Suppose we want to Taylor-expand, to third order, εx(n)
at n0 ) 2.0 a0

-3. We will then deal with third-order Taylor
polynomials throughout the calculation. The procedure starts
by introducing a small variation, δn, of the density near the
expansion point n0. The density n can then be written as a
polynomial in δn:

) 2.0 + 1.0δn + 0.0δn2 + 0.0δn3 (12)

In our implementation, all polynomials have the same
order, in this example, order three, so zero coefficients have
been explicitly inserted into n for the quadratic and cubic
terms. The box notation shows the array of coefficients stored
in computer memory and reminds us that the procedure is
fully “numerical” in naturesthat is, it works with the
numerical values of the derivatives and not with their
symbolic expressions. Typically the coefficients will be
stored as double precision floating point numbers, but in this
example, we use two significant digits in the calculation.

Since we choose to evaluate the exchange function as
(n4)1/3, the first two steps will be

Here the fourth-order term in n4 is not needed (because
we want only derivatives up to order three), and it is therefore
not computed. When the computer now encounters the
expression

it will generate a third-order Taylor expansion of the cube
root function around the constant term of the argument,

which in this case is 16. Introducing a dummy variable z,
and using the basic properties of the cube root function, we
obtain

Now, we insert into this
expansion, to obtain

Multiplying, finally, with the constant C, we get

where the numbers in the last box are now the Taylor
coefficients of the Slater exchange functionals at n ) 2.0a0

-3.
This is what we set out to calculate. The result is exact,
except for round-off errors, and no finite difference ap-
proximation has been used. We note that, except for the
Taylor coefficients of the intrinsic mathematical functions
such as the cube root used above, we only need to be able
to add, subtract, and multiply Taylor polynomials for the
scheme to work. For multivariate functions we deal with
multivariate Taylor expansions, but the principle remains the
same.

The procedure used above may seem like a rather
cumbersome way of differentiating eq 10, where we can
immediately write down the expression for the derivative to
arbitrary order. For more complicated compound expressions,
there is however no simpler way of differentiation than to
differentiate its parts and combine them using the chain rule.
This is exactly what the AD approach does. It is clear that,
in some cases, there may be an overhead associated with
using AD as described above. In particular, we do not take
advantage of sparsity (coefficients that are known a priori
to be zero) in the derivatives. Since the XC energy and
derivatives are evaluated at a large number of grid points,
and these evaluations all share the same sparsity pattern, there
is an opportunity to optimize the process further. We leave
this as a topic for a future study, since the XC energy and
derivative evaluation takes only a small amount of time in a
typical TDDFT calculation (cf. Figure 2).

4. Numerical Stability

The numerical stability of the scheme described in section
3 depends on the function being differentiated. Loss of
precision most often appears when subtracting two almost
equal numbers, and if possible such expressions should be
reformulated to avoid cancellation error. However, since the
AD library provides highly accurate implementations for both
the function value and the deriVatiVes of intrinsic mathemati-
cal functions, there is less possibility for a loss of precision
compared to code generated by a symbolic algebra package.
With a symbolic derivative approach, statements are typically
reordered, and the final program bears little resemblance to
the input provided by the programmer.

We investigate the numerical stability issue by performing
the same calculation in double precision (about 16 decimal

εx(n) ) Cn4/3 (10)

n ) 2.0 + δn (11)

(16. + z)1/3 ) 2.5 + 0.052z - 0.0011z2 + 0.000038z3

(17)
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digits) and quad-double (64 digits) precision, using the QD
library.33 By taking the quad-double numbers as a reference,
we can study the error of the double-precision results. The
evaluations are done for densities on the order of unity, as
well as very small densities. For BLYP, we use a density
that is typical near the nucleus of a heavy atom, where the
gradient correction present in BLYP is expected to play a
large role. The results are summarized in Table 1 for the
LDA (SVWN5)34,35 and BLYP36-38 functionals. Using
double precision arithmetic, we typically obtain 14-15
correct decimal digits, also for the higher-order derivatives.
Since the higher-order derivatives are a result of a large
number of arithmetic operations, they suffer from some loss
of accuracy. In the present examples, we observe a loss of
one to two decimal digits in the fifth-order derivatives
compared to the accuracy of the XC energy density itself.
In some limiting cases, the method suffers from larger errors,
as illustrated by the LDA result of Table 1. The derivatives
have in this case been evaluated at a very small density, n
) 10-12a0

-3, and have in this case a relative accuracy of
12-13 digits. A further loss of accuracy is obtained at even
smaller densities, but these errors are less important, because
low density regions contribute only very little to the total
XC energy in a molecule or solid. For all results presented
in section 5, we could safely ignore contributions from grid
points with an unperturbed density smaller than 10-12a0

-3.
However, for high-order outer valence properties beyond the
properties studied in this work, these contributions may still
turn out to become significant.

An issue related to the accuracy of the derivatives for small
densities is the problem that the derivatives of a function
near a singular point may become very large and cause
numerical overflow. The standard density functionals are not
differentiable at n ) 0, which may potentially lead to
problems. Taking a close look at the fifth-order partial
derivatives of the PBE and BLYP functionals (Figure 1),
we see that some partial derivatives are indeed very large.
The relative errors are however typically below 10-10 even
at this high order of derivatives. The few derivatives that
have larger relative error all have absolute errors smaller than
10-12, which makes these errors negligible in actual calcula-
tions. The BLYP functional suffers less from round-off
errors, and here the relative errors are smaller than 10-12.

Locating the exact source of the round-off errors in PBE is
left for a future study.

The problem of large derivatives at small densities may
be alleviated, if we, instead of expanding εxc(n0 + x) in x,
expand εxc(n0(1 + x)), which in effect produces weighted
derivatives n0

mεxc
(m)(n0). A reciprocal weighting factor n0

-m is
introduced in the perturbed density matrices, from which
perturbed density variables nb... and Zb... (eqs 28 and 29 in
the Appendix) are calculated, which in both cases prevents
numerical over- and underflow.

5. Performance

XC derivatives are rarely a bottleneck in TDDFT calcula-
tions, compared to the cost of evaluating the density itself
at each gridpoint, but we will nevertheless discuss some
performance aspects of our approach and implementation.
The computational cost for a given density functional
depends on the derivative order N and the number of
variables K the functional depends on. For spin-polarized
LDA functionals, we have K ) 2, and for GGA functionals,
we have K ) 5. There are a total of MN

K ) (N
K+N) ) O(NK)

partial derivatives up to order N. Product expressions,
f(n) g(n), are evaluated using “naive” polynomial multiplica-
tion, requiring O(N2K) operations. For the evaluation of
intrinsic mathematical functions such as exp(f(n)), a total of
O(N2K+1) floating point operations are needed for the
evaluation of all partial derivatives (although we have in
many parts of the implementation used the “fast” algorithms
that exist for the manipulation of Taylor series39). We can
therefore expect that, for a given XC functional, the
asymptotic cost for calculating derivatives up to order N with
respect to K variables is O(N2K+1). However, we are rarely
interested in the asymptotic behavior since the derivative
order N is in practice limited to rather small values. The

Table 1. Relative Accuracy (“Number of Correct Digits”) of
AD Density Functional Derivatives, Defined as log 10〈εxc

(N)〉/
〈∆εxc

(N)〉, Where 〈εxc
(N)〉 Is the Root Mean Square Average of

All Partial Derivatives of Order N, and ∆εxc Indicates the
Difference between the Values Computed in Double
Precision and the Highly Accurate Quad-Double Precision
Values

order N LDAa LSDAb LDAc BLYPd

0 16.6 16.6 13.1 16.2
1 16.1 16.0 13.2 15.0
2 15.8 16.3 12.4 14.5
3 15.9 15.1 12.2 14.6
4 15.4 14.7 12.0 14.5
5 15.4 14.5 12.0 13.8

a Evaluated at n ) 1a0
-3. b At n ) 1a0

-3, nR - n� ) 0.5a0
-3. c At

n ) 10-12a0
-3. d At n ) 2 × 106a0

-3, |∇n|2 ) 1019a0
-8.

Figure 1. Absolute error as a function of partial derivative
magnitude, for the fifth-order derivatives of the BLYP (black)
and PBE (green) functionals. Lines are drawn corresponding
to relative errors of 10-10 (upper line) and 10-16 (lower line).
The derivatives were evaluated at three different densities:
(1.1, 0.9, 17.0, 3.4, 0.1), (1 × 10-6, 0.9, 1.0, 1 × 103, 0.1), and
(1.0, 0.9, 1 × 106, 1 × 106, -1 × 105), using values in atomic
units and the variables listed in eq 1.
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performance for small N values is strongly affected by the
particular implementation, as well as compiler optimizations
and CPU architecture. We therefore show in Figure 2 real
timings for LDA and BLYP derivatives up to order N ) 6.
These timings are plotted together with the MN

K factor,
showing that up to order six the number of partial derivatives
grows faster than the time taken to compute them for the
BLYP (K ) 5) and LDA (K ) 2) functionals. The reason
for this is that, for the calculation of derivatives, almost no
additional evaluations of intrinsic mathematical functions are
needed. From Figure 2, we conclude that, even for a very
high order of the functional derivatives, the XC contribution
is unlikely to be a computational bottleneck in TDDFT
calculations since the number of evaluations grows linearly
with the number of grid points which in turn typically grow
linearly with the system size.

6. Results and Discussion

As a demonstration of our approach, we have calculated
static and frequency-dependent first, second, and third
hyperpolarizabilities, �(-2ω; ω, ω), γ(-3ω; ω, ω, ω), and
δ(- 4ω; ω, ω, ω), of the FH molecule. All calculations
were performed with a locally modified version of the
DIRAC quantum chemistry package,40 using the radial
quadrature proposed by Lindh et al.,41 Lebedev grids42

for integration on spheres, and (quadruple augmented) cc-
pV{D,T}Z basis sets of Dunning and co-workers.43

Selected nonzero components of the calculated (hyper)-
polarizability tensors obtained using the HF and LDA
methods, respectively, are reported in Table 2. Both the static
and the frequency-dependent LDA (hyper)polarizabilities are
all consistently larger in magnitude than the HF results. This
is in agreement with the smaller HOMO-LUMO energy gap
of LDA (0.33 Eh) compared to HF (0.65 Eh). Note that the
largest second hyperpolarizability tensor elements (both static
and frequency dependent) are the components perpendicular
to the molecular axis, γ(x; x, x, x) in Table 2, and not the
parallel tensor element, γ(z; z, z, z). We can also note that,
while the static HF and LDA (hyper)polarizabilities have
consistent signs, this is not the case for frequency-dependent
δ(z; x, x, x, x) and δ(z; z, z, x, x) elements.

We would like to mention that no GGA results are reported
in Table 2, although we have access to numerically stable
analytic arbitrary-order GGA functional derivatives and
analytic derivatives of perturbed Kohn-Sham matrix ele-
ments. During extensive calibration studies, we have ob-
served that the numerical integration of the GGA γ and δ
elements of FH is difficult. Using presently available XC
numerical integration grids, we are not able to obtain GGA
results of FH that are stable with respect to changes in the
grid, and we have therefore omitted these results from the
discussion. We emphasize, however, that, for a fixed grid,
our results for the GGAs correspond in the static cases to
the results obtained from a finite difference of lower-order
(hyper)polarizabilities.

In order to illustrate the problem in the integration of
higher-order GGA contributions we have plotted the distri-

Figure 2. Timings for the evaluation of all partial derivatives
of LDA and BLYP functionals up to a given order. Also shown
is the number of such partial derivative coefficients, M(LDA)
and M(BLYP). Timings are relative to the time used in
evaluating the BLYP XC energy. On a rather modest CPU
(1.7 GHz Intel Pentium M), this operation takes 3.0 s for 106

grid points.

Table 2. Components of the Static and Frequency-Dependent Polarizability, and the First, Second, and Third
Hyperpolarizabilities of FH Calculated Using the q-aug-cc-pVTZ Basis Seta

ω ) 0 ω ) 0.06562 au ω ) 0.072 au

HF LDA HF LDA HF LDA

R(x; x) 4.495 5.930 4.529 6.013 4.537 6.030
R(z; z) 5.759 6.854 5.802 6.924 5.811 6.939
�(x; z, x) -0.5087 -2.329 -0.6237 -3.074 -0.6519 -3.274
�(z; x, x) -0.5087 -2.329 -0.5106 -2.632 -0.5101 -2.701
�(z; z, z) -8.397 -10.52 -9.056 -11.72 -9.200 -11.99
γ(x; x, x, x) 335.9 1148 429.6 1887 453.9 2140
γ(x; z, z, x) 96.87 309.6 126.3 549.7 134.3 639.6
γ(z; z, x, x) 96.87 309.6 118.4 446.2 123.4 484.9
γ(z; z, z, z) 279.6 636.1 342.3 876.7 357.5 942.7
δ(x; z, x, x, x) 111.3 592.6 -199.5 -11218 -393.6 -31464
δ(z; x, x, x, x) 111.3 592.6 257.6 65.90 328.3 -250.5
δ(x; z, z, z, x) 75.95 1618 -302.2 -7668 -554.5 -30618
δ(z; z, z, x, x) 75.95 1619 -39.63 2465 -79.56 2951
δ(z; z, z, z, z) -1484.2 -2079 -3062 -8340 -3574 -11374

a All numbers in atomic units; all perturbing dipole operators carry the same frequency, 0, 0.06562 au, or 0.072 au; Re ) 1.7328 bohr; the
direction of the positive z axis is from F to H.
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bution of grid points and representative functions in Figure
3. In the left panel of Figure 3, we plot the BLYP XC energy
density and observe that it is well represented by a grid which

is dense in the regions where the XC energy density is
significant. The situation is very different in the integration
of higher-order GGA terms, where the dominating function
valuessvisible as a series of rings in the right panel in Figure
3sare only poorly sampled by the integration grid. We have
found that already � calculations may require a new
integration strategy in order to obtain fully converged results.

To remedy the illustrated deficiency of the presently
available numerical integration grid, we are currently
investigating alternative integration techniques. We focus
in particular on adaptive numerical integration schemes
which would allow for a more flexible and balanced
representation of higher-order valence properties as well
as mixed geometric-electromagnetic properties such as
Raman optical activity.44

We emphasize that these problems are not unique to our
AD implementation but are inherent to all perturbative
TDDFT calculations based on eq 3 and probably strongly
dependent on the molecule studied. To give an example
where the GGA numerical integration was unproblematic,
we plot the parallel static polarizability and second hyper-
polarizability for linear polyyne (C2NH2) chains in Figure 4.
These quantities are severely overestimated by nonhybrid
XC functionals.45 The numerical integration of the parallel
component of R and γ was found to be stable to variations
in grid parameters with LDA, BLYP, and PBE curves being
nearly identical at the scale of Figure 4.

Finally, we would like to mention that the calculation
of higher-order valence properties requires not only well
calibrated numerical grids but also increasingly diffuse
basis sets. Very diffuse basis sets with an even higher
augmentation level than the basis sets employed in this
work may cause numerical problems due to linear de-
pendencies already in the ground state calculations in
addition to a challenging numerical integration of the
higher-order XC contributions.

7. Conclusions

We have shown how high-order, time-dependent density
functional theory methods can be reliably and efficiently

Figure 3. BLYP XC energy density of the FH molecule (left panel) and |vbcd| of eq 26 (right panel; all perturbations are static
and parallel to the molecular axis). The color intensity is proportional to the respective absolute value. The numerical integration
grid points are represented as dots which “radiate” from the atom centers at (0, 0, 0) bohr and (0, 0, 1.7328) bohr (dimensions:
24 × 24 bohr).

Figure 4. Static polarizability R(z; z) and second hyperpolar-
izability γ(z; z, z, z) per polyyne unit for a linear polyyne (C2NH2)
chain (aug-cc-pVDZ; same geometries as in ref 46). LDA, BLYP,
and PBE curves are nearly identical at this scale.
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implemented, using automatic differentiation when evaluating
the XC energy derivatives. Numerical roundoff errors are
negligible even at very high (fifth) order derivatives.

We have presented HF and LDA static and frequency-
dependent first, second, and third hyperpolarizabilities of the
FH molecule and discussed the presently challenging nu-
merical integration to obtain the corresponding GGA results.
Applying the arbitrary-order response methods to the second
hyperpolarizability of polyyene chains, we show that this
quantity is severely overestimated by the LDA XC functional,
and that using GGA functionals beyond the adiabatic LDA
approximation does not improve the results. We expect the
results to improve using time-dependent current-density-
functional theory45,47 or with an exact-exchange DFT
approach.48-50

To facilitate a more widespread use of the AD method in
the DFT community, we have developed a generic software
library, XCFun,51 for calculating arbitrary-order XC deriva-
tives, using the approaches described above. It is similar in
scope to the Libxc library52 but provides derivatives to
arbitrary order and works with any set of density variables
(for example, nR and n� or n ) nR + n� and s ) nR - n�).
XCFun is therefore suitable both for development of new
XC functionals and for calculations of DFT response
properties to arbitrary order.
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Appendix

A. Spin Density Contribution. If the spin-density con-
tributions also were to be included, eq 3 would contain
additional terms, one term, kxc;κλ

z , in the collinear spin density
approximation or three terms, kxc;κλ

x , kxc;κλ
y , and kxc;κλ

z , in the
noncollinear spin density approach, where

and Ωκλ
µ ) φκ

†σµφλ with σµ being one of the Pauli spin
matrices (µ ) x, y, z). In addition, eq 9 and all higher-order
contributions given below would include additional perturbed
density variables. Within linear response, corresponding
noncollinear spin density contributions can be found for
instance in ref 32.

B. Second-Order XC Contribution. The second-order
XC contribution requires second-order field-perturbed
prefactors ubc and vbc

where d1,0
bc and d0,1

bc are to be expanded using

The lower-order terms di+1, j
b and di, j+1

b are to be expanded
according to eq 9. This means that the second-order field-
perturbed prefactors ubc and vbc contain first-, second-, and
third-order functional derivatives as well as first-order
derivatives of density variables, and the second-order term
Zb,c ) 2∇nb ·∇nc. Observe that terms containing the highest-
order density matrix (here, terms containing nbc) are not
present due to the 2n + 1 rule.

C. Third- and Fourth-Order XC Contributions. Third-
and fourth-order prefactors for cubic and quartic response
functions, respectively, can be obtained accordingly:

These terms require the evaluation of a growing number
of recursive terms and perturbed density variables. The third-
order term reads as

and the fourth-order term can be written as

kxc;κλ
µ ) uµΩκλ

µ + 2vµ · ∇Ωκλ
µ (20)

ubc ) d1,0
bc (21)

vbc ) d0,1
bc ∇n

+ d0,1
b ∇nc + d0,1

c ∇nb (22)

di,j
bc ) di+1,j

b nc

+ di,j+1
b Z0,c

+ di,j+1Z
b,c

(23)

ubcd ) d1,0
bcd (24)

ubcde ) d1,0
bcde (25)

vbcd ) d0,1
bcd∇n

+ d0,1
bc ∇nd + d0,1

bd ∇nc + d0,1
cd ∇nb

+ d0,1
b ∇ncd + d0,1

c ∇nbd + d0,1
d ∇nbc

(26)

vbcde) d0,1
bcde∇n

+ d0,1
bcd∇ne + d0,1

bce∇nd + d0,1
bde∇nc + d0,1

cde∇nb

+ d0,1
bc ∇nde + d0,1

bd ∇nce + d0,1
be ∇ncd + d0,1

cd ∇nbe

+ d0,1
ce ∇nbd + d0,1

de ∇nbc + d0,1
b ∇ncde + d0,1

c ∇nbde

+ d0,1
d ∇nbce + d0,1

e ∇nbcd

(27)

di,j
bcd ) di+1,j

bc nd

+ di+1,j
b ncd + di+1,j

c nbd + di+1,j
d nbc

+ di,j+1
bc Z0,d

+ di,j+1
b (Z0,cd + Zc,d)

+ di,j+1
c (Z0,bd + Zb,d)

+ di,j+1
d (Z0,bc + Zb,c)

+ di,j+1(Z
b,cd + Zc,bd + Zd,bc)

(28)
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Expressions of even higher-order terms as well as the
inclusion of spin density variables can be achieved rather
straightforwardly using automatic code generation tech-
niques. Note that in this work and in the above discussion
we also omit contributions to accommodate perturbations
which modify the overlap of basis functions, such as
geometric displacements or magnetic perturbations with
London atomic orbitals.
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Abstract: The weak interaction between unpaired electrons in polynuclear transition-metal
complexes is often described by exchange and spin polarization mechanisms. The resulting
intrinsic multiconfigurational electronic structure for such complexes may be calculated with wave
function-based methods (e.g., complete active space configuration interaction and complete
active space self-consistent field), but computations become extremely demanding and even
unfeasible for polynuclear complexes with a large number of open-shells. Here, several levels
of selection of configurations and symmetry considerations that still capture the essential physics
of exchange and spin polarization mechanisms are presented. The proposed approximations
result in significantly smaller configuration interaction expansions and are equally valid for ab
initio and semiempirical methods. Tests are performed in simple molecular systems and in small
transition-metal complexes that cover a range of valence and charge states. In particular,
superexchange contributions can be calculated to good accuracy using only single ionic
excitations. Further reduction in the size of the configuration expansions is possible but restricts
the description to low-lying spin ladders. The proposed configuration interaction schemes may
be used to resolve space and spin symmetries in the calculation of electronic structures,
exchange coupling constants, and other properties pertinent to polynuclear transition-metal
complexes.

1. Introduction

Polynuclear transition-metal (TM) compounds with weakly
coupled open-shell electrons have interesting magnetic
properties as a consequence of the population at thermal
energies of low-lying excited states with different total spins.
The underlying interactions are traditionally mapped to a
spin-spin coupling between momenta S localized in neigh-
boring magnetic sites and are often described by the
Heisenberg-Dirac-van Vleck spin Hamiltonian:1

where JAB is the isotropic Heisenberg coupling constant
between spins on sites A and B. Since [ĤHDvV, Ŝ2] ) 0, the
two operators share a common set of eigenstates. The
eigenvalues correspond to a spin ladder, and the energy gaps
between low-lying spin states depend linearly on the J
coupling constant. For the simplest case of a pair of magnetic
sites with spins SA and SB, the coupling is ferromagnetic,
and J > 0 in the signal convention assumed on eq 1, if the
ground state is high-spin S ) SA + SB. The coupling is
antiferromagnetic, and J < 0, if the ground state is low-spin
S ) |SA - SB|. The spin-spin interaction modeled by eq 1
is in fact an effective one. As proposed by Heisenberg2 and
Dirac,3 the interactions arise due to spin-independent Cou-
lomb electron-electron repulsion and exchange symmetry.

First-principles calculations with the spin-free electronic
Hamiltonian should then be able to predict spin eigenstates
and J constants for TM compounds. Anderson4,5 was seminal
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ĤHDvV ) - ∑
A<B

JABSA · SB (1)
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in realizing how to extract the main contributions to the
effective spin coupling from the electronic structure. His
model can be understood by considering the following simple
valence-bond (VB) scheme: A pair of magnetic sites A and
B contain two weakly interacting electrons occupying two
orthogonal orbitals (constructed by a suitable rotation of the
molecular orbitals) labeled a and b localized on centers A
and B, respectively. By weakly interacting it should mean
that the two electrons do not form a covalent bond. This
situation corresponds to a dihydrogen molecule at stretched
bond distance or a spin-coupled Cu(II, d9) dimer. Four Slater
determinants with MS ) 0 can be constructed: |abj|, |ajb|, |aaj|,
and |bbj|. The first two are “neutral” configurations, and the
last two are charge-transfer “ionic” configurations. Their
combination results in the following configuration state
functions:

The energy difference between the triplet |3Ψneu〉 and the
singlet |1Ψneu〉 will be proportional to Kab, the exchange
integral between orbitals a and b.6 This direct exchange
interaction is ferromagnetic because the high-spin state
(triplet) is favored. Configuration mixing between neutral
and ionic states will lower the singlet energy and lead to the
ground state:6

where |1Ψion〉 is a superposition of the two ionic configuration
state functions shown above and R gives the degree of mixing
between the neutral and ionic states. This mixing is equiva-
lent to a virtual hopping of the electron from one magnetic
site to the other (the charge-transfer ionic configurations),
and it gives an antiferromagnetic contribution to spin-
coupling because the low spin (singlet) is favored. In general,
for weakly coupled open-shell compounds with several
unpaired electrons, neutral configurations will appear in the
wave function expansion for all spin states. Their contribution
to spin coupling is ferromagnetic, i.e., stabilize the high-
spin state, and is known as the direct exchange effect or
mechanism. Ionic configurations will appear in expansions
of all but the highest spin state and give antiferromagnetic
contributions known as the through-space superexchange
mechanism.

This simple VB model can be expanded to explicitly
include an occupied valence closed shell of diamagnetic
ligand bridges that coordinate metal ions in TM complexes.
Ligand-to-metal charge-transfer (LMCT) excitations built out
of a set of neutral and ionic configurations, equivalent to
those on eq 3, will have either anti- or ferromagnetic
contributions to spin coupling. This issue is discussed in more
detail below. To make a connection with the jargon of
previous perturbative treatments,7–9 it should be noted that
single LMCT excitations out of neutral configurations are
usually called ligand spin polarization (LSP) because an

effective spin density appears on the bridge.8 Double LMCT
excitations are termed dynamic or double spin polarization
(DSP). Excitations from core orbitals or to unoccupied
orbitals have been suggested to account for dynamic cor-
relation and orbital relaxation effects9,10 and, hence, do not
comprise additional spin-coupling mechanisms.

Another modification of the two electrons in two localized
orbitals scheme presented above is the addition of a third
electron resulting in a mixed valence compound such as the
stretched H2

- molecule. Delocalization or “resonance” of the
excess electron between the magnetic sites A and B stabilizes
the system and occurs favorably when the local spins SA

and SB are aligned in parallel. This double exchange effect
may then give effective ferromagnetic contributions to the
spin coupling in mixed valence TM complexes.11,12

The method most widely used today to predict J coupling
constants for polynuclear complexes is the broken-symmetry
approach proposed by Noodleman.13,12 In this single con-
figuration description, the solution for the low-spin state (the
BS state, corresponding to MS ) |SA - SB| in the above
example with two magnetic centers) has space and spin
symmetries broken. Such state is not a spin eigenstate but a
superposition of spin states weighted by Clebsh-Gordan
coefficients. A value for J can be estimated14 by using spin-
projection techniques and by also computing the highest spin
(HS) state, which usually is well described by a single
configuration:

where E is the state energy and 〈Ŝ2〉 is the expectation value
of the total spin operator. The success of the broken-
symmetry approach can be traced to appropriate descriptions
of direct exchange, superexchange, and LSP mechanisms
discussed above.8 However, its accuracy obviously depends
on the electronic structure method employed for the single
configuration calculations, which is often spin-polarized
density functional theory. Because eigenfunctions for the
lower spin states are not obtained explicitly, the broken-
symmetry approach is not suited to study state specific
properties. Nevertheless, mapping and spin-projection tech-
niques may also be applied to estimate g tensors and
hyperfine coupling constants15 and to optimize geometries16

approximately. Along the same line, an extended broken-
symmetry approach has been introduced recently that allows
the calculation of energy derivatives for homovalent bi-
nuclear complexes.17

From the VB discussion in the previous paragraphs, it
seems evident to employ configuration interaction (CI) of
Slater determinants to compute wave functions for low-spin
eigenstates. All spin-coupling mechanisms and electronic
effects cited above can be naturally accounted for if an
appropriate configuration space is used. However, the
exponential scaling of the size of the CI space puts serious
limitations on the range of TM complexes and properties
that can be calculated with CI. For instance, the configura-
tional space generated in full excitation level for about 18
unpaired electrons already exceeds the capacity of modern

|1Ψneu〉 ) 2-1/2[|abj |- |ajb|]
|1Ψion

A 〉 ) |aaj |

|1Ψion
B 〉 ) |bbj |

|3Ψneu〉 ) 2-1/2[|abj |+ |ajb|]

(2)

|1ΨCI〉 ) (1 - R)1/2|1Ψneu〉 + R1/2|1Ψion〉 (3)

J ) -
EHS - EBS

〈Ŝ2〉HS - 〈Ŝ2〉BS

(4)

1982 J. Chem. Theory Comput., Vol. 6, No. 7, 2010 Arantes and Taylor



CI code implementations and computer hardware. At this
point, some heroic CI computations on low-spin states of
binuclear TM complexes by Malrieu and collaborators should
be mentioned.18,9 Their dedicated difference CI method has
been used to compute energy differences between spin
multiplets in very good agreement with experimental data.
Together with perturbative analysis, this CI method has also
been used to identify contributions to spin coupling.9,10 Even
so, the dedicated difference CI also suffers from an expo-
nential scaling of the CI space and thus is limited to binuclear
complexes with a small number of unpaired electrons.

In this paper approximate levels of CI selection are
proposed in trying to find short CI expansions that still
capture the essential physics of spin coupling for the low-
spin eigenstates. Determinants are built with localized
molecular orbitals. But instead of specifying a given level
of excitation from a single reference as in canonical CI, the
configurational space is built by completing the spin manifold
for neutral (or covalent), ionic, and ligand-to-metal charge-
transfer VB-like structures. It is important to note that all
approximations proposed here concern only the selection of
configurations that enter in the CI. Thus, all the conclusions
obtained should be equally valid irrespective of the method,
semiempirical or ab initio, used to calculate the molecular
integrals and configuration energies. A semiempirical Hamil-
tonian was employed here because future applications of the
proposed approximations will use a hybrid quantum/classical
potential based on semiempirical methods. Tests are per-
formed in several simple systems so that full CI calculations
can be carried out as references. Details of the computational
methods are given in the next section. The results show that
single ionic excitations between magnetic sites are enough
to obtain an accurate superexchange contribution. Further
reduction in the size of the CI space is possible but restricts
the description to ground spin ladders. For iron-sulfur
clusters, spin coupling can be correctly described by rather
small CI expansions, paving the way for simulation studies
of magnetic and electronic properties of these prosthetic
groups in the condensed phase.

2. Computational Methods

Test calculations were performed on simple spin-coupled
molecular systems. Two homonuclear diatomics, N2 and Cr2,
two bridged triatomics, N2F- and Fe2S4+, and the ring cluster
Fe2S2

2+, were studied. Dinitrogen bond distance was set to
4.5 bohr (∼2.86 Å), and the dichromium bond distance was
set to 4.4 bohr (∼2.33 Å). At such separations, covalent
bonding is not significant, and energy splittings between the
total spin eigenstates have magnitudes similar to those
observed in polynuclear TM complexes. The equilibrium
bond lengths for dinitrogen and dichromium are ∼1.11 and
∼1.68 Å, respectively. Each atom in the stretched diatomic
molecule plays the role of an open-shell metal center or
magnetic site. The unpaired electrons are weakly interacting,
in a suitable model to the direct exchange and through-space
superexchange mechanisms. Yet, dinitrogen is simple enough
to allow complete expansions of the electronic wave function
as well as several levels of CI selection. Neutral, dipositive,
and mononegative total molecular charges were assigned for

dinitrogen as models of magnetic compounds with half-full
open shell, less than half-full, and mixed valence, respec-
tively. Triatomic molecules composed of two magnetic
centers separated by a diamagnetic ligand are the simplest
systems to probe the effect of the proposed approximations
on interactions via the ligand spin polarization mechanism.
Since bridge ligands found in TM complexes are usually
diamagnetic anions, stretched dinitrogen was bridged with
fluoride in an angular geometry with C2V symmetry, ∠ )
75°, d(N-F) ) 1.80 Å, and d(N-N) ) 2.19 Å. In the TM
compound Fe2S4+, two Fe(III) are bridged by a sulfide
ligand. A symmetric linear geometry was adopted with
d(Fe-S) ) 1.271 Å. The binuclear iron-sulfur cluster Fe2

S2
+1/+2 is the prosthetic group found in many electron-transfer

proteins, such as ferredoxin. Each iron is also attached to
the protein by two cysteine sulfur atoms, with a total
tetrahedral coordination. By contrast, the bare Fe2S2

2+ cluster
studied here, a D2h geometry was used,19 with d(Fe-Fe) )
2.543 and d(Fe-S) ) 2.251 Å. The z axis contains the two
magnetic sites in all molecules studied.

Calculations were carried out with a semiempirical neglect
of diatomic differential overlap (NDDO) Hamiltonian.20,21

A slightly modified version of the MOPAC200022,23 code
that allowed CI calculations using localized molecular
orbitals was employed. Standard AM1 parameters were used
for nitrogen and fluoride24 and modified neglect of dif-
ferential overlap (MNDO)-d parameters were used for
sulfur.25 MNDO-d parameters were not available for chro-
mium and iron, so a quick parametrization had to be done.
See details and the parameter values in the Supporting
Information. Molecular orbitals (MOs) were obtained from
high-spin restricted open-shell Hartree-Fock (ROHF) cal-
culations and were localized using an equivalent Pipek-Mezey
procedure.26 Although MOPAC does not work with sym-
metry-adapted basis, all resulting wave functions were
checked for the correct space and spin symmetries. Active
spaces defined for the CASCI (full CI on the given active
space)27 calculations contained all open-shell MOs as well
as outer valence unoccupied and double-occupied MOs in
N2
+2 and N2

-, respectively. All unpaired electrons were
included in the active spaces. Full details of the active spaces
used are given for each tested molecule in the Results and
Discussion Section. Approximate CI expansions were based
on the VB arguments presented in the Introduction. Hence,
instead of specifying a given level of excitation from the
ROHF solution, the selected CI expansions included all
determinants needed to complete the spin manifold for a
given level of approximation for the mechanisms of effective
spin-coupling discussed. Only MS ) 0 (or MS ) 0.5, for
N2
-) determinants were used in the selected CI expansions.

For the larger active spaces, CASCI calculations were not
feasible for the low-spin states (singlet and triplet). MOPAC
generates and diagonalizes the CI matrix (or secular deter-
minant) explicitly, and the code could not be compiled to
use more than 2 GB of memory. Thus, the size of the CI
expansions were limited to about 9000 configurations, which
is less than the number of configurations necessary to expand
the singlet and triplet states for the molecules formed by Cr
and Fe. All the CASCI calculations were done with the
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semiempirical NDDO Hamiltonian. The CASSCF method27

within the MOLCAS 6.2 program system28 was used to
compute a reference value for the Fe2S2

+2 cluster. This
calculation was conducted with basis symmetry adapted to
the D2h point group, using the ANO-RCC29 set with
quadruple-� contraction (e.g., 7s6p4d3f2g for iron).

3. Results and Discussion

Results of several approximate levels of CI selection on the
electronic structure of simple molecules are presented in this
section. For the diatomic systems and the linear Fe2S4+, all
spin ladders shown are Σ states. For NFN-, the lowest energy
spin states are alternating A1 and B2 states, and for the ring
Fe2S2, the spin ladder shown has alternating Ag and B1u states.
For example, the correct energy ordering for the total spin
eigenstates of neutral N2 is 1Σ < 3Σ < 5Σ < 7Σ.

3.1. Neutral N2. For neutral N2, the following configu-
ration is obtained after localizing the high-spin ROHF MOs:
|[core]2sA2sjA2sB2sjB2pz

A2pz
B2px

A2px
B2py

A2py
B|, where the over

bar assigns spin down and the superscripts A and B are used
to label each nitrogen atom. Localized MOs have large
contributions by only one atomic function which is then used
as a label. The six unpaired electrons in the six 2p MOs are
responsible for the spin coupling and form the active space
for generation of configurations used in the wave function
expansion. Because of localization, the MOs will have a C∞V

symmetry, which is lower than the nuclear point group.
The relative energies obtained for the lowest energy spin

eigenstates are shown in Table 1. The CASCI has a total of
400 configurations with MS ) 0. There are 20 unpaired
neutral configurations, i.e., with 1 electron in each of the 6

active MO. The septet wave function is composed only by
these 20 configurations, with equal CI weights. The largest
CI weights (∼0.24 in the singlet state) in the expansions
for all other spin states come from two configurations,
|pz

Apjz
Bpx

Apjx
Bpy

Apjy
B| (only the active space is represented on this

and the following determinant configurations) and the
respective A to B spin inversion. These two configurations
correspond to a 4S high-spin state on each N atom. The
second largest contributions come from the other 18 unpaired
neutral configurations, such as |pjz

Apjz
Bpx

Apx
Bpy

Apjy
B|, which cor-

responds to combinations of atomic excited states or non-
Hund states.30 Ionic configurations have rather smaller
contributions (CI weight e 0.03 in the singlet). The next-
lying excited state above the septet shown in Table 1 is at
least 2 eV higher in energy.

Judgement from the weights in the CASCI expansion
would suggest that only the 20 unpaired neutral configura-
tions could be used in the wave function expansion for all
spin eigenstates. However, this approximation results in a
flat spin ladder, with the same energy for all states. As
described in the Introduction Section, neutral configurations
are not able to account for the effective antiferromagnetic
interactions between the open shells. The ladder is flat
because MOs are strictly localized so that the direct exchange
(Kab) ferromagnetic contribution is very small, actually null
in the precision used. The first reasonable level of ap-
proximation, named neu + single ion in Table 1, is an
expansion containing 20 neutral configurations plus all the
60 symmetry-allowed “metal-to-metal” (or nitrogen-to-
nitrogen) ionic single excitations that can be constructed from
the set of neutral configurations, e.g., |pz

Bpjz
Bpx

Apjx
Bpy

Apjy
B|. The

energy values obtained with this expansion are within 0.001
eV of the CASCI reference, and the number of configurations
used is five-fold smaller. Since localized MOs are used,
excitations between MOs that belong to the same irrep of
C∞V are symmetry allowed. A second approximation can be
made by including neutral and single ionic excitations only
between localized MOs composed by the same atomic
functions (neu + px, py, pz ion, Table 1). This results in
identical energies showing that symmetry-allowed “crossed”
ionic excitations (e.g., px

Bfpy
A) do not interact with the wave

function for the low-lying states of neutral N2. An expansion
including neutral and the 12 single ionic excitations between
the 2pz MOs (neu + pz ion) results in energies within 0.01
eV of the CASCI reference. This suggests a third level of
approximation in which the only ionic excitations included
are those between MOs composed of atomic functions with
large overlap (the z axis is the intermolecular axis). As a
counter example, an expansion including neutral and ionic
excitations between MOs composed of atomic functions with
small overlap (neu + px, py ion) results in almost no
antiferromagnetic contributions and a spin ladder in large
disagreement with the CASCI reference. It should be noted
that, by progressively removing from the CI space the
excitations between 2px and 2py MOs (as in neu + px, py, pz

ion and in neu + pz ion), spin ladders of higher energy and
different space symmetry will not be correctly described. This
is not a problem for neutral N2 because the next-lying state
above the 7Σ state is much higher in energy, but it might

Table 1. Relative Energies (eV) and Number of
Configurations (size) Included in the Wavefunction
Expansions for Electronic Eigenstates of Dinitrogen in
Neutral, Dipositive, and Negative Total Molecular Charge

N2
0

CI expansion size 1Σg
3Σu

5Σg
7Σu

CASCI 400 0.0000 0.0281 0.0876 0.1872
neu + single ion 80 0.0000 0.0278 0.0868 0.1864
neu + px, py, pz ion 56 0.0000 0.0278 0.0868 0.1864
neu + pz ion 32 0.0000 0.0262 0.0822 0.1778
neu + px, py ion 44 0.0000 0.0014 0.0043 0.0087

N2
2+

CI expansion size 1Σu
3Σg

5Σu

CASCI 225 0.0000 0.0515 0.1953
neu + single ion 162 0.0000 0.0514 0.1939
neu + unpair, pz ion 114 0.0000 0.0514 0.1939
neu pz + unpair, pz ion 72 0.0000 0.0514 0.1939
neu + pz ion 78 0.0000 0.0567 0.2028
neu + unpair ion 90 0.0000 -0.0029 -0.0087

N2
-

CI expansion size 2Σu
4Σg

6Σu

CASCI 300 0.3125 0.1458 0.0000
neu + single ion 240 0.3126 0.1458 0.0000
neu pz + pz ion 44 0.3130 0.1460 0.0000
neu 60 0.3298 0.1568 0.0000
neu pz 20 0.3298 0.1568 0.0000
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introduce errors when the ground spin ladder is near
degenerate to other ladders.

Double ionic (N2--N2+), triple ionic (N3--N3+), and
internal paired neutral configurations, e.g. |pz

Apjz
Bpx

Apjx
Apx

Bpjx
B|,

which also corresponds to non-Hund atomic states, have very
small contributions and can be safely neglected. Removing
the two neutral configurations corresponding to the 4S high-
spin state on each N atom from the expansion neu + single
ion or using only these two neutral configurations plus all
single ionic ones results in an incomplete spin manifold and,
consequently, bogus spin ladders.

Linear spin ladders, i.e., ladders that follow a regular Landé
splitting, are obtained within the CASCI, and the levels of
approximation suggested above are shown in Figure 1. The
CASCI ladder and the expansion named neu + single ion
have both correlation coefficients to a straight line of 0.9994
and a F variance quality of 1662. The expansion neu + pz

ion has a correlation of 0.9992 and a F variance quality of
1187. In conclusion, the CI expansion neu + single ion
captures the essential physics of exchange interactions for
the ground spin ladder (Table 1) as well as for higher energy
ladders (not shown) of the stretched dinitrogen molecule.

To test the limits of the proposed configuration selection,
the singlet-triplet energy gap was calculated with varying
bond distances. Figure 2 shows that the expansion neu +
single ion results in energy gaps in very good agreement
with the CASCI wave function down to bond distances of
∼2.0 Å. Below this distance, the interaction between the
unpaired electrons is strong, and covalent bonding becomes
appreciable. The system is not only spin coupled, and the
proposed approximate CI selections do not apply.

3.2. N2
2+. For N2

2+, the configuration obtained after
localizing the high-spin ROHF MOs is equivalent to the
neutral N2 configuration (see above) but with two previous

highest occupied molecular orbitals (HOMOs) now unoc-
cupied. The relative energies obtained for the lowest energy
spin eigenstates are shown in Table 1. The expansion neu
+ single ion results in energy values in excellent agreement
(within 0.002 eV) with the CASCI reference. For less than
half-filled open shells, there are ionic configurations which
still have all electrons unpaired. There are 36 of such
unpaired ionic configurations for N2

2+. An expansion includ-
ing all neutral configurations, unpaired ionic and single ionic
excitations between the 2pz MOs (neu + unpair, pz ion) result
in energies identical to the neu + single ion expansion. Single
ionic excitations between MOs composed by atomic func-
tions with small overlap (e.g., py

Bfpy
A) and crossed single

excitations do not interact with the wave function for the
low-lying states of N2

2+. A selection of the neutral configura-
tions included in the expansions is possible for the open-
shell systems without exactly half-full shells, i.e., more or
less than half-filled and mixed valence. An expansion
including only neutral configurations with one electron in
each 2pz MOs, unpaired ionic and single ionic excitations
between the 2pz MOs (neu pz + unpair, pz ion) also result in
energies identical to the neu + single ion expansion. An
expansion including all neutral configurations and the 24
single ionic excitations between the 2pz MOs (neu + pz ion)
results in energies within 0.01 eV of the CASCI reference.
But, contrary to the equivalent neu + pz ion expansion for
the neutral N2, an excess antiferromagnetic character is
observed. This is a consequence of neglecting the ferromag-
netic contribution of unpaired ionic configurations, easily
seen in the results for the neu + unpair ion expansion in
Table 1. Thus, not all metal-to-metal ionic excitations give
an antiferromagnetic contribution to spin coupling, but only
those that alter the number of unpaired electrons.

Considering a particle-hole symmetry, an equivalent
behavior would be observed for the more than half-filled
case. For example, in N2

2-, ionic configurations without an
empty MO give ferromagnetic contributions, equivalent to
the ionic unpaired configurations in the less than half-filled
case.

3.3. N2
-. For N2

-, the localized high-spin ROHF MOs used
in the CI expansions were obtained for the neutral dinitrogen
to avoid an artificial polarization of the occupied MOs and
thereof biased CI results. Similar results were obtained if a
fractional occupation of the MOs was allowed in the ROHF
solution. The relative energies obtained for the lowest energy
spin eigenstates are shown in Table 1. Delocalization of the
excess electron stabilizes the “neutral” configurations result-
ing in a ferromagnetic CASCI spin ladder. This is the double-
exchange effect.11 Antiferromagnetic contributions by the
superexchange mechanism are an order of magnitude smaller.
Thus, an expansion including only neutral configurations
(neu, Table 1) accounts for the double-exchange effect and
results in energies within 0.02 eV of the CASCI reference.
In fact, an expansion (neu pz) in which the excess electron
occupies only the 2pz orbitals has identical results. However,
by removing from the CI space configurations in which the
excess electron occupies the 2px and 2py MOs, spin ladders

Figure 1. Spin ladders for the lowest energy total spin eigen-
states of N2

0 calculated with different wave function expansions.
See text for details.

Figure 2. Triplet-singlet energy gap for varying N2
0 bond

distances.
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with higher energy and different space symmetry will not
be correctly described, as observed for similar CI selections
in N2

0/+2.
The antiferromagnetic contribution can be retrieved in an

expansion including all symmetry-allowed single ionic
excitations (neu + single ion) resulting in energies within
0.0001 eV of the CASCI reference. The expansion including
the interacting neutral and the 24 single ionic excitations
between the 2pz MOs (neu pz + pz ion) contains five-fold
less configurations than the CASCI and results in energies
within 0.001 eV of this reference.

3.4. Cr2. For the stretched dichromium molecule, covalent
bonding between the 3d orbitals is not significant. However,
there is still a σ bond formed mostly between the diffuse 4s
chromium orbitals.31 The correct energy ordering for the total
spin states should have the antiferromagnetic singlet as the
ground state and the ferromagnetic undecaplet as the highest
energy state of the ground spin ladder.

The canonical high-spin ROHF solution has 10 singly
occupied MOs formed by antisymmetric and symmetric
combinations of the atomic 3d functions. The HOMO-1 and
HOMO are formed, respectively, by antisymmetric and
symmetric combinations of the 4s functions. After full orbital
localization, each Cr atom contains six electrons and a
configuration corresponding to a 7S atomic state. The active
space was composed of the 12 electrons in 10 MOs formed
by 3d functions and the 2 MOs formed by 4s functions. All
the configurations used in the expansions were formed out
of the two possible combinations of the localized 4s orbitals
consistent with a σ bonding MO. The CASCI solution was
only computed down to the quintet state. The secular
determinants necessary to obtain states with S < 2 were too
large and could not be built due to memory limitations (see
Computational Methods Section).

Figure 3 shows spin ladders calculated for Cr2 under
different CI selections. The undecaplet state was chosen as
zero of energy. An expansion including only unpaired neu-
tral configurations (252 configurations in total), e.g.,
|[core]dz2

Adjz2
Bdx2-y2

A djx2-y2
B dxy

A djxy
Bdxz

Adjxz
Bdyz

Adjyz
B|, yields an incorrect

spin ladder with a high-spin ground state, as expected from
the direct-exchange contribution to spin coupling. The
expansion neu + single ion, including all 252 unpaired
neutral configurations plus 1260 ionic configurations, results
in fair agreement with the CASCI result (within 0.1 eV).
Ionic configurations were built from the set of unpaired

neutral configurations by metal-to-metal single excitations
between MOs belonging to the same irreps of the C∞V group.
It should be noted that the neu + single ion CI expansion
contains only 1512 configurations, instead of the 63 504
configurations that would be necessary to expand the singlet
state in the CASCI wave function. Energies within 0.01 eV
of the neu + single ion expansion are obtained by a smaller
expansion with 952 configurations that does not contain the
crossed ionic excitations between MOs belonging to the same
C∞V irrep but formed by different atomic functions, e.g.,
dxz

Afdyz
B.

The spin ladders obtained with CASCI and neu + single
ion approximation have, respectively, correlation coefficients
to a straight line of 0.9998 and 0.996 and a F variance quality
of 4032 and 465. The approximations proposed for the model
stretched dinitrogen are equally valid for the stretched
dichromium and result in a reduction of at least two orders
of magnitude in the size of the CI space.

3.5. NFN- in C2W Symmetry. On the following sections,
the proposed approximations are tested on compounds
containing diamagnetic bridges. Localized MOs were ob-
tained for angular NFN- from a high-spin ROHF solution.
Each nitrogen has a double-occupied 2s-like shell and 3
unpaired electrons in orbitals composed by the 2p functions.
Fluoride has 4 double-occupied orbitals composed by 2s and
2p functions. All 9 MOs formed by p functions and 12
electrons are included in the active space.

Figure 4 shows spin ladders calculated under different CI
selections. The singlet was chosen as zero of energy. An
expansion including only unpaired neutral and ionic single
excitations between the magnetic (nitrogen) centers with the
bridge (fluoride) MOs left double occupied (neu + single
ion, 80 configurations in total) yields a largely antiferro-
magnetic ladder, in large disagreement with the CASCI
reference. The ligand spin polarization has to be included
for a qualitatively correct description of the NFN- wave
function.

LSP configurations are obtained by LMCT single excita-
tions built from the set of neutral and ionic determinants.
An expansion including the neu + single ion set and all
configurations generated from the (20) neutral determinants
by LMCT single excitations (+ lsp neu, 280 configurations
in total) results in an overestimation of the ferromagnetic
interactions. On the other hand, a similar expansion (+ lsp
ion, 406 configurations in total) but with LSP configurations

Figure 3. Spin ladders for the lowest energy total spin eigen-
states of Cr2 at 4.4 bohr separation calculated with different wave
function expansions.

Figure 4. Spin ladders for the lowest energy total spin eigen-
states of NFN- in angular geometry calculated with different
wave function expansions.
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generated by single excitation from the (60) ionic determi-
nants results in an overestimation of the antiferromagnetic
contributions. A proper balance is obtained by an expansion
including the neu + single ion set plus both neutral and ionic
ligand spin polarization (+ lsp ion + lsp neu), resulting in
energies within 0.03 eV of the CASCI reference. Double
LMCT excitations can also be constructed from the neutral
and ionic configurations set by either exciting the same bridge
orbital or two different ones. The resulting contributions are
anti- and ferromagnetic but with much smaller magnitude
(∼0.01 eV), as found for other TM bridged systems.8,7

In other words, the set of unpaired neutral and single ionic
configurations might be considered a zero-order reference
set. LSP excitations built out of this multireference set result
in anti- and ferromagnetic contributions to spin coupling if
the excitation originates from an ionic or a neutral config-
uration, respectively. For NFN-, the LSP contributions are
larger than the through-space superexchange contributions
and have to be included for a qualitatively correct description
of the spin coupling. This is not generally true, as shown
below for the TM compounds. DSP contributions are
relatively small and can be removed from the CI space
without affecting the results significantly.

3.6. Linear Fe2S4+. Localized MOs were obtained for
linear Fe2S4+ from a high-spin ROHF solution. Each metal
center has a half-filled valence shell with 5 unpaired electrons
in 5 orbitals composed by 3d functions, corresponding to an
atomic 6S state. The sulfur bridge has four double-occupied
2s- and 2p-like orbitals. The 3 outer-valence bridge MOs
and the 10 MOs formed by iron 3d functions were included
in the active space, with the respective 16 electrons.

A CASCI solution with such a large active space is not
feasible within the memory limitations found here (see
Computational Methods Section). Instead, Figure 5 shows a
CASCI result obtained with only 10 electrons in the 10 MOs
formed by iron 3d functions. The undecaplet state was chosen
as zero of energy. The neu expansion includes only unpaired
neutral configurations with double-occupied ligand MOs (252
configurations in total, Figure 5) and results in small
ferromagnetic coupling, as observed above for the chromium
dimer. The neu + single ion expansion includes the ionic
configurations (1512 configurations in total) and results in
very good agreement with the 10 electron in 10 orbitals
CASCI. The effect of neutral LSP configurations (neu + ion
+ lsp neu) is ferromagnetic, and the ionic LSP (neu + ion

+ lsp ion) is antiferromagnetic. Neutral and ionic LSP
configurations are obtained by LMCT single excitations built
from the set of neutral (neu) and ionic (ion) determinants,
respectively. However, contrary to the NFN- example above,
through-space superexchange dominates, and the ligand spin
polarization is relatively smaller in Fe2S4+. For example, the
ladder obtained with the expansion neu + ion + lsp neu is
antiferromagnetic. In fact, inclusion of both neutral and ionic
LSP configurations practically cancels out the polarization
effect and results in a spin ladder very close to the neu +
single ion expansion. Even if LMCT excitations are not
explicitly included in the CI space, the effect of bridges and
ligands is at least partially included when MOs are generated
and when energies of the zero-order multireference configu-
rations are calculated. Results similar to those shown in
Figure 5 for the neu + single ion expansion are obtained by
removing the crossed ionic excitations, as observed above
for stretched N2 and Cr2, leading an expansion with only
952 configurations.

3.7. Fe2S2
2+ Ring. The final example is the iron-sulfur

cluster Fe2S2
2+. Localized MOs obtained from a high-spin

ROHF solution show a half-filled valence 3d shell with 5
unpaired electrons in each iron center. Each sulfur bridge
has 3 outer-valence double-occupied localized MOs com-
posed by 2p functions. An active space containing all 16
valence MOs and the respective 22 electrons is only feasible
using modern direct CI procedures. An ab initio CASSCF
computation using such large active space is taken as
reference in Table 2. The CASSCF singlet wave function is
expanded in almost two million determinants in comparison
to the approximate and much shorter expansion neu + single
ion that includes only 1512 determinants corresponding to
the unpaired neutral and ionic single excited states. The
agreement between the CASSCF and the selected neu +
single ion expansion is very good (within 0.05 eV) and
suggests that this level of approximation captures the
essential physics of spin coupling in transition-metal com-
plexes. In fact, energies within 0.003 eV of the neu + single
ion expansion were obtained with an even smaller expansion
containing 952 configurations, by removing the crossed ionic
excitations.

4. Conclusions

Approximate configuration interaction expansions were
introduced for the calculation of wave functions with correct
spin and space symmetries of weakly coupled transition-
metal compounds with many open shells. The selection of
configurations included in the CI space was based on physical

Figure 5. Spin ladders for the lowest energy total spin eigen-
states of linear Fe2S4+ calculated with different wave function
expansions.

Table 2. Relative Energies (eV) for Fe2S2
2+ Lowest Energy

Spin Eigenstates Calculated with Two Different CI
Expansions

〈Ŝ2〉 neu + single ion CASSCF

0 0.000 0.000
2 0.041 0.046
6 0.135 0.136

12 0.283 0.267
20 0.475 0.427
30 0.717 0.679
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arguments for the mechanisms of spin coupling, namely
direct exchange, superexchange, double exchange, and ligand
spin polarization. In the spirit of valence-bond calculations,
localized (molecular) orbitals were used in the construction
of Slater determinants. But, instead of specifying a level of
excitation as in the normal CI terminology, the expansions
included all determinants needed to complete the spin
manifold compatible with the exchange mechanisms depicted
in the Introduction Section.

A zero-order multireference set was identified as the set
of neutral and single ionic configurations. The neutral set
accounts for the direct-exchange ferromagnetic mechanism
and corresponds to configurations with an equivalent number
of unpaired electrons in each magnetic site (excluding the
excess electron in mixed valence systems). The ionic set is
built by symmetry-allowed metal-to-metal single excitations
from the neutral set that alter the total number of unpaired
electrons. For all the spin-coupled compounds tested here
and, we believe, for any spin-coupled system, single ionic
excitations are enough to account for the through-space
superexchange antiferromagnetic mechanism.

Symmetry-allowed excitations involve molecular orbit-
als that belong to the same irrep of the localized MOs
point group. The contribution of symmetry-allowed crossed
ionic excitations, i.e., excitations between MOs formed
mainly by different atomic functions, was very small or
null for the ground spin ladder in all molecules studied.
For other systems, this result will depend on the localiza-
tion method employed and on whether the localized MOs
resemble pure atomic orbitals or combinations thereof.
Even smaller expansions are possible by selectively
removing from the CI space other ionic configurations or
neutral configurations for the more or less than half-filled
and mixed valence systems that have very small or null
CI weights in the expansions of the low-lying spin states.
For instance, removing excitations between MOs formed
by atomic functions with a small overlap in N2 resulted
in energies close to those obtained with the full zero-order
set for the ground spin ladder. However, spin ladders of
higher energy and different space symmetry might not be
correctly described by CI spaces smaller than the zero-
order multireference set.

Ligand-to-metal charge-transfer configurations con-
structed from the zero-order reference set account for
ligand spin polarization and double spin polarization.
Single LMCT out of the neutral set always give a
ferromagnetic contribution. On the other hand, single
LMCT out of the ionic set always give an antiferromag-
netic contribution, sometimes called “through-bond” su-
perexchange. The LSP configurations should be included
in the CI space whenever this contribution is comparable
in magnitude to through-space direct and superexchange.
For the iron-sulfur compounds studied here, the LSP
contribution is small and approximately cancels out when
both ionic and neutral single LMCT excitations are
included. This is not a general result,9,10,30 but it is a
valuable one in reducing the size of the CI expansions. A
related argument is valid for the mixed valence system
tested. The double-exchange effect in N2

- is much larger

than the superexchange so that ionic configurations can
be excluded from the CI space without affecting the energy
splittings significantly.

Comparisons with experimental J coupling constants are
not given here. Such comparisons would not be fair at this
stage because the calculations presented do not include the
effect of dynamic correlation, which is essential for quantita-
tive results.27,9 Dynamic correlation can be added on top of
the zero-order set by either multireference CI or perturbative
corrections.27 If a semiempirical method is employed, then
correlation can be implicitly included in the parametrization
of electron-repulsion integrals.

The proposed approximations result in much shorter CI
expansions. For example, the CASSCF result obtained
with 2 × 106 configurations for Fe2S2

2+ is reproduced with
about 103 configurations. However, the exponential scaling
of the CI space size is not entirely ameliorated. Poly-
nuclear compounds with a larger number of magnetic
centers and unpaired electrons will still require large
configurational spaces that may exceed the available
computational resources even if including only neutral and
single ionic excitations between neighboring sites. Nev-
ertheless, identifying the spin-coupling mechanisms with
valence-bond structures and including controlled ap-
proximations in the CI expansion may open the way to
treat these more challenging systems.
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Abstract: Density functional approximations fail to provide a consistent description of weak
molecular interactions arising from small electron density overlaps. A simple remedy to correct
for the missing interactions is to add a posteriori an attractive energy term summed over all
atom pairs in the system. The density-dependent energy correction, presented herein, is
applicable to all elements of the periodic table and is easily combined with any electronic structure
method, which lacks the accurate treatment of weak interactions. Dispersion coefficients are
computed according to Becke and Johnson’s exchange-hole dipole moment (XDM) formalism,
thereby depending on the chemical environment of an atom (density, oxidation state). The long-
range ∼R-6 potential is supplemented with higher-order correction terms (∼R-8 and ∼R-10)
through the universal damping function of Tang and Toennies. A genuine damping factor
depending on (iterative) Hirshfeld (overlap) populations, atomic ionization energies, and two
adjustable parameters specifically fitted to a given DFT functional is also introduced. The
proposed correction, dDXDM, dramatically improves the performance of popular density
functionals. The analysis of 30 (dispersion corrected) density functionals on 145 systems reveals
that dDXDM largely reduces the errors of the parent functionals for both inter- and intramolecular
interactions. With mean absolute deviations (MADs) of 0.74-0.84 kcal mol-1, PBE-dDXDM,
PBE0-dDXDM, and B3LYP-dDXDM outperform the computationally more demanding and most
recent functionals such as M06-2X and B2PLYP-D (MAD of 1.93 and 1.06 kcal mol-1,
respectively).

Introduction

Kohn-Sham density functional theory (DFT)1 offers a
powerful and robust methodology for investigating electronic
structures of many-body systems, providing a practical
balance of accuracy and computational cost unmatched by
other methods. Despite this success, the commonly used
semilocal approximations have difficulties in properly de-
scribing attractive dispersion interactions that decay with R-6

at large intermolecular distances. Even in the short to medium
range, most semilocal density functionals fail to give an
accurate description of weak interactions.2-4

Accurate treatment of weakly interacting systems is
crucial, especially in the field of biomolecules (stacking of

DNA,5 protein folding6), host-guest chemistry, surface
chemistry, and condensed phases of organic molecules. Yet,
even seemingly innocuous looking reactions such as alkane
isomerization energies and Pople’s isodesmic bond separation
equations (BSEs),7,8 where formal bond types are preserved,
suffer from errors at standard DFT levels.9-12

SAPT (DFT)13-15 gives highly accurate interaction ener-
gies for two or three interacting closed-shell subsystems, but
the method is not applicable to intramolecular interactions.
Around the energy minimum, dispersion-corrected atom-
centered potentials (DCAPs)16-22 or specifically fitted
density functionals23-28 have led to satisfactory results.
Nevertheless, both approaches intrinsically lack the ability
to recover the long-range ∼R-6 attractive form. Conceptu-
ally, the simplest remedy is to correct for the missing* Corresponding author e-mail: clemence.corminboeuf@epfl.ch.
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interaction a posteriori by adding an attractive energy term
summed over all atom pairs in the system. The strategy was
originally proposed to improve Hartree-Fock energies
(known as HF-D)29-32 and was later applied to DFT.2-4,33

With parameters for most elements in the periodic table,
Grimme’s parametrization34 is the best known DFT-D
variant. Since then, there has been considerable interest in
finding an optimal parametrization.34-52 DFT-D is generally
accurate for the treatment of intermolecular interactions, but
proper description of weak intramolecular interactions is
trickier.12,53,54 Specific fitting to a suitable training set40

decreases the “intramolecular” error, albeit we have recently
shown that the two parametrizations can be unified using a
physically motivated damping function called dD10.46

Our dD10 correction46 is, however, restricted to only a
few elements (H, C, N, O) and, like most DFT-D schemes,
employs system-independent dispersion coefficients. The
present work overcomes these limitations by combining the
efficiency of a new damping criterion with the attractiveness
of deriving system-dependent dispersion coefficients. Akin
to our former correction,46 two damping functions are used
jointly to treat both intra- and intermolecular weak interac-
tions consistently. System-dependent dispersion coefficients
are computed on the basis of the analytical approximation
of the Becke and Johnson37,55-60 (BJ) exchange-hole-dipole
moment (XDM) formalism.61,62 Iterative Hirshfeld weights63

are used to partition the dispersion coefficients among the
atoms.43,64 A genuine and universal damping criterion based
on iterative Hirshfeld weights is introduced for the first time.
Our approach has the additional advantage of easily incor-
porating higher order dispersion coefficients absent in, for
instance, the related C6-only scheme of Tkatchenko and
Scheffler.45 With only two fit parameters, this new dDXDM
correction solves difficulties arising from elements positioned
in different chemical environments (i.e., selecting a dispersion
coefficient33-35) and is easily applicable to every element
of the periodic table.

The next sections give details on the implementation and
computations. The performance of dDXDM, on test sets
featuring both intra- and intermolecular weak interactions,
is then compared with the interaction energies of (un)cor-
rected popular functionals (BP86,65-67 BLYP,65,68 BHH-
LYP,69 B3LYP,70,71 PBE,72 and PBE073,74) and established
DFT-methods designed to better describe weak interactions
(B97-D,34 B2PLYP-D,75,76 and M06-2X24).

Theory

The basic form of our correction is the Tang and Toennies
(TT) damping function77

where N is the number of atoms in the system and b is the
TT-damping factor (Vide infra). The correction is called
dDXDM6 if only the first term is retained in the multipole
expansion (n ) 3, corresponding to C6) and is called dDXDM
otherwise (n ) 5, up to C10). f2n(bRij) represents the “universal

damping functions”77 that are specific to each dispersion
coefficient and that serve to attenuate the correction at short
internuclear distances to account for overlapping densities.

This coming section describes the procedure employed for
the determination of the two nontrivial arguments of eq 1:
(i) the dispersion coefficients and (ii) the damping factor b.

i. Dispersion Coefficients and Atomic Partitioning
Weights. Dispersion coefficients are computed according to
Becke and Johnson’s XDM formalism,37,55-60 as efficiently
implemented in Q-Chem by Kong and co-workers.61,62 The
C6

ij, C8
ij, and C10

ij coefficients between atoms i and j are, for
instance, obtained according to

where Ri are atomic polarizabilities and 〈Ml
2〉 atomic expecta-

tion values of squared multipoles (l ) 1, 2, 3 for dipoles,
quadrupoles, and octupoles, respectively) given by

In eq 6, Fσ(r) is the spin density, dXσ the dipole moment
of the exchange-hole and its reference electron, approximated
according to the Becke-Roussel model,78 and wi(r) represents
atomic partitioning weights.

Becke and Johnson56 used classical Hirshfeld weightings:79

where Fi
at is the sphericalized free atomic density of atom i,

weighted by the superposition of all Fi
at with all atoms n

positioned as in the real molecule. The classical Hirshfeld
scheme depends on the (arbitrary) choice of the atomic
reference densities. Molecules with large ionic character, such
as LiF, offer a clear illustration of this dependence. If one
uses the typical superposition of neutral atomic densities (i.e.,
Li0 and F0), the atomic charges have an absolute value of
0.57. However, a value of 0.98 is obtained when Li+ and
F- densities are considered.63 This arbitrariness can be
overcome by using the iterative version of the Hirshfeld
partitioning procedure, called Hirshfeld-I.63 In the kth
iteration, the weight for atom i is given by
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Conveniently, the first iteration can use neutral atomic
densities, leading to the classical Hirshfeld charges. Of
course, the electronic populations, Ni ) ∫ wi(r) F(r) dr, are
usually fractional numbers, and the corresponding densities
are thus computed according to80

where n is the integer part of Ni and x ) Ni - n. The
partitioning is converged if the electronic populations do not
change significantly between two iterations (the convergence
criterion was set to a root-mean-square deviation of 0.0005
au). Compared to the rest of the correction, the iterative
scheme is computationally demanding, as integration over
the entire grid is necessary for each iteration.81 For this
reason, we also report values based on the classical Hirshfeld
partitioning.

Finally, the determination of the dispersion coefficients
from eqs 3-5 also depends on atomic polarizabilities. We
herein follow Becke and Johnson’s proposal to exploit the
proportionality82 between polarizability and volume to
estimate the effective atom in molecule (AIM) polarizabilities
from tabulated free atomic polarizabilities:83

ii. The Damping. A key component of our dDXDM
correction is the damping factor b. We showed previously46

that the performance of the TT-damping function is improved
by the introduction of a second damping function to prevent
corrections at covalent distances. In the full TT model,77 the
attractive potential should give relatively strong contribution
at short distances in order to soften the repulsive Born-Mayer
potential. In contrast, a correction to DFT necessitates
additional damping as density functionals better describe the
region of strong density overlap (short-range). We herein
introduce a variable, damped b, in which the second damping
is intrinsically absorbed as an alternative to our previous
model using a Fermi damping function.46 In Tang and
Toennies’ seminal work,77 the damping parameter b is also
the range parameter of the repulsive Born-Mayer potential
and thus depends on the two interacting atoms. Later, the
same authors converted b from a constant into a function:84

for an arbitrary repulsive potential V(r),

Here, we replace the distance dependence by the following
form:

x and F(x) are respectively the damping argument and the
function for bij,asym, the TT-damping factor associated with
two separated atoms. bij,asym is computed according to the
combination rule:85,86

The bii,asym values are estimated87,88 by the square root of
the atomic ionization energy �Ii taken from the literature.89

Inspired by the approach of Tkatchenko and co-workers,45,90

the atom in molecule character is taken into account through
a cubic root scaling of the ratio between the free atom and
the AIM volume. After introduction of the parameter b0,
which determines the strength of the correction in the
medium range, we arrive at

Equation 14 proved to be the most robust form for the
damping function91

where the fitted parameter a0 adjusts the short-range behavior
of the correction.

The last element of the correction is the damping argument x

where Zi and Ni are the nuclear charge and Hirshfeld
population of atom i (Vide supra), respectively. The overlap
population92 qij ) ∫ wi(r) wj(r) F(r) dr is a covalent bond
index, and the fraction term in the parentheses is an ionic
bond index.93 The multiplicative factor, (Ni + Nj)/(Ni ·Nj),
serves to attenuate the damping of bij,asym for heavier atoms
(containing more electrons). Note that the damping function
has an adequate form (i.e., F(0) ) 1 and F(∞) ) 0), given
that x is large for atoms near each other and vanishes with
increasing rij distance.

This is the first example for which the damping of an atom
pair-wise dispersion correction depends on Hirshfeld (over-
lap) populations rather than on “critical” or “van der Waals”
radii. Our approach is, however, similar in spirit to Slipchen-
ko and Gordon’s94 overlap-matrix-based formula employed
within the framework of the effective fragment potential
method.

To summarize, the presented dDXDM correction uses
electronic structure information to determine dispersion
coefficients and two fitted damping parameters that are the
strength of the TT-damping (b0) and the steepness factor (a0).

Determination of the Adjustable Parameters

In line with our former work,40,46 the chosen fitting procedure
ensures a successful treatment of both weak intra- (short-
range) and inter- (long- range) molecular interactions. From

wi,HI
k (r) )

Fi
k-1(r)

∑
n

Fn
k-1(r)

(8)

Fi
k ) Fi

Ni ) Fi
n+x ) x · Fi

n+1 + (1 - x) · Fi
n (9)

Ri )
〈r3〉i

〈r3〉i,free

Ri,free )
∫ r3wi(r) F(r) d3r

∫ r3Fi,free(r) d3r
Ri,free )

Vi,AIM

Vi,free
Ri,free

(10)

b(r) ) -d ln V(r)
dr

(11a)

b(x) ) F(x) · bij,asym (11)

bij,asym ) 2
bii,asym · bjj,asym

bii,asym + bjj,asym
(12)

bii,asym ) b0 · √2Ii ·
3� Vi,free

Vi,AIM
(13)

F(x) ) 1 -
2arctan(a0 · x)

π
(14)

x ) abs(qij + qji -
(Zi - Ni) · (Zj - Nj)

rij
)Ni + Nj

Ni / Nj

(15)

1992 J. Chem. Theory Comput., Vol. 6, No. 7, 2010 Steinmann and Corminboeuf



a theoretical perspective, typical weakly bound systems, such
as rare gas dimers, seem the appropriate choice as a training
set. However, the description of rare gas dimers by standard
density functionals is not consistent; for instance, PBE
overbinds the helium dimer and underbinds the argon dimer
(see the Supporting Information). Such behavior is not easily
improved by a dispersion correction and highlights that
inclusion of rare gas dimers into the training set does not
necessarily guarantee a generally improved treatment of weak
intra- and intermolecular interactions.95,96 In contrast, we and
others demonstrated that the large DFT errors in the
description of alkane intramolecular interactions (e.g., isomer-
ization energies) are systematic9,12 and conveniently reduced
by a dispersion correction.40,76,97-99 Our recent work,
introducing a flexible TT-based correction,46 demonstrated
that using alkane reaction energies as a training set results
in a highly transferable correction, which outperforms others,
even for systems well outside the range of the training set
(e.g., intermolecular complexes).46 Akin to our former fitting
procedure, the two parameters (a0 and b0) are fitted for each
functional as to minimize the mean absolute deviation
(MAD) over five reaction energies that are the Pople’s
isodesmic bond energy separation reaction of n-hexane and
cyclohexane,

the folding energy of C22H46, and the isomerization energy
of n-octane and n-undecane to 2,2,3,3-tetramethylbutane and
2,2,3,3,4,4-hexamethylpentane, respectively.

The best fit parameters are given in the Supporting Informa-
tion for dDXDM (i.e., iterative Hirshfeld weights and terms
up to C10), dDXDMc (using classical Hirshfeld weights),
dDXDM6 (iterative Hirshfeld weights, only up to C6), and
dDXDM6c (classical Hirshfeld weights and only up to C6).
Short form parenthetic notations that are used in the text refer
to the two levels of correction with or without the parentheses
(e.g., dDXDM6(c) refers to dDXDM6 and dDXDM6c).

Table S1 and Figure S1 (Supporting Information) illustrate
that, for the models including terms up to C10, best fit a0

and b0 correlate well with each other. There is also a good
correlation between each of the fitted parameters and the
repulsive character of the functional, as represented by the
error in the methane dimer interaction energy shown in
Figure S2 (Supporting Information).100,101 In contrast, the
C6-based corrections show poor (dDXDM6) or even no
(dDXDM6c) correlation between a0 and b0. The missing
higher order dispersion terms in dDXDM6c are compensated
by relatively higher b0 values.102 The a0 parameters adjust
accordingly following the repulsive character of the func-
tional to prevent a too strong correction in the short range.
These results emphasize the physical relevance of including
higher dispersion terms to achieve a more consistent
correction.

Test Sets

The robustness of the dDXDM correction is tested on seven
illustrative sets featuring both intra- and intermolecular weak
interactions, as described hereafter.

Three of the sets assess Pople’s isodesmic bond separation
equation reactions7,8 of saturated hydrocarbons (H, R, and
C for chains, rings, and cages, respectively). As in ref 46,
B3LYP/6-311+G** geometries and thermal corrections are
included, and reference values are derived from experimental
heats of formation.103

The “intramolecular dispersion interactions in hydrocar-
bons” (IDHC)76 set contains two isomerization reactions (n-
octane and n-undecane to the fully branched isomer), two
folding reactions of large hydrocarbon chains (C14H30 and
C22H46), the dimerization of anthracene, and the hydrogena-
tion reaction of [2.2]paracyclophane to p-xylene. Geometries
and reference values are taken from ref 76.

The S2296 set validates the performance of the correction
on noncovalent complexes, while the P76 set test probes
peptide conformational energies.104 P76 contains 76 con-
formations of five small peptides having aromatic side chains
(FGG, GFA, GGF, WG, and WGG). For these two sets,
geometries and reference values (estimated CCSD(T)/CBS)
are taken from the literature.105,106

The last test set (EX3) exclusively features weak interac-
tions involving heavy atoms in the dimers of pnictogen
trihalides (NF3, NCl3, PCl3, PBr3, and AsBr3).107 Geometries
(counterpoise corrected df-MP2/aug-cc-pVTZ) were taken
from ref 107. Reference values (estimated CCSD(T)/CBS)
were computed at the counterpoise corrected level108 ac-
cording to

where aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ are
abbreviated by AVDZ, AVTZ, and AVQZ, respectively.
These computations were performed with Molpro2009.1109

at the F12 level,110 with the HF energy containing the CABS
single correction and the triples being based on F12
amplitudes. The g functions are omitted in all aug-cc-pVQZ
computations, except for the heaviest dimer (i.e., (AsBr3)2).
The extrapolation functional proposed by Helgaker and
co-workers111,112 (En

corr ) ECBS
corr + AX-3 with X ) 2, 3, and

4 for AVDZ, AVTZ, and AVQZ, respectively) is applied a
posteriori to the CCSD-F12b and (T) correlation energies.113

The T1 diagnostic was below 0.02 and the D1 diagnostic114

around 0.04, except for NCl3, where D1 ≈ 0.065 (monomer
and dimer) is indicative of a multireference character. The
NBr3 dimer was discarded from the test set due to its D1 ≈
0.085 and an unreliable basis-set convergence.

The performance of the dDXDM correction was further
examined on four potential energy profiles: (a) the stacked
benzene dimer (geometry and reference values taken from
refs 115 and 116, respectively), (b) a propane dimer
conformation (geometry based on the experimental geom-
etry117 and arranged like in ref 118), (c) a benzene-H2S
complex (geometry and reference from ref 116), and (d) a
benzene-H2O complex (orientation analogous to the
benzene-H2S conformation, with the same benzene geom-
etry119 and the experimental water geometry).117 For b and
c, reference values were computed at the counterpoise
corrected level:108

CH3(CH2)4CH3 + 4CH4 f 5C2H6

(CH2)6 + 6CH4 f 6C2H6 (16)

E(CCSD(T)/CBS) ) HF/AVQZ +
CCSD-F12b/CBS(AVTZ/AVQZ) +

(T)/CBS(AVDZ/AVTZ) (17)
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where ∆CCSD(T*)-F12b/AVDZ is the difference between
df-MP2-F12 and CCSD(T*)-F12b evaluated with the aug-
cc-pVDZ basis set, and (T*) stands for the perturbative triple
corrections improved by scaling by the ratio of df-MP2-F12/
df-MP2.120

Finally, to ensure that the corrections do not affect covalent
bonds, the performance on six representative atomization
energies (AE6) and barrier heights (BH6)121 was investi-
gated. Geometries and reference values were obtained from
the Minnesota database collection.122 Errors for these two
test sets are given in the Supporting Information.

Computational Methods

B97-D and B2PLYP-D computations with the cc-pVTZ basis
set123-125 were performed with Turbomole 5.10126,127 using
the resolution of identity (RI-MP2)128 with matching aux-
iliary basis functions129 to speed up B2PLYP. M06-2X
energies were computed with NWChem 5.1130,131 using the
“xfine” grid. All of the other computations were performed
with a developmental version of Q-Chem 3.2.132 The cc-
pVTZ basis set123-125 was used except for the potential
energy curves, for which the larger aug-cc-pVTZ basis set
was employed. The energy differences between cc-pVTZ and
the larger aug-cc-pVTZ basis set were found to be negligible
compared to the error of the method against the reference
value133 (e.g., the averaged total MAD for PBE/cc-pVTZ,
4.27 kcal mol-1, differs by only 2%, 0.08 kcal mol-1, from
PBE/aug-cc-pVTZ, 4.20 kcal mol-1; see Table S2 Supporting
Information).

To ensure a consistent treatment between intra- and
intermolecular interaction, no basis set superposition cor-
rection was applied (e.g., P76 contains peptide conformations
with intramolecular interactions resembling closely those of
intermolecular complexes in the S22 test set).

XDM-based corrections were done post-SCF. The iterative
Hirshfeld partitioning was implemented using sphericalized
restricted-open atomic densities computed on the fly (i.e.,
functional specific) with a 99/590 Euler-Maclaurin-
Lebedev134,135 grid. The energy profiles were computed with
a 99/302 Euler-Maclaurin-Lebedev grid. Otherwise, the
SG1 grid136 was used.

Results and Discussion

Figure 1 summarizes the mean absolute deviation for
established methods tested on the seven sets described above.
The difference between “standard” and “recent” functionals
(M06-2X, B97-D, and B2PLYP-D) is significant for all of
the test sets (averaged total MAD 5.0 vs 1.5 kcal mol-1).
As noted previously,46 the performance of the recent func-
tionals on hydrocarbon reaction energies (H, R, C, and
IDHC) is significantly better than that of the standard ones
(MAD of 3.8 and 12.9 kcal mol-1, respectively), although
chemical accuracy has yet to be obtained.

The MADs for the best performing variant of the correc-
tion (-dDXDM i.e., iterative Hirshfeld weights and terms up

to C10) are shown in Figure 2a. Note that (un)corrected
B2LYP (0.47 B88 + 0.53 HF + 0.73 LYP, same functional
contributions as in B2PLYP75) is not intended for “real
world” applications but provides insight into the good
performance of B2PLYP-D. Overall, dDXDM largely im-
proves the parent functionals, yielding low errors. Over the
seven corrected functionals tested, the averaged total MAD
(TMAD) is 0.9 kcal mol-1 (min 0.74 (PBE0-dDXDM); max
1.11 (BLYP-dDXDM)), significantly lower than for the
recent M06-2X, B97-D, and B2PLYP-D (1.5 kcal mol-1,
min 1.06 (B2PLYP-D)). The correction improves the IDHC
energies for both PBE and HF (MAD of 12.3 and 22.2 kcal
mol-1, respectively) to a respectable mean absolute deviation
of 1.6 kcal mol-1. B2LYP- and BHHLYP-dDXDM give
remarkably low MADs of 0.6 and 0.9 kcal mol-1 (B2PLYP-D
gives 1.6 kcal mol-1), while BLYP-dDXDM performs less
convincingly (MAD of 3.6 kcal mol-1) for this set. The
robustness and range of applicability of dDXDM combined
with various functionals is further illustrated by the consistent
improvement of alkane BSE reaction energies and weak
intermolecular interactions: averaged MADs for the HRC,
P76 (relative conformational energies of small peptides), and
S22 (intermolecular weak interactions) sets are 1.4, 0.7, and
0.9 kcal mol-1, respectively, corresponding to roughly 10,
50, and 30% of the deviations of the uncorrected values (12.9,
1.3, and 3.2 kcal mol-1). The 0.5 kcal mol-1 averaged MAD
for the pure inorganic test set (EX3; vs an uncorrected 3.9
kcal mol-1) is also rewarding. It is worthwhile noting that
the proposed corrections do not affect significantly properties
such as atomization energies and barrier heights (see the
Supporting Information).

PBE0-dDXDM is the most accurate combination presented
herein (TMAD of 0.74 kcal mol-1) but dDXDM with the
popular B3LYP functional is, as well, very satisfactory
(TMAD of 0.82 kcal mol-1). The best corrected GGA, PBE-
dDXDM, performs nearly as well as PBE0-dDXDM with a
TMAD of 0.84 kcal mol-1. Such a performance is of interest
for applications to large systems (or even bulk materials),
where hybrid functionals are computationally considerably
more demanding. Nevertheless, hybrid functionals, which
generally outperform the GGA in many thermochemistry
applications, provide the best dDXDM corrected results.

Classical Hirshfeld Partitioning and C6-Only
Dispersion Corrections. The reliability of simpler variants
of the correction, i.e., including only terms up to C6 or using
Hirshfeld classical instead of iterative weights, has also been
evaluated. The use of the classical Hirshfeld weights is of
practical interest, as it is significantly less computationally
demanding than the iterative version. In the BJ formalism,
C8/R-8 and C10/R-10 terms are relatively inexpensive but
have non-negligible contributions to the interaction energy
at short internuclear separations.49,58,102 A comparison with
the C6 truncation is thus of theoretical relevance.

Figure 2a (dDXDM) and b (dDXDM6) reveal that the BSE
of alkane cages, the IDHC, and the EX3 test sets are most
affected by the truncation. Whereas the first two sets are
characterized by a high number of short-range interactions,
the effect in the EX3 interaction energies is more difficult

E(CCSD(T)/CBS) ) df-MP2/CBS(AVDZ,AVTZ) +
∆CCSD(T*)-F12b/AVDZ
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to interpret. Overall, only the combinations of dDXDM6 with
PBE, PBE0, and BHHLYP match the dDXDM results
closely.

For the higher-order multipole expansion, classical Hir-
shfeld weights result in larger errors than the iterative
procedure (Figure 3). With an increase in averaged MAD
from 0.9 (dDXDM) to 1.5 kcal mol-1 (dDXDMc), the S22
test set is the most representative of the classical partitioning

limitation (underestimation of ionic characters).137 As an
example, the C6-(PBE) O · · ·O/H · · ·H dispersion coefficients
for the water dimer are 12.6/2.5 with classical Hirshfeld
weights, compared to 21.2/0.9 with the iterative procedure.
The key difference arises from the ionic bond index
appearing in eq 13. The index for the O · · ·O atom pair is
0.014 while using atomic densities (classical partitioning)
and 0.15 after the iterative scheme. This difference translates

Figure 1. Performance for commonly used functionals: Mean absolute deviations for binding energies for noncovalent complexes
(S22 and EX3); relative conformational energies of five small peptides (P76); and bond separation energies over hydrocarbon
chains (H), rings (R), and cages (C) and for reaction energies of the test set “intramolecular dispersion interactions” (IDHC)
using the cc-pVTZ basis set.

Figure 2. Performance for the iterative Hirshfeld-distributed dispersion coefficients up to C10 (a) and up to C6 (b): Mean absolute
deviations for binding energies for noncovalent complexes (S22 and EX3); relative conformational energies of five small peptides
(P76); and bond separation energies over hydrocarbon chains (H), rings (R), and cages (C) and for reaction energies of the test
set “intramolecular dispersion interactions” (IDHC) using the cc-pVTZ basis set. B2PLYP-D serves as an “internal standard”.
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into a strong/weak damping when iterative/classical Hirshfeld
charges are used. As DFT methods correctly account for
interaction energy between strongly polarized fragments (e.g.,
H bonds), higher iterative Hirshfeld charges (i.e., strong
damping, small corrections) are better suited. In contrast, HF
that systematically underestimates electrostatic interactions
benefits from the larger dispersion corrections associated with
the use of classical Hirshfeld weights. It is thus not surprising
that Hartree-Fock gives its best results when combined with
dDXDMc (TMAD of 1.3 kcal mol-1, MAD(S22) ) 1.18
kcal mol-1) and that HF-dDXDM is the least accurate variant
(TMAD of 2.01 kcal mol-1, MAD(S22) ) 2.32 kcal mol-1).
HF-dDXDMc could thus be a general alternative to the recent
refined HF-D approach, which has been proven to be
successful for intermolecular interactions.48

For the reasons given above, the classical Hirshfeld
partitioning performs better on the S22 set when terms only
up to C6 are included (see Figure 3b): excluding higher
dispersion corrections attenuates the overcorrections of polar
interactions. With TMADs below 1.0 kcal mol-1, B3LYP-
dDXDM6c and BHHLYP-dDXDM6c represent attractive
alternatives to avoid the iterative scheme. As for the GGAs,
PBE-dDXDM6c and BP86-dDXDMc are the most consistent
over the seven sets tested (TMAD of 1.12 and 1.14 kcal
mol-1, respectively). Comparisons of B2LYP-dDXDM6(c)

to B2PLYP-D and B2LYP-dDXDM demonstrate that the C6/
R6-dispersion terms are not sufficient to correct B2LYP errors
in the EX3 and IDHC sets. Including either higher dispersion
terms semiempirically as in B2LYP-dDXDM(c) or adding
a fraction of PT2 energy to give B2PLYP-D is crucial for
these two test sets. Apart from those, B2LYP-dDXDM6(c)
performs similarly to B2PLYP-D, even improving alkane
BSE energies. Corrected B2LYP and B3LYP also tend to
perform the same. The similarity relies on the fitting
procedure used to determine the empirical parameters of both,
B3LYP and B2PLYP.

Interaction Energy Profiles. Figure 4 shows potential
energy curves of complexes typically underbound at the
(hybrid-)GGA levels (stacked benzene dimer (a), propane
dimer (b), and the benzene complex with water (c) and
hydrogen sulfide (d)). The hybrid-meta-GGA M06-2X offers
substantial improvement for the benzene-H2S complex but
under- and overbinds the stacked benzene dimer conforma-
tion and the water-benzene complex, respectively. PBE-
dDXDM,B3LYP-dDXDM,and, toa lesserextent,B2PLYP-D
overbind all four complexes, while the dDXDM6c correc-
tions provide significantly better results for these weakly
bound complexes (Vide infra). Since B2PLYP-D suffers
greatly from basis set superposition and incompleteness

Figure 3. Performance for the classical Hirshfeld distributed dispersion coefficients up to C10 (a) and up to C6 (b): Mean absolute
deviations for binding energies for noncovalent complexes (S22 and EX3); relative conformational energies of five small peptides
(P76); and bond separation energies over hydrocarbon chains (H), rings (R), and cages (C) and for reaction energies of the test
set “intramolecular dispersion interactions” (IDHC) using the cc-pVTZ basis. B2PLYP-D serves as an “internal standard”.
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errors,75,76 both B2PLYP-D/aug-cc-pVTZ and B2PLYP-D/
def-QZVPP energy curves are reported for the propane
dimer. As expected, the accuracy of the energy curve is
drastically improved with the large def-QZVPP basis set.

The MAD and mean absolute relative deviation over all
67 points associated with the four potential energy curves
are given in Table 1. Figure 5, on the other hand, displays
the error in the propane dimer interaction energy. With the
exception of PBE-dDXDM, all dispersion-corrected methods
have MADs between 0.4 and 0.5 kcal mol-1. PBE-
dDXDM6c is the most accurate combination (MAD 0.39 kcal
mol-1). The distinctive performance of the current correc-
tions is further emphasized by the remarkably low error in

both the short (i.e., repulsive wall) and long range of Figure
5. Overall, the error range spans between 55% (B3LYP-
dDXDM) and 70% (PBE-dDXDM), thereby outperforming
M06-2X (75%) and B2PLYP-D (80%) (Table 1).

As discussed earlier, DFT binding energies of the rare-
gas dimers cannot be easily corrected by a dispersion
correction. Nevertheless, those archetypical systems represent

Figure 4. Interaction energy (∆E) profiles for the (a) stacked benzene dimer, (b) propane dimer, (c) benzene-H2O complex,
and (d) benzene-H2S complex. CCSD(T) references for a and d are taken from ref 116, while b and d are computed (see Test
Sets). If not stated otherwise, density functional computations were performed with the aug-cc-pVTZ basis set.

Table 1. MAD (in kcal mol-1) and Mean Absolute Relative
Deviation (in percent) over All 67 Points of Figure 4

MAD mean absolute relative deviation

B3LYP 2.67 357.2
PBE 1.69 222.0
B3LYP-dDXDM6c 0.45 56.8
PBE-dDXDM6c 0.39 58.6
B3LYP-dDXDM 0.49 54.9
PBE-dDXDM 0.59 69.9
B2PLYP-D 0.47 81.8
M06-2X 0.41 75.2

Figure 5. Errors (with respect to estimated CCSD(T)/CBS)
in DFT interaction energies for the propane dimer.

A Density-Based Dispersion Correction J. Chem. Theory Comput., Vol. 6, No. 7, 2010 1997



a challenging set for testing the robustness of our correction,
and their interaction energy profiles (i.e., helium, neon, and
argon homodimers) are, for this reason, given in the
Supporting Information (Figure S3). It can be seen that,
whereas PBE overbinds after correction and is thus less
satisfactory for rare-gas dimers, our corrected B3LYP and HF
interaction energies compare well with M06-2X or B2PLYP-
D, two other generally well performing approximations.

Conclusions

We have presented an improved scheme for computing
system-dependent dispersion coefficients and damping pa-
rameters for a correction to density functional theory. The
dispersion coefficients are evaluated exploiting the XDM
formalism of Becke and Johnson37,55-59 and are distributed
among the atoms according to a(n) (iterative)63 Hirshfeld79

partitioning. The universal damping function of Tang and
Toennies77 is used with a damping factor depending on
Hirshfeld (overlap) populations and charges as well as on
two adjustable parameters. In addition to the fitted parameters
and the density-based information, only free atomic polar-
izabilities and ionization energies are needed. Hence, the
dDXDM correction is applicable to all elements of the
periodic table and is easily combined with every density
functional. This flexibility permits choosing a functional on
the basis of its performance for properties not dominated by
weak interactions (e.g., spin states and barrier heights), while
still correcting any failures for weak interactions. The
analysis of 30 (dispersion corrected) density functionals on
145 systems reveals that dDXDM(6c) largely reduces the
error of the parent functionals for both inter- and intramo-
lecular interactions. PBE0-dDXDM and PBE-dDXDM are
the best performing hybrid-GGA and GGA, respectively,
outperforming M06-2X and B2PLYP-D. The use of B3LYP-
dDXDM is recommended as well, and it gives the second
best overall performance.
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Abstract: Three-dimensional models of the quantum mechanical current density, induced in
the electron cloud of the cyclopropane molecule by a uniform magnetic field applied either along
the C3 or the C2 symmetry axes (indicated by B| and B⊥, respectively), have been constructed
via extended calculations. These models of near Hartree-Fock quality, previously shown to
provide a good agreement between computed and observed values of magnetic tensors, have
been used to interpret the magnitude of the diagonal components of susceptibility (�), nuclear
shielding of carbon (σC) and hydrogen (σH), and shielding at the center of mass (σCM). The
source of the exceptionally large in-plane component σ⊥

CM, dominating the anomalous average
σav

CM, is shown to be a strong delocalized current flowing around the methylene moieties and
the noncyclic CH2-CH2 fragment. The total current strength for a magnetic field applied in the
direction of a C2 symmetry axis is 15.7 nA/T, approximately 1.5 times larger than that calculated
for B|. The largest component of the susceptibility is instead the out-of-plane �|, which depends
on the intensity of the σ-electron currents and on the entire area enclosed within the loops that
they form about the C3 axis, all over its length. In a magnetic field perpendicular to the plane of
the carbon atoms, both H and C nuclei sit inside diatropic whirlpools, flowing within the sp3

hybrid orbital which form the C-H bonds and extending for several bohrs above and below the
σh plane. The average values and the anisotropy of carbon and proton shieldings are strongly
biased by the diamagnetic shift of the out-of-plane tensor components partially determined by
these vortices. The current density model of cyclopropane is revised according to these findings.

1. Introduction

The peculiar electronic structure of cyclopropane has prompted
many investigations of its magnetic properties.1-11 Indeed,

starting from the observation that in polycyclic aromatic
hydrocarbons the additive rules for the average magnetiz-
ability �av ) (1/3)(�xx + �yy + �zz) fail, the nonadditive part
of the magnetizability tensor �nonloc has been considered an
indicator of electron delocalization.12 Actually, as the
individual components of � cannot be measured for mol-
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ecules in disordered phase, delocalization was more often
discussed in terms of �av and of the magnetic anisotropy ∆�
) �cc - (1/2)(�aa + �bb) in the system of (a, b, c) principal
axes.12

With the advent of NMR spectroscopy, the most used
delocalization probe in polycyclics became the chemical shift
δI ) σav

ref - σav
I with respect to a reference compound, where

σav
I ) (1/3)(σxx

I + σyy
I + σzz

I ) is the average magnetic shielding
of nucleus I. Thanks to the development of powerful ab initio
codes, accurate theoretical values of nuclear magnetic
shielding and chemical shift are easily available, and the
negative of the chemical shift of a ghost atom placed in a
suitably defined “ring center”, referred to as nucleus inde-
pendent chemical shift (NICS), has also been widely used
as a measure of magnetotropicity in connection with local,
or nonlocal, effects.13,14 Arguably, if the largest component
�cc of a magnetic tensor � ≡ �, σI has a dominant nonlocal
component, one expects 3�av

nonloc ≈ �cc
nonloc ≈ ∆�nonloc. For

molecules satisfying this condition, isotropic values and
anisotropies should lead to analogous conclusions concerning
the amount of electron delocalization on the magnetic
criterion.

In 1952 the large �av of cyclopropane was first interpreted
in terms of a ring current model (RCM),1 widely discussed
by other authors.3,6-9,11 RCMs have also been examined to
rationalize the upfield proton chemical shifts of cyclopropane
and its derivatives.2,4

According to the Biot-Savart law (BSL), the π-ring
current induced by an external magnetic field Bz at right
angles to the plane of benzene reinforces the applied field at
the site of the protons, which lie beyond the ring current
loop, thus causing a paramagnetic shift of the out-of-plane
component σzz

H of the proton shielding. On the other hand, a
ring current would diminish the applied Bz at the protons of
cyclopropane, which lie inside the circuit, and thus increases
σzz

H.2-4,15

A “ring current involving cyclic σ-electron delocalization
among the three carbon atoms” is explicitly referred to by
Dale Poulter et al.,7 claiming that it would qualitatively
explain the anisotropy of a cyclopropyl group discussed by
several workers.2,16-18 The model chosen by Dale Poulter
et al. “considers the effect of electrons precessing in a circle
which circumscribes the ring”, with radius 0.88 Å.7 The
interpretation of cyclopropane magnetic response in term of
ring currents was strongly advocated by Dewar,15 who
proposed the much discussed19 and still debated concept of
σ-aromaticity.20

Benson and Flygare5 found it surprising that the experi-
mental value of �av ) -39.2 × 10-6 erg G-2 mol-1 in
cyclopropane is considerably larger than the corresponding
value -28.6 × 10-6 in cyclopropene, whereas the estimated
∆� ) -10.0 × 10-6 erg G-2 mol-1 in cyclopropane is
significantly smaller than ∆� ) -17.0 ( 0.5 × 10-6 in
cyclopropene.5 Therefore, �av and ∆� would seem to yield
opposite orders for the amount of delocalization in these
molecules.

Moreover, the constitutive corrections for rings, -3.2 and
-4.1 ppm erg G-2 mol-1 estimated by these authors for the
cyclopropane and cyclopropene, respectively,5 are ≈8.2%

and ≈14% of the experimental average susceptibility. From
the atomic Pascal terms �C ) -6.00 and �H ) -2.93,
recently reported by Bain and Berry,21 one obtains for
cyclopropane �av

nonloc ) -39.2 -3 × (-6.00) - 6 × (-2.93)
) -3.6 ppm erg G-2 mol-1, quite close to the Benson and
Flygare constitutive correction for rings.5 From the experi-
mental anisotropy of cyclopropane10 ∆� ) -11.6 ppm erg
G-2 mol-1, assuming the contribution ∆�loc ) 1.6 ( 0.8
for an sp3 carbon,22,23 one obtains ∆�nonloc ) -16.4 ppm
erg G-2 mol-1. Therefore, in cyclopropane 3�av

nonloc differs
from ∆�nonloc by 5.6 cgs ppm units, an amount well above
experimental errors, which could be interpreted in terms of
electron delocalization enhancing �| but also affecting the
in-plane component �⊥.

The nonlocal contributions to the out- and in-plane
components of the susceptibility tensor of cyclopropane, in
ppm erg G-2 mol-1, are easily evaluated from these data:

The estimate for the latter is difficult to understand. However,
it can reasonably be expected that a positive �⊥

nonloc and the
large value of �av

nonloc are not the only anomalies in the
magnetic properties of cyclopropane. The in-plane compo-
nents of carbon and proton shielding may also be biased by
electron delocalization. This appears even more plausible for
the huge in-plane shielding recently evaluated for a probe
in the center of the cyclopropane ring.24

A definite answer to these points can be obtained by
quantum chemical calculations. In 1983 Lazzeretti and
Zanasi25 reported the first ab initio model of magnetically
induced current density for cyclopropane in a field B ) Bze3

orthogonal to the molecular plane, adopting a coupled
Hartree-Fock (CHF) common origin (CO) procedure.
Although that model does not provide a correct description
of electron flow in either the vicinity of the carbon nuclei or
about the midpoint of the C-C bonds, it showed two
unexpected important features: (i) a central paratropic vortex
and (ii) three local diatropic vortices circulating about the C
nuclei.

As the model gave no clear evidence of a ring current,
the authors attributed the large σzz

H value to the (upfield)
diamagnetic shift caused by (ii). Subsequent ab initio
calculations have unambiguously documented a delocalized
current,26,24,27 although its contribution to the magnetic
properties of cyclopropane has not yet been quantified.

An RCM of cyclopropane providing an interpretation of
its seemingly anomalous magnetic susceptibility, reported
by Bader and Keith,26 is reviewed in Section 1 of the
Supporting Information. A more recent model proposed by
Fowler, Baker, and Lillington (FBL),19 consistent with the
literature attribution of σ-aromaticity to C3H6,11,28,29,15,30-32

is critically revised by methods outlined in Section 4, where
correct criteria for vortex-saddle merging are outlined, see
also Section 2 of the Supporting Information.

�|
nonloc ) �av

nonloc + 2
3

∆�nonloc ) -14.5

�⊥
nonloc ) �av

nonloc - 1
3

∆�nonloc ) 1.9
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Recent calculations were reported by Fliegl et al., who
concluded that ring currents in C3H6 are not negligible
because the total current strength (evaluated by numerical
integration of the net current JB over a half-plane through
the midpoint of a C-C bond and normal to it) is 10.0 nA/T,
which is only 1.8 nA/T smaller than for benzene.27 These
authors claim that the strongest diatropic current flow appears
in the molecular plane for both cyclopropane and benzene
molecules.33 Accordingly, allowing for the ring-current
criterion of aromaticity, cyclopropane would be almost as
aromatic as benzene, even though it is fully saturated.27 The
results of Fliegl et al.27 are discussed in Section 6.

Allowing for the present state of affairs, this paper is
primarily meant to complete the JB current density model
of a previous article24 at the Hartree-Fock level by (i)
investigating the main features of the JB vector field for a
magnetic field B⊥ parallel to a C2 symmetry axis, (ii)
analyzing the isolated critical points of JB and the related
phase portraits, in terms of local effects, (iii) interpreting
the difference between 3�av

nonloc and ∆�nonloc, and (iv)
rationalizing the different contributions to the components
of magnetic tensors. Points (i) and (iii) will at once show
that the huge average NICS of cyclopropane, sometimes
considered an indicator of super σ-aromaticity,11,28,29,34,35

is instead an unreliable quantifier of magnetotropicity. These
results add further evidence against the idea that NICS might
really be used to assess aromaticity, the σ-aromatic paradigm
of cyclopropane in particular.

2. Quantum Mechanical Current Density
Models

The most interesting characteristics of a JB field are observed
in the proximity of its stagnation points (SP) at which the
modulus |JB| vanishes. In the neighborhood of an SP with
position r0 the field is described by a truncated Taylor series,

Within the linear approximation, an exhaustive compilation
of all possible phase portraits about an SP in three-
dimensional flow has been reported by Reyn,36 in connection
with the canonical forms of the 3 × 3 Jacobian matrix
∇RJγ

B(r0). Since the local regime depends on the eigenvalues
of this matrix, SPs are classified in terms of an Euler (rank,
signature) label.26,37-43 The rank r is the number of
nonvanishing eigenvalues of the Jacobian matrix and the
signature s is the excess of eigenvalues with positive over
negative real part. An SP is also classified in terms of its
topological index ι.44-46 SPs of type (3, (1) are called
isolated. The corresponding phase portrait is that of saddle
node,36 if all the eigenvalues are real, or a focus, if two
eigenvalues are complex conjugate. In the latter case, the
local trajectories spiral inward or outward in the direction
of the third (real) eigenvalue.

Continuous, open or closed, paths of (2,0) points are
referred to as stagnation lines (SL), consisting of either
Vortex, also referred to as center points (index ι ) +1, two

nonvanishing complex conjugated eigenvalues), or saddle
points (index ι ) -1, two nonvanishing real eigenvalues
with the same magnitude and opposite sign). Some examples
have previously been reported.24,47,26,48,41,49-53

The three-dimensional structure of a current density vector
field is described by a stagnation graph (SG), which collects
all isolated SPs and SLs. A (2,0) SL may branch out at (0,0)
critical points. The Gomes theorem provides an index
conservation constraint, ι0 ) Σk)1

m ιk, for an SL with index ι0

splitting into m new lines at a branching point.38-40,54

3. RCM of Cyclopropane in a Magnetic Field
Perpendicular to the Plane of Carbon Nuclei

The SG for cyclopropane in a magnetic field B| perpendicular
to the plane of the carbon nuclei has previously been
constructed employing the method of continuous transforma-
tion of the origin of the current density-diamagnetic zero
(CTOCD-DZ).24 As all the CTOCD variants of the current
density are invariant in a translation of the origin of the
gauge,56 this CTOCD SG is also invariant. It illustrates in a
compact way the main features of the induced current density
vector field with

magnetic symmetry37 (denoting time-inversion by T) observ-
able in Figure 1: a central paratropic vortex, i.e., a whirlpool
circulating about the red SL coincident with the C3 symmetry
axis and parallel to B|, three diatropic vortices, sustained by
the carbon sp3 hybrid orbitals forming the C-H bonds, and
a peripheral flow of “ring currents”, with the shape of a
topological torus. Each of the three green SLs passes through
a C nucleus and both C and H nuclei sit inside the diatropic
vortices flowing around. The SGs obtained via other calcula-
tions of increasing accuracy are reported as Supporting
Information to document convergence to the Hartree-Fock
limit.

A major difference from other compounds usually regarded
as π-aromatic on the magnetic criterion48 is the absence of
a spatial vortex about the center of C-C bonds,26 the green
SL of a diatropic vortex being replaced by a blue saddle SL
extending up to a pair of branching points distant more than
10 bohr from the center of the molecule.24,26 Each saddle
SL passes between two green isolated (3, (1) SPs on the
plane of the C nuclei, at a short distance from one another.
Two more pairs of green SPs, symmetrically placed above
and below the molecular plane, are also observed in the
region of each C-C bond. All of them belong to a set of
foci (SPs characterized by one real and two complex
conjugated eigenvalues of the Jacobian matrix, see Section
2). They are connected by diatropic streamlines spiralling
about them, above and below the σh symmetry plane.
Asymptotic lines connect the 18 foci to the 6 saddle nodes,
see Figure 2.

Since crossing of the σh plane is forbidden by magnetic
symmetry,37 the trajectories in the neighborhood of the foci
about the midpoint of C-C bonds are limit cycles, which
may incorrectly be interpreted as vortices in current density
maps on the molecular plane, see Figure 1of the Supporting

Jγ
B(r) ) (rR - r0R)[∇RJγ

B]r)r0
+

1
2

(rR - r0R)(r� - r0�)[∇R∇�Jγ
B]r)r0

+ ... (1)

D3h(C3h) ≡ {E 2C3 3TC2 σh 2S3 3Tσυ} ≡ 6m2
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Information. Low-resolution current density maps displaying
only the planar regime on σh are insufficient to visualize the
local regime. The analysis of the eigenvalues of the Jacobian
matrix, eq 1, and a blow-up of this figure are required to
reveal the presence of the foci, see the Supporting Informa-
tion of a previous paper.24

One could hardly find a better proof that spatial RCMs,
illustrated in Figures 1 and 2, are needed to understand the
magnetic response of cyclopropane.55

4. Merging of Vortex and Saddle Flow in
Cyclopropane

FBL proposed a model merging three diatropic bond vortices
to interpret the diatropic ring current and the central
paratropic vortex observed in their current density maps for
cyclopropane.19 In those maps important patterns were not

shown, e.g., the strong C-centered circulations and the fine
structure of the current density field JB, whose most striking
feature is probably the saddlesrather than vortexscharacter
of the stagnation points close to the midpoints of the C-C
bonds, as already reported in previous papers.26,24 Thus a
different model is required to get a qualitatively correct
representation of JB of cyclopropane, allowing for the
stagnation graph of Figure 1 and the pseudostagnation graph
of Figure 3. In the latter, the isolated (3, (1) SPs are
connected by continuous paths of points at which the out-
of-plane Jz

B * 0, whereas the modulus of the in-plane current
Jxy

B vanishes. For that reason these paths are called pseu-
dostagnation lines.

Starting from examination of JB far from the molecular
plane in Figure 1, the set of one central SL and six
pseudostagnation lines can be interpreted in terms of a basic

Figure 1. Spatial ring-current model of cyclopropane in a magnetic field perpendicular to the plane of the carbon nuclei,
superimposed to the stagnation graph. A paratropic axial vortex circulates about the C3 symmetry axis. Diatropic vortices, sustained
by the carbon sp3 hybrid orbitals forming the C-H bonds, are embedded within a delocalized peripheral flow (which can be
described as a σ-ring current), having higher intensity |JB| in a domain with the shape of a topological torus. |JB| goes smoothly
to 0 at ∞. The modulus of the current vanishes along the stagnation lines in the central region of each vortex. These continuous
open lines are represented by a sequence of green (red) dots for diatropic (paratropic) regime. Saddle stagnation lines crossing
the σh plane slightly outside the midpoint of a C-C bond are blue. Isolated (3, (1) foci (saddle nodes) are indicated in green
(blue).55
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center-saddle-center pattern roughly above a C-C bond;
that pattern is consistent with the summation of two separated
diatropic C-centered vortices.57 Nonetheless, further inves-
tigation requires the analysis of the isolated SPs.

The 6 foci and 6 saddle nodes on the C-plane as well as
the 12 out-of-plane foci have a three-dimensional nature; as
all of the eigenvalues of their Jacobian are nonzero, they
should be analyzed in terms of genuine three-dimensional
fields, which excludes the possibility of taking sums of purely
rotational fields as in a previous paper.57 However, an
analogous analysis is possible by formally setting Jz

B ) 0
and considering only the field over the xy plane, Jxy

B ) Jx
Be1

+ Jy
Be2, which is sufficient to determine the magnetic

properties, although it has nonzero divergence due to the
cancellation of the Jz

B component.
The isolated (3, (1) SPs and the (2,0) saddle SLs of the

JB field are also present in the Jxy
B field. However, in the

pseudostagnation graph for the latter in Figure 3, the isolated
single points are connected by six closed pseudostagnation
loops, symmetrically placed on both sides of each true saddle
line intersecting σh about the midpoint of a C-C bond, see
also Figure 1. The pseudostagnation loops lie inside domains
bounded by asymptotic streamlines shown in Figure 2. In
the following we will assume, without loss of accuracy, that
the (3, (1) saddle nodes (foci) can be treated as planar
saddles (centers), which is consistent with the fact that the
small local Jz

B component is neglected. We have accordingly
found that each of the three pairs of stagnation loops of Jxy

B

in Figure 3 can be interpreted in terms of three diatropic

circulations: two of them being centered on the C atoms and
one on the C-C bond.

To obtain this result, we have considered the summation
of three purely rotational two-dimensional diatropic vortices
with (x, y) centers in (R1,0), (R2,0) and (R3,0) and the general
expression JB(i) ) JB(i)(ri)θ̂i, where the JB(i)(ri) functions
vanish only at 0 and ∞, i ) 1, 2, and 3, and ri and θi are
the polar coordinates with respect to the i-th center. The three
components Jx

B(i) have the same sign above and below the x
direction, where they vanish. Therefore, stagnation points
can only be found on the x axis if the three components Jy

B(i)

cancel out. Assuming real (imaginary) eigenvalues for the
two-dimensional Jacobian leads to the conclusion that a
stagnation point will be a saddle (vortex) if

is negative (positive). This condition reduces to that previ-
ously analyzed for two circulations if |Jθ

B(2)| ) 0.57

The shape of the Jθ
B(i) functions is clearly a crucial factor

for determining the overall pattern. The ab initio current
density can in general be expressed as a sum of Gaussian
terms.57 However, for the sake of simplicity, we will make
use here of a single exponential form. The form chosen is
Jθ

B(i) ) IiNiri
2 exp(-airi

2), where the shape of the function is
determined by two parameters, ai and Ii, and the normaliza-
tion constant is Ni ) 1/∫0

∞ri
2 exp(-airi

2)dri. We have first
considered the summation of three identical circulations of

Figure 2. Spiral flow connecting the 18 isolated (3, (1) foci (in green) and the 6 isolated (3, (1) saddle nodes (in blue, marked
by a cross) in the C-C bond regions of cyclopropane in a magnetic field B|.

∂ |Jθ
B(1)|

∂r1
-

∂ |Jθ
B(2)|

∂r1
-

∂ |Jθ
B(3)|

∂r1
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unitary intensity I placed at -0.75, 0, and 0.75 Å on the x
axis. Figure 4 shows that, on changing the common a
parameter, the number and type of the stagnation points
changes. Starting from a single center for very broad
functions (small a) and sharpening the Jθ

B(i) functions, one
gets three stagnation points, corresponding to two circulations
separated by a saddle. For still sharper functions, seven
stagnation points appear: four circulations separated by three
saddles, as found on the molecular plane of cyclopropane.

Setting now a1 ) a2 ) a3 ) 10 Å-2, a value at which the
7 stagnation points occur, we have investigated the behavior
of the pseudostagnation lines on moving further from the
molecular plane. To simulate the fact that C-centered
circulations, sustained by the C-H electron density, extend
higher than the bond-centered circulations, we varied the
intensity of the central flow. Figure 5 displays the position
and the nature of the stagnation points as the intensity I2 is
changed from 0 to 2I1. The vertical axis has been reversed
to make easier the comparison with Figure 3. It can be seen
that, for a low intensity of the central circulation, the current
pattern is substantially that expected for only two separated
homotropic circulations.

However when the strength of the central flow is compa-
rable with that of the circulations nearby, the pattern of seven
stagnation point starts to appear. Upon further increase, the
central circulation dominates the current pattern, although
the presence of the circulations at its sides can still be
predicted from the three center-saddle-center stagnation

points close to x ) 0, rather than a single center. The upper
part of Figure 5, with the disappearance of four stagnation
points, nicely parallels the pseudostagnation graph of the Jxy

B

field displayed in Figure 3.

Figure 3. Pseudostagnation graph of the planar Jxy
B field. The

closed loops are continuous paths of points at which the
modulus |Jxy

B | ) 0. They contain (3, (1) isolated points,
observed also in Figures 1 and 2, where the total current
density |JB| vanishes. Green (blue) dots correspond to foci
(saddle nodes). Magenta (cyan) paths indicate that spiral
(saddle) flow is observed on Jxy

B cross-sectional streamline
plots parallel to σh. The seven SLs characterizing the JB field,
see Figure 1, have been omitted for clarity.

Figure 4. Nature and location of the stagnation points of the
Jxy

B field obtained by summing three collinear diatropic vortices
of equal shape and intensity, placed at x ) -0.75, 0, and
0.75 Å. The computations were repeated for different values
of the exponent a (see text). Centers and saddles are
indicated by · and ×, respectively.

Figure 5. Nature and location of the stagnation points of
the Jxy

B field obtained by summing three collinear diatropic
vortices located, as in Figure 4, and with a ) 10 Å-2. The
computations were repeated for different values of the I2/I1
ratio. Centers and saddles are indicated by · and ×,
respectively.
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5. Magnetic Response Tensors of
Cyclopropane

Attempts are usually made to infer molecular current density
models by experimental values of magnetic susceptibility12

and NMR chemical shift58 as well as nonmeasurable
NICS.13,14 However, it is not possible, in general, to construct
a plausible global model of JB field only allowing for a few
numbers. Just the other way around, one can reasonably
argue that a falsifiable current density model should be
developed in advance. After any possible tests on its ability
to rationalize all available data, such a model is accepted or
rejected. Improved versions can later be sought, still requiring
their falsifiability.

Therefore, we find it expedient to start by defining the
magnetic properties of a molecule in terms of the quantum
mechanical induced current density. When the subobserV-
able59 JB is available, one can treat it as a completely
classical quantity, forgetting about the quantum mechanical
procedure used to obtain it and rely on the law of classical
electrodynamics for the interpretation of magnetic response.

Denoting by εR�γ the Levi-Civita unit tensor and using
the implicit summation rule for repeated suffixes according
to tensor notation, the orbital magnetic dipole moment
induced in the n electrons of a molecule by an external
magnetic field with flux density B is evaluated by the Ampere
law assuming linear response:

The magnetic field induced at an observation point R is
determined by the Biot-Savart law:

Introducing the current density tensor60 via the derivative:

the magnetizability tensor is evaluated by

and the shielding tensor at R is obtained as

If R coincides with the position RI of the I-th nucleus,
carrying an intrinsic magnetic dipole mIR, the quantity σR�(RI)
≡ σR�

I defines the magnetic shielding tensor of that nucleus.
The integrand function is interpreted as a shielding density
second-rank tensor,61,62 for instance

is the zz component of the shielding density for nucleus I at
a point r in a given domain.

This function is usually plotted over a plane, as in Figures
11 and 12, to analyze shielding/deshielding mechanisms
operating in different basins of the current density field via
a few prescriptions illustrating the effect of JB at point r on
Σzz

I (r).49 Isoshielding density surfaces can also be visualized,
see Figures 7 and 8. Although all the planes perpendicular
to a given direction, e.g., z, provide an infinitesimal “slice”
contribution to the total induced field (eq 6), in practice one
does not need to examine the density (eq 7) over a large
number of plot planes. Usually only a few are taken into
account, those from which sizable contributions are expected
to arise, e.g., planes of nearly maximum charge distribution
can be sampled.

It is important to recall that the induced orbital moment
(eq 2) and the magnetic susceptibility (eq 5) are global
properties, proportional to the area enclosed by a wide
domain of induced current loops,63 whereas the magnetic
shielding (eq 6) at R is mainly determined by the flow in a
small region about the probe, as it depends on the second
inverse power of the distance |r -R| from the observation
point. Therefore the components of the magnetic tensors �R�,
σR�

I , and possibly NICS, provide different, complementary
pieces of information.

Near Hartree-Fock CTOCD estimates of the magnetic
susceptibility �R� and nuclear shieldings σR�

I of cyclopropane
have recently been reported using an extended (13s10p5d2f/
8s4p1d) basis set containing 435 primitive Gaussian func-
tions. Calculations were carried out by the SYSMO computer

∆〈mR〉 ) �R�B� ) -1
2
εR�γ ∫ J�

B(r)rγd3r (2)

∆〈BR
n(R)〉 ) -σR�(R)B� )

µ0

4π
εR�γ ∫ J�

B(r)
Rγ - rγ

|R - r|3
d3r

(3)

IR
B�(r) ) ∂

∂B�
JR

B(r) (4)

�Rδ ) 1
2
εR�γ ∫ r�Iγ

Bδ(r)d3r (5)

σRδ(R) ) -
µ0

4π
εR�γ ∫ r� - R�

|r - R|3
Iγ

Bδ(r)d3r (6)

Σzz
I (r) ) -

µ0

4π
εz�γ

r� - RI�

|r - RI|
3
Iγ

Bz(r) (7)

Figure 6. The strong “ring current” flowing around the
CH2-CH2 fragment of the cyclopropane molecule in a mag-
netic field of 1 au, applied along the C2 ≡ x symmetry axis.
Only current densities with |JB| between 0.05 (blue arrows)
and 0.1 au (red arrows) are plotted. The maximum modulus
is ≈0.11 au. The gray surfaces represent isoshielding density
regions Σxx

I (r) ) 0.0 au, for any ghost atom I along the C2

axis. Vortical and saddle stagnation lines lie on these surfaces,
see also Figure 7.
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code.64 The high quality of the calculations was assessed
by a number of criteria.24 It should be emphasized that the
magnetic tensors of cyclopropane calculated by CTOCD
procedures are invariant in a gauge translation.60,65,37 The
RCM developed in the present paper is required to explain
sign and magnitude of the diagonal components of these
tensors and to elucidate the source of their strong anisotropy
by applying a few simple rules outlined hereafter.

According to eqs 2-6, the electronic magnetic moment
∆〈mR〉 and the magnetic field ∆〈Bz

n(R)〉 induced at position
R by an external field Bz, the magnetizability component �zz,
and the nuclear shielding component σzz(R) are determined
only by the components Jx

B and Jy
B of the current density in

the xy plane. The paramagnetic component Jz
B has no effect

on �zz and σzz(R). These statements are valid for cyclic
permutations of x, y, and z.

The diatropic electronic ring currents flowing in planes
parallel to the σh ≡ σxy plane of a conjugated cyclic molecule

in the presence of a magnetic field Bz: (i) exalt the out-of-
plane component �zz of the magnetic susceptibility, and
consequently increase the magnitude of the anisotropy ∆�
and the average magnetic susceptibility �av and (ii) enhance
(diminish) the out-of-plane component σzz

I of a real or dummy
nucleus I, placed at RI, inside (outside) the ring. In
correspondence with the increase (decrease) of σzz

I , one
observes an upfield (downfield)salso called diamagnetic
(paramagnetic)scontribution to the NMR chemical shift
from a reference compound, usually tetramethylsilane (TMS),
δI ) σav

ref - σav
I . By reversing the direction of JB, i.e., for a

paratropic current, the sign of the contributions mentioned
above is also reversed.

A familiar example widely discussed in the literature is
benzene, whose π-ring currents determine observable effects:
high anisotropy ∆�, big �av, and downfield chemical shift
of protons as well as a big positive value of the average

Figure 7. The stagnation graph of cyclopropane in a magnetic field parallel to the C2 ≡ x symmetry axis. The stagnation lines
lie on isoshielding density surfaces Σxx

I (r) ) 0.0 au, represented in gray, for any dummy atom I along C2.
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central shielding, or a big negative average NICS, which is
defined as the same quantity with negative sign.13

However, it should be emphasized that the ring currents
can only bias the out-of-plane component of the magnetic
tensors of conjugated planar (poly)cyclic molecules.
Properties observed in systems in disordered phase account
for only one-third of the effect arising from the ring
currents. Sizable, or sometimes overwhelming contribu-
tions from mechanisms other than ring currents, affecting
the in-plane components of the magnetic tensors, should
carefully be examined, and any theoretical assessment of

the strength of delocalized ring currents in planar conju-
gated carbon cycles should take only the out-of-plane
components �zz and σzz

I into account.66

For a ghost atom I, with coordinate RI, placed anywhere
along the C3 ≡ z symmetry axis of C3H6, the equation Σzz

I (r)
) 0 defines a surface of points r of vanishing shielding
density. The same statement holds for Σxx

I (r) ) 0, with I a
dummy atom along the C2 ≡ x symmetry axis. Stagnation
lines lie on the zero-isoshielding surfaces, as shown in Figure
6 by superimposing the stagnation graph to some portions
of the Σxx

I (r) ) 0 domain. Another view of this pattern is

Figure 8. Isoshielding density surface |Σxx
I (r)| ) 0.05 au, for a dummy atom I at the midpoint of a C-C bond. Green (yellow)

portions denote positive diamagnetic (negative paramagnetic) contributions.
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observed in Figure 7 for all dummy atoms I lying on C2,
with arbitrary RI.

Abnormally high calculated values of average NICS13 are
considered to be consistent with σ-diatropicity of C3H6.28,29,34,35

In fact, cyclopropane provides crucial evidence on the failure
of the average NICS13 as a measure of diatropicity.24 The
calculated NICS ≡ -σav

CM is as big as -44.9 ppm, a value
comparable with the GIAO NICS RHF/6-311+G(d,p) esti-
mate -43.0 given by Sauers,35 and with similar values by
others.28,34 Noticeably enough, σav

CM is dominated by the
enormous in-plane component σ⊥

CM ) 50.9 ppm, a case
predicted in a previous paper.66 The out-of-plane σ|CM

component is ≈18 ppm smaller. Therefore, neither the
average NICS13 nor NICS|66,67 can be used as magnetic
aromaticity quantifiers in cyclopropane.

This peculiarity of C3H6 is explained by the RCM
developed here. In a field B⊥ applied in the direction of a C2

symmetry axis, intense delocalized currents (with maximum
modulus ≈0.11 au for an applied magnetic field of 1 au)
take place in the bent “banana bond” lying outside of the
direction interconnecting two carbon nuclei,68 and about the
C-H bonds, as shown by Figure 6 in the text and Figure 6
in the Supporting Information. It is this current, with strength
15.7 nA/T (evaluated as a flux integral over a suitably defined
“bond basin” in Section 6), flowing around the CH2-CH2

and methylene moieties that determines the huge value of
the σ⊥

CM.

Quite remarkably, a similar pattern was observed for
ethylene, another noncyclic system which sustains an annular
weaker current (with modulus 0.075 au, for |B| ) 1 au) on
the molecular plane, see Figure 12 of a previous article.69

The SG of the ethylene molecule in a magnetic field
perpendicular to σh, see Figure 6 of the same paper69 contains
loops similar to those observed in the vicinity of the C nuclei
in Figure 6.

It may be useful to complete the analysis of the different
contributions to the central shielding (and NICS) values
calculated for cyclopropane by comparison with correspond-
ing data for benzene. Allowing for a calculation adopting
the same basis set for the sake of consistency,48 we obtained
σ⊥

CM ) 5.38, σ|CM ) 18.40, and σav
CM ) 9.72 ppm for C6H6.

The σ and π contributions to the out-of-plane component,
determined by conflicting mechanisms, are -18.86 and
37.26, respectively (all values in ppm). Therefore, even if
the σ|CM ) 32.69 ppm is smaller than σ⊥

CM for cyclopropane,
it is far larger than that for benzene and only 4.57 ppm
smaller than the dominant π-contribution to benzene’s σ|CM.

Recalling that the shielding density of a probe depends
on the second inverse power of its distance from an element
of current, according to the Biot-Savart law (eq 3), we
conclude that total calculated σ|CM values for the two
molecules should be rationalized in terms of: (i) comparable
values of |JB|, but (ii) different spatial extensions of the
integration domains, and (iii) competing σ- and π-electron
flow in benzene, which are absent in cyclopropane.

These results indicate that any conclusion on relative
magnetic aromaticity in benzene and cyclopropane based on
σ|CM (and NICS|) values would not make sense.

6. Integrated Current Densities

The divergence of the stationary current density vector
vanishes everywhere. Then, according to the Gauss theorem,
also the flux Φ of the JB field vanishes for any closed surface
S enclosing the volume V:

From this relationship, it is easy to show (see a forthcom-
ing paper on the π character of ring current in aromatics)33

that the integral of the current density crossing any arbitrarily
chosen plane P bisecting the molecular domain vanishes:

In actual calculations, ∇ ·JB is not zero, and eq 9 is not
exactly fulfilled, except for symmetry reasons, e.g., for all
planes containing an n-even symmetry axis Cn parallel to
the inducing magnetic field B, and for a symmetry plane
perpendicular to B. In general, the magnitude of the integral
in eq 9 approaches zero on improving the quality of the
calculation.

However, the integral in eq 9 is different from zero when
P is a bounded portion of a plane, thus a measure of the
strength of delocalized currents is assumed to be given by
the flux of the JB vector through a suitably selected planar
domain. For symmetric cyclic hydrocarbons, the halfplane
bounded by the symmetry axis and bisecting a CC bond is
a convenient choice of P to evaluate current strengths, also
referred to as bond current susceptibilities.27,70-72

In the case of benzene and other π-diatropic systems in a
magnetic field B at right angles to the molecular plane, all
the streamlines of the π-current enter in the same direction
the domain P of the integral ∫PJB ·dp defining the current
strength. The largest |JB| modulus values of the π-current
of benzene are observed inside two toroidal regions of higher
π-electron density, above and below the σh plane.70 The
π-currents flowing inside these Farnum-Wilcox tori73 give
an overwhelming contribution to the total current strength
∫PJB ·dp.

On the other hand, the σ currents of most conjugated cyclic
molecules, including benzene, are diatropic (paratropic)
outside (inside) the ring.48 Moreover, disconnected domains
with the same regime frequently occur, which makes the
definition of P more complicated. This is the case of
cyclopropane, as observed for B| in Figure 9, which shows
the cross-section of the induced current density modulus on
a plane bisecting a C-C bond. The calculated current
strength is 10.2 nA/T, the diatropic (paratropic) contribution
being 11.6 (- 1.4) nA/T. These estimates virtually coincide
with those of a previous paper.27

Figure 9 documents the effect of an intense diatropic
circulation, with the shape of a topological torus, embedding
the entire molecule. Such a ring current is sustained by
delocalized σ-electrons shared by the three carbon atoms,
as claimed by Dale Poulter et al,7 and also by the hydrogen
atoms. Therefore, one should not limit himself to consider
the effect of electrons precessing in a circle which circum-
scribes the ring.7 The magnetic response of cyclopropane to

Φ ) ∫S
JB · ds ) ∫V

∇ · JBdV ) 0 (8)

∫P
JB · dp ) 0 (9)
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a magnetic field orthogonal to the carbon plane should more
properly be interpreted in terms of a delocalized toroidal
current flowing around carbon and hydrogen atoms.

The calculated current strength for B⊥ ) 1 au, see Figure
10, is 15.7 nA/T, i.e., ≈1.5 times higher than that calculated
for B|. The huge value of the σ⊥

CM ) 50.9 ppm is biased to
a great extent by this peculiar “delocalized current without
a carbon ring”, see also Figure 6 in the Supporting Informa-
tion.

7. Rationalization of Magnetic Shieldings in
Cyclopropane via Spatial RCMs

According to Fliegl et al., it is the ring strain that makes the
cyclopropane electrons mobile, resulting in a strong magnetic
ring current, which could be called “ring-strain current”,
affecting magnetic shieldings in the same way as ring
currents do.27 In fact, a ring current flowing in an annular
region of the plane of the C nuclei, around the methylene
groups, and splitting into two branches along the C-H bonds
of cyclopropane in a magnetic field Bz normal to the
molecular plane can be displayed, see Figure 3 of a previous
paper,24 by selecting trajectories with a modulus varying
between 0.05 and 0.1 au, for Bz with strength 1 au, and by
cutting currents with much higher intensities in the proximity
of the C atoms.

It is this current that could be referred to as a ring current
in the conventional meaning.7,15 However, it should be
emphasized that the shape of the total current density field
is that of Figure 1 of the present study, and, accordingly,
that both carbon and hydrogen nuclei lie inside a torus of
delocalized currents. Plots of the shielding density Σzz

H, eq 7
on four planes, that of the C nuclei at z ) 0, the H nuclei at
z ) 1.702 bohr, and two intermediate planes at 0.6 and 1.2
bohr are shown in Figure 11. To identify the contributions
to proton shielding provided by the delocalized currents and
by the local vortices flowing about the sp3 orbitals forming
the C-H bonds, for each plane in that figure, contour levels
of Σzz

H are superimposed to the current density streamlines.
On the σh plane pairs of steep up and down spikes of the

shielding density function, marked by green and red contours,
respectively, are observed about carbon atoms. Their con-
tributions to σzz

H are virtually vanishing due to cancellation
of effects within each pair. On the same plane, a relatively
large shielding region extends over the delocalized current
domain, whose contribution can be considered minor, or
negligible, due to its small magnitude. On going from the
plane of the C to that of the H nuclei, both local and nonlocal
current domains provide increasingly higher shielding effects
of comparable size. A restricted area of deshielding is
confined within the domain of local flow. On account of these
results, the σzz

H component is determined by both local and
nonlocal currents providing contributions of almost the same
order of magnitude. The contribution of the delocalized flow
seems slightly dominant owing to its wider extension.

The current density streamlines on the σh plane, and three
parallel planes at distance 0.2, 0.5, and 0.8 bohr, are
superimposed to the out-of-plane component of the shielding
density functions, Σzz

C for carbon in Figure 12 and Σzz
I for a

Figure 9. Contour plot of the cross-section of the current
density modulus |JB| on a 14 × 14 bohr region of the xz plane
spanned by the C2 ≡ x and the C3 ≡ z symmetry axes,
bisecting a C-C bond. The applied magnetic field Bz, of
magnitude 1 au, is orthogonal to the σh ≡ xy symmetry plane.
The H and C nuclei are represented in two shades of gray.
Solid and dashed lines denote flow in opposite directions.
Within the integration domain P, bounded by the red frontier,
paratropic (diatropic) currents correspond to solid (dashed)
contours. Red and green dots indicate extreme values of |JB|
on the plot plane, |JB|max

p ) 0.054 (|JB|max
d ) 0.128) au for the

internal paratropic (external diatropic) flow. Contour values
decrease in steps of |JB|max/2n, for n ) 1, 2, ... The total
current strength, defined as the flux integral ∫PJB ·dp from the
domain within the red boundary, is 10.235 nA/T. The contribu-
tions from external (diatropic) and internal (paratropic) flow
are 11.619 and -1.384 nA/T, respectively. Here, and in Figure
10, calculated current strengths do not show significant
changes on enlarging the integration domain.

Figure 10. Contour plot of the cross-section of the modulus
|JB| of the current density on the xz plane spanned by the C2

≡ x and the C3 ≡ z symmetry axes, bisecting a C-C bond.
The applied magnetic field Bx lies on the plot plane. The net
integrated current strength on the lower (upper) domain with
red boundary is +15.663 (-15.663) nA/T.
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ghost nucleus I on the center of mass in Figure 13. Let us
first consider the Σzz

C shielding density plot of Figure 12. On
the σh plane, a major contribution is provided by the diatropic
vortex about the carbon atom, where a huge shielding spike
is observed, reaching its maximum value within the domain
of local current density flow. A sizable contribution arises
also from the nearby domain of delocalized current. Pairs
of nearly canceling up and down spikes are found on the
other carbon atoms. A similar pattern is observed on the plane
at 0.2 au. The contributions from the vortex flowing about
the C-H bond and from the delocalized currents outside of
it decrease on increasing the distance from σh. As shown in
Figure 12, on the planes at 0.5 and 0.8 bohr, local and

nonlocal domains of flow seem to yield contributions of
similar magnitude to σzz

C. Therefore, one can assert that the
out-of-plane component of the carbon shielding is determined
by a dominant local contribution and a smaller, non-
negligible delocalized contribution.

Then let us consider the zz component of the central
shielding density of Figure 13. On the σh plane, pairs of up
and down spikes, corresponding to furthest and closest parts
of the local C-H bond vortices, are observed about the
carbon atoms. They yield negligibly small shielding contri-
butions due to quasi-cancellation for each pair. The strong-
deshielding zone confined inside the carbon ring is sur-
rounded by a comparatively weaker-shielding region, spreading

Figure 11. Streamlines of JB and corresponding contours of the magnetic shielding density Σzz
H, in au, for an applied field of 1

au, on the σh plane and on three parallel planes at distance (in bohr) 0.6, 1.2, and 1.702 (the plane of the H nuclei). Green (red)
contours denote shielding (deshielding). A blue nodal line connects points at which the angle between the local streamline and
the direction to the probe is 0 or π, passing through the (2,0) vortex and saddle points on the plot plane, where |JB| vanishes.
The nodal line contains also the (3, (1) saddle nodes and foci on the σh plane. The shielding contributions, which arise from the
σ-ring currents on the σh plane, are very small, those provided by the vortex flowing around the C-H bond and by the delocalized
currents increase on the planes at 0.6 and 1.2 bohr and on the plane of the hydrogen nuclei. On these planes, the extension
of the domains of delocalized flow providing shielding contributions is higher than that of the local vortex, implying that the
former plays a slightly major role. Truncated min, max, and step ) -0.05, 0.05, and 0.002 au.
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however over a much larger area, up to the outer reaches of
the σh plane, and reaching local maximum values just outside
of the C-C bond directions, within the delocalized current
domain.

A qualitatively similar pattern is observed on the plane at
0.2 bohr in Figure 13. The magnitude of Σzz

CM decays quite
rapidly on more distant planes, relative maxima being still
observed for the 0.5 and 0.8 planes in Figure 13, in the region
of delocalized regime, in front of the C-C bonds. Therefore,
it can be concluded that the large positive value of the out-
of-plane component, σzz

CM ) 32.7 ppm,24 is determined to a
large extent by the dominant shielding contribution provided
by the delocalized current flow. Smaller but sizable deshield-
ing contributions are given by the internal paratropic cir-
culation.

8. Concluding Remarks

Spatial models of the current density field sustained by the
electrons of the cyclopropane molecule in the presence of
magnetic fields applied in the directions of either the C3 or
the C2 symmetry axes, completing and partially revising that
recently reported,24 have been constructed. These models
show that a magnetic field B| along C3 induces localized
vortices enclosed in a toroidal region of delocalized flow,
which can be referred to as a spatial “ring current”,
circulating beyond the skeleton of C and H nuclei and
extending above and below the σh plane for more than 1.702
bohr, i.e., the plane of the hydrogen nuclei. Also a magnetic
field B⊥ along C2 induces intense delocalized flow outside
of a set of localized vortices, with maximum intensity of

Figure 12. Streamlines and corresponding contours of the magnetic shielding density Σzz
C, in au, for an applied field of 1 au, on

the plane of carbon nuclei and on three planes at distance (in bohr) 0.2, 0.5, and 0.8. The color code is the same as in Figure
11. The contributions arising from the vortex flowing around the C-H bond and from the delocalized currents outside of it
decrease on increasing the distance from σh. Truncated min, max, and step ) -0.10, 1.00, and 0.010 au.
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the same magnitude as that observed for B| applied in the
C3 direction.

Our ring current models have been compared with others
previously reported,19,26 displaying current flow only in the
plane of the carbon nuclei, and they have been tested by
checking their ability to rationalize measurable quantities,
such as the components of magnetic susceptibility and
shielding of hydrogen and carbon nuclei. The magnetic
shielding of a probe at the center of mass has also been
interpreted. The main conclusions, confirming and widening
those of a previous paper,24 are:

(1) In the presence of a magnetic field B perpendicular
to the plane of the carbon nuclei, the induced JB field
contains four whirlpools extending for more than 10
bohr, above and below the σh plane, as shown in
Figure 1. The central vortex, rotating about the C3 axis,

is paratropic and of weaker intensity in comparison
with the three strong diatropic vortices sustained by
the sp3 hybrid carbon orbitals forming the C-H bonds.
This set of vortices is enclosed within a large domain
of torus-shaped diatropic flow, delocalized around the
whole skeleton of C and H nuclei. Comparatively
higher intensities of this delocalized flow are observed
along an annulus of “ring currents” originating in the
C-C bent bonds, flowing outside of the carbon nuclei
and splitting into two streams along the C-H bonds.

(2) The JB field of CnHn cyclic planar systems sustaining
delocalized diatropic π-currents contains n diatropic
vortices originating at two points on Cn, equally spaced
with respect to the center of mass (at ≈(2.5 bohr in
benzene)48 and passing through the C-C bonds. At
variance with this typical pattern, saddle regime is

Figure 13. Streamlines and corresponding contours of the magnetic shielding density Σzz
I , in au, for an applied field of 1 au, of

a ghost nucleus I at the center of mass, on the plane of carbon nuclei and on three planes at distance (in bohr) 0.2, 0.5, and 0.8.
The color code is the same as in Figure 11. The contributions to σzz

I arising from the vortices flowing around the C-H bonds
decrease on increasing the distance from σh. The intensity of delocalized currents beyond the methylene groups analogously
decreases. On higher planes, small contributions to σzz

I only arise from delocalized flow outside of CH2-CH2 moieties. Truncated
min, max, and step ) -0.20, 0.10, and 0.010 au.
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observed about the midpoint of C-C bonds in
cyclopropane. Spiralling trajectories connect a set of
18 foci and 6 saddle nodes.

(3) The near Hartree-Fock average shielding σav
H ) 32.1

is dominated by σzz
H ) 37.0 ppm. The other calculated

components are σxx
H ) 33.3 and σyy

H ) 26.1 ppm. The
annular flow on the σh plane, involving cyclic σ-elec-
tron delocalization among the three carbon atoms,
referred to as a ring current by Dale Poulter et al.,7

provides minor contributions to the high-field chemical
shift δH ) σav

H(TMS) - σav
H from tetramethylsilane

(TMS). In fact, the proton shielding is determined to
comparable extent by the delocalized currents and the
local vortices about the CH bonds. As the major
contribution of the delocalized current to σzz

H comes
from electron flow on planes close to the H nucleus,
a simplified RCM should more properly consider a
current loop on the plane of the hydrogen nuclei, rather
than a circuit around the carbon nuclei on the σh plane.

(4) The local diatropic vortices sustained by the sp3 hybrid
orbital cause also a major diamagnetic shift of the out-
of-plane component σzz

C ) 236.0 ppm of the carbon
shielding, a corresponding increase of the average σav

C

) 198.1 ppm and a sizable anisotropy ∆σC ) σzz
C -

(σxx
C + σyy

C)/2 ) -56.9 ppm.
(5) A magnetic field B⊥ parallel to a two-fold symmetry

axis induces strong delocalized currents circulating
about the entire molecule, sustained by the local
charge distribution (the σ-electrons of the C-C
“banana bond” and of the C-H bonds), as shown in
Figure 6. The current susceptibility of the TσV ≡ xz
half-plane, for a magnetic field in the C2 ≡ x direction,
is 15.7 nA/T, see Figure 10, that is, ≈1.5 times higher
than that calculated for B|.

(6) The noncanonical “ring current without a carbon ring”
circulating about the C2 axis enhances the σ⊥

CM in-
plane component of the shielding tensor of a probe
placed in the center of mass. The near Hartree-Fock
value of σ⊥

CM is 50.9 ppm, that is ≈18 ppm bigger
than out-of-plane σ|CM ) 32.7 (which would be the
relevant quantity for an assessment of σ-diatropicity),
thus providing a dominant contribution to the average
σav

CM ) (σ|CM + 2σ⊥
CM)/3 ) 44.9 ppm. Therefore,

neither the average NICS, defined as -σav
CM,13 nor

NICS| ) -σ|CM 66,67 are reliable quantifiers of σ-dia-
tropicity for cyclopropane. Furthermore, if σ|CM were
preferred as an appropriate measure of magnetic
aromaticity, one should admit that the cyclopropane
molecule is even more diatropic when exposed to a
magnetic field directed like a C2 symmetry axis.

(7) Whereas σ⊥
CM > σ|CM, �⊥ < �| in cyclopropane. The

peculiarity of these results, seemingly in contrast with
one another, is understood by means of our RCM,
recalling that the element of induced magnetic field
at the position of a probe depends on the second
inverse power of its distance from an element of
current. The in-plane component of the shielding at
the center of mass is mainly biased by the strong
diatropic ring current nearest to it displayed in Figure

6. For instance, the plot of the isoshielding surface of
Σxx

I with value 0.05 in Figure 8, for a ghost atom at
the midpoint of a C-C bond, shows shape and size
of the shielding basin which provides big contributions
to σ⊥

I . The out-of-plane component �| of the magnetic
susceptibility, a quantity depending on the intensity
of the ring currents and on the area enclosed in the
ring-current loop,63 samples the whole molecular
domain. As such, it can generally be considered as a
more reliable measure of global diatropicity.

These results show that the basic motif of the well-
established ad hoc model first proposed by Dewar15 to
explain chemical shifts of proton magnetic resonance is to
some extent confirmed and completed by that proposed in
this work. The statement that cyclopropane is an archetypal
σ-aromatic system only on the basis of the isotropic NICS
value has been demonstrated to be unsatisfactory, as much
of the NICS arises from the delocalized current flowing
around the C2 axes. Such a current is consistent with a
significant nonlocal contribution to ∆�, and it is useful to
explain the surprising results reported by Benson and
Flygare,5,23 cited in Section 1, as well as the conflicting
conclusions on relative amounts of delocalization arrived at
by considering either �av or ∆�.

In fact, in Section 1, we evaluated the nonlocal contribu-
tions to �av and ∆�, that is, �|nonloc ) -14.5 and �⊥

nonloc )
+1.9 ppm erg G-2 mol-1, respectively. The estimated
positive nonlocal contribution to �⊥ depends on the assump-
tion of sp3 hybridization of carbon valence orbitals.

On the other hand, if one accepts the Walsh idea that
cyclopropane might be portrayed as a π-complex of one
ethylene and one methylene fragments,74,75 assuming sp2

hybridization, using the atomic Pascal terms �C ) -6.00,
�H ) -2.93, the correction 5.5 erg G-2 mol-1 for a CdC
bond reported by Bain and Berry,21 and the anisotropy ∆�
) 4.4 ( 0.4 for an sp2 carbon from Benson and Flygare,22

the nonlocal contribution to the average susceptibility
becomes �av

nonloc ) -39.2 -3 × (-6.00) - 6 × (-2.93) -
5.5 ) -9.1, that to the anisotropy is ∆�nonloc ) -11.6 - 3
× 4.4 ) -24.8, so that �|nonloc ) -25.7 and �⊥

nonloc ) -0.9
ppm erg G-2 mol-1.

Therefore, the nonlocal contribution to �⊥ becomes nega-
tive and smaller than the sum of the experimental errors.
The fact that Pascal’s constants are able to account for the
effects of a delocalized current in cyclopropane, as well as
in ethylene, is analogous to what happens in conjugated
noncyclic hydrocarbons, where the stabilization energies can
be obtained in terms of additive terms.76

This finding might imply that a description in terms of
sp2, instead of sp3, carbon hybrids74,75 would be preferable,
which seems, to some extent, consistent with the model of
the current density reported in Figures 1 and 6. In particular,
the intense electron flow about a C2 symmetry axis is fully
compatible with the Walsh model of cyclopropane as a
π-complex of one ethylene moiety and one methylene
fragment.74,75
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Abstract: PM6 is the first semiempirical method to be released already parametrized for the
elements of the periodic table, from hydrogen to bismuth (Z ) 83), with the exception of the
lanthanides from cerium (Z ) 58) to ytterbium (Z ) 70). In order to fill this gap, we present in
this article a generalization of our Sparkle Model for the quantum chemical semiempirical
calculation of lanthanide complexes to PM6. Accordingly, we present Sparkle/PM6 parameters
for all lanthanide trications from La(III) to Lu(III). The validation procedure again considered
only high-quality crystallographic structures and included 633 complexes. Sparkle/PM6 unsigned
mean errors UME(Ln-L)s, corresponding to all the interatomic distances between the lanthanide
ion and the atoms directly coordinated to it, range from 0.066 to 0.086 Å for Gd(III) and Ce(III),
respectively. These minimum and maximum UME(Ln-L)s across the lanthanide series are
comparable to the Sparkle/AM1 values of 0.054 and 0.085 Å for Ho(III) and Pr(III), respectively,
as well as to the values for Sparkle/PM3 of 0.064 and 0.093 Å for Gd(III) and Pr(III), respectively.
Moreover, for all 15 lanthanide ions, these interatomic distance deviations follow a γ distribution
within a 95% level of confidence, indicating that these errors appear to be random around a
mean, freeing the model of systematic errors, at least within the validation set. Sparkle/PM6
presented here, therefore, broadens the range of applicability of PM6 to the coordination
compounds of the rare earth metals.

Introduction

Parametric method number 6, PM6,1 is the latest in a series
of semiempirical methods which encompass MNDO,2,3

AM1,4 PM3,5-8 and RM1.9 The accuracy of PM6 in
predicting enthalpies of formation, yielding an unsigned mean
error of 4.4 kcal.mol-1 for a representative set of 1373
compounds, exceeds those of Hartree-Fock (7.4 kcal.mol-1)
or B3LYP DFT (5.2 kcal ·mol-1) methods. PM6 has also
been successfully used for modeling proteins and a variety
of their properties.10 Moreover, PM6 has been further shown
to be capable of reproducing the geometries and the
enthalpies of formation of several solids with useful ac-
curacy.11

The Sparkle Model is a semiempirical approach to the
quantum chemical calculation of lanthanide complexes,
originally introduced by our research group in 1994.12,13 It
replaces the lanthanide ions by a Coulombic charge of +3e,
superimposed to a repulsive exponential potential of the form
exp(-Rr), which was introduced to mimic the effect of the
size of the ion. Thus, the Sparkle Model assumes that the
angular effects of the f-orbitals are negligible and does not
take them into account, being, thus, a spherically symmetric
model. The Sparkle Model was improved in a subsequent
article14 by the addition of two Gaussian functions to the
core-core repulsion energy term, and by including the
lanthanide mass, which allowed the calculation of vibrations
and thermochemical quantities.15 Major and significant
improvements to the parametrization procedure were then
carried out, eventually leading to Sparkle/AM1,15 the first
semiempirical quantum chemical model to be parametrized
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† Universidade Federal de Sergipe.
‡ Universidade Federal de Pernambuco.

J. Chem. Theory Comput. 2010, 6, 2019–2023 2019

10.1021/ct100192c  2010 American Chemical Society
Published on Web 06/22/2010



for the whole lanthanide series.16-24 More recently, in order
to allow the user a choice for the modeling of the organic
motif of the complexes, Sparkle/PM3 was subsequently
introduced.25-31

The Sparkle Model was designed to reproduce the
coordinating polyhedra of the complexes. That is because
the geometry of a lanthanide coordination compound is its
single most important feature for complex design.32 Indeed,
for example, when designing a highly luminescent complex,
one aims at achieving high-energy transfer rates from the
ligands to the central metal ion, followed by a subsequent
intense emission of light. For that purpose, the interaction
between the ligands and the central metal ion can be
described by the ligand field parameters, which can be
calculated from the knowledge of the geometry of the
coordination polyhedron. Within the simple overlap model,33,34

the ligand field parameters depend on the third, fifth, and
seventh powers of the lanthanide-ligand interatomic dis-
tances, thus requiring an accurate knowledge of these
distances. Likewise, for the design of contrast agents for
magnetic resonance imaging, an accurate knowledge of the
distance between the gadolinium ion and the oxygen atom
of the coordinating water molecule is required. That is
because the important dipolar relaxation mechanism has a
dependency on the inverse sixth power of this distance.
Again, any inaccuracies in this distance are greatly amplified
when one tries to determine the relaxation rate of solvent
protons, known as relaxivity.35 A larger relaxivity implies
that the required contrast agent may be administered in lower
doses or that the imaging can be carried out in regions of
lower contrast agent concentrations.

PM6 has been published and released already parametrized
for 70 elements, from hydrogen to bismuth, with the
exception of the lanthanides from cerium to ytterbium (Z )
58 and 70, respectively).

Therefore, in order to broaden the range of applicability
of PM6, we generalize in this article the Sparkle Model by
introducing Sparkle/PM6 parameters for all lanthanide tri-
cations, from La(III) to Lu(III).

Results and Discussion

PM6 is a neglect of diatomic differential overlap (NDDO)
method modified by the adoption of a slightly improved
version of Voityuk’s core-core diatomic parameters36 to
improve the predicted enthalpies of formation and geometries
as well as rare gas interactions. On the other hand, the
Sparkle Model does not require diatomic parameters, and
therefore, for PM6, we maintained the same monatomic
Sparkle core-core potential EN(A,B) with only two Gaussian
functions, as fully described before.15

Although PM6, when released, already had parameters for
lanthanum and lutetium, we decided to also make available
PM6 sparkles for the trivalent ions of these atoms as well,
to make the set consistent with Sparkle/AM1 and Sparkle/
PM3.

Sparkle/PM6 parameters were obtained via the same
parametrization procedure carried out to obtain the
Sparkle/AM115 and Sparkle/PM3 parameters.31 As such,
we only used high-quality crystallographic structures

(R-factor < 5%) obtained from the Cambridge Structural
Database (CSD),37,38 and for the case of promethium,
structures obtained by ab initio calculations,21 having
selected a total of 633 complexes. From these, we took,
as training sets, the same 15 subsets of 15 complexes for
each lanthanide trication, previously chosen for the
parametrization of Sparkle/AM1,16-24 and carried out the
optimization following the same methodology as described
before.15

The Sparkle/PM6 parameters found for all 15 lanthanide
trications are shown in Table 1. In order to proceed with the
validation, we used as geometry accuracy measures the
average unsigned mean error for each complex i, UMEi,
defined by

where ni is the number of atoms in the coordination
polyhedron of the lanthanide ion. Two cases were examined:
(i) UME(Ln-L), where we considered only the interatomic
distances between the lanthanide ion, Ln, and the atoms
directly coordinated to it, L, and (ii) UMEs of all the edges
of all faces of the pyramids defined by the lanthanide ion in
the apex as well as all interatomic distances between all
atoms of the coordination polyhedron.

Once again, it is important to assess whether Sparkle/PM6
provides a good and reliable representation of lanthanide
complexes, free of systematic errors, at least within the
validation set of complexes. For that to be true, the
UME(Ln-L)s and the UMEs of all distances of all complexes
of the test set should be randomly distributed about the mean,
whose value can be used as a measure of the accuracy of
the model. Therefore, UME(Ln-L)s and the UMEs should
follow the probability density function of the γ distribution,
since UMEs are positive and defined in the domain (0,∞).
We then proceeded by obtaining a fit of the UMEs to a γ
distribution function, from which the mean and variance
could be determined. The quality of the γ distribution fit
can be assessed via the one-sample nonparametric
Kolmogorov-Smirnov test39 in order to verify statistically
whether the distribution of the UME values could be
represented by a γ distribution indexed by the estimated mean
and variance. If the p-value of the test is larger than 0.05,
the γ distribution fit is indeed justified within a 95%
confidence interval, and the mean and variance can be used
as accuracy measures of the model.

The Supporting Information contains tables with the
individual UME(Ln-L)s and UMEs for all 633 complexes.
Table 2 summarizes these data for the UME(Ln-L)s for each
lanthanide trication. The p-values of the γ distribution fits
are all well above 0.05, implying they are all statistically
valid. The average value of all UME(Ln-L) means is 0.0741
Å, whereas the average value of the respective variances is
0.0012 Å2. One can see that these values are relatively
constant throughout the table, with the maximum UME(Ln-L)

being 0.0856 Å for Ce(III) and the minimum being 0.0663
Å for Gd(III). The corresponding low value for Pm(III),
0.0619 Å, is not strictly comparable with the others because

UMEi )
1
ni

∑
j)1

ni

|Ri,j
CSD - Ri,j

calc| (1)
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it was computed based on geometries obtained from ab initio
calculations21 and not from crystallographic measurements,
since Pm is a synthetic element which does not possess a
stable nucleus.

Table 3 also summarizes the data for the UMEs for each
lanthanide trication. In this case, the average value of all
means is 0.192 Å, and the average value of all variances is
0.0066 Å2. Once again, one can see that these values are
relatively constant throughout the table, with the maximum

UME being 0.214 Å for Ho(III) and the minimum being
0.169 Å for Yb(III). These data imply that Sparkle/PM6 is
well balanced across the lanthanide series.

Figure 1 presents a histogram comparing UME(Ln-L)s for
all three Sparkle Models: Sparkle/AM1, Sparkle/PM3, and
Sparkle/PM6. The UME(Ln-L)s represent the accuracy of the
model in terms of the distances between the lanthanide ion
and the coordinated atoms, important for the design of both
luminescent complexes and contrast agents for MRI. The

Table 1. Parameters for the Sparkle/PM6 Model for All Lanthanide Trications from La(III) to Lu(III)

Sparkle/PM6

La3+ Ce3+ Pr3+ Nd3+ Pm3+

R 2.0955474333 2.1249588196 2.4693712260 4.1738480733 3.0374070006
GSS 55.7614959637 58.8260906171 58.3343604075 57.6974644976 59.5665725491
a1 0.9198962192 1.7329167054 2.8321015232 1.1507966088 1.8134017776
b1 7.1956586116 7.4140930052 7.1195524904 6.4949658378 9.0994056545
c1 1.8688421745 1.7149281546 1.6208236553 1.5653255583 1.6148716177
a2 0.3395617280 0.0764294472 0.0541169724 0.1889516026 0.2759193756
b2 8.5194840290 8.4974750829 7.8230014741 10.9231117908 7.2120871121
c2 3.1236739454 3.0778367381 3.1133411960 3.0169407149 3.0287226366

Sm3+ Eu3+ Gd3+ Tb3+ Dy3+

R 4.0858458124 2.0467722838 2.1346333468 2.5139941133 2.5510632015
GSS 56.8573294165 55.6632255486 56.8944696903 55.2205687662 55.8786332882
a1 1.5645679440 0.2712333739 0.2517865588 0.5222813525 1.1809130487
b1 6.4255324886 7.3743656586 8.7505991931 7.9527873623 8.9849822704
c1 1.4885991013 1.7955662564 1.7313405711 1.7550018623 1.6756952638
a2 0.1021969444 0.3493713916 0.1221903028 0.3099626210 0.4066395540
b2 9.4102061689 7.7881047906 7.4979582981 6.6812787003 8.9799453811
c2 3.1094973204 2.9632616015 2.9344373061 2.9759649920 2.9787279400

Ho3+ Er3+ Tm3+ Yb3+ Lu3+

R 3.4814819284 3.6603230421 2.3042905227 4.2104920412 3.2076166779
GSS 56.0010800433 58.4870426290 56.3699484190 56.3592753390 56.2871833842
a1 0.3389541104 0.4687052850 0.7757838661 1.0542080628 0.6496316332
b1 8.1824420999 9.3819581436 8.3570694122 8.5454710978 9.2468459960
c1 1.6446707189 1.7306657473 1.6489766048 1.4993488570 1.5344631779
a2 0.1333201849 0.2107436963 0.2905574744 0.1983232376 0.2355401411
b2 8.7112042124 8.4256041357 7.6933919381 8.4702758246 7.3208383861
c2 2.9809112221 2.7714227710 2.9316355211 2.8575372636 2.9270906286

Table 2. Means and Variances of the γ Distribution Fits for
the UME(Ln-L)s Computed for the N Complexes for Each
Lanthanide Tricationa

UME(Ln-L)

lanthanide ion N mean (Å) variance (Å2) p-value

La3+ 73 0.0739 0.0011 0.732
Ce3+ 36 0.0856 0.0020 0.687
Pr3+ 47 0.0779 0.0014 0.994
Nd3+ 57 0.0744 0.0011 0.679
Pm3+ 15 0.0619 0.0015 0.947
Sm3+ 37 0.0748 0.0010 0.956
Eu3+ 88 0.0775 0.0013 0.159
Gd3+ 64 0.0663 0.0008 0.249
Tb3+ 35 0.0743 0.0007 0.961
Dy3+ 26 0.0798 0.0005 0.443
Ho3+ 28 0.0695 0.0006 0.838
Er3+ 38 0.0670 0.0028 0.761
Tm3+ 15 0.0734 0.0007 0.973
Yb3+ 44 0.0777 0.0013 0.993
Lu3+ 30 0.0778 0.0015 0.266

a The last column shows the p-values of the one-sample
nonparametric Kolmogorov-Smirnov tests,39 carried out for each
lanthanide ion, in order to verify statistically that its value is above
0.05, indicating that the distribution of the UME(Ln-L) values can
indeed be represented by a γ distribution indexed by the
estimated mean and variance. N refers to the number of
complexes used in the comparison.

Table 3. Means and Variances of the γ Distribution Fits for
the UMEs Computed for the N Complexes for Each
Lanthanide Tricationa

UME

lanthanide ion N mean (Å) variance (Å2) p-value

La3+ 73 0.213 0.0091 0.735
Ce3+ 36 0.190 0.0073 0.988
Pr3+ 47 0.212 0.0089 0.632
Nd3+ 57 0.198 0.0086 0.895
Pm3+ 15 0.165 0.0047 0.583
Sm3+ 37 0.188 0.0066 0.262
Eu3+ 88 0.195 0.0046 0.957
Gd3+ 64 0.186 0.0066 0.460
Tb3+ 35 0.191 0.0062 0.620
Dy3+ 26 0.204 0.0039 0.418
Ho3+ 28 0.214 0.0053 0.957
Er3+ 38 0.204 0.0102 0.948
Tm3+ 15 0.174 0.0048 0.892
Yb3+ 44 0.169 0.0041 0.666
Lu3+ 30 0.183 0.0084 0.819

a The last column shows the p-values of the one-sample
nonparametric Kolmogorov-Smirnov tests,39 carried out for each
lanthanide ion, in order to verify statistically that its value is above
0.05, indicating that the distribution of the UME values can indeed
be represented by a γ distribution indexed by the estimated mean
and variance. N refers to the number of complexes used in the
comparison.

Sparkle/PM6 Parameters for Lanthanide Trications J. Chem. Theory Comput., Vol. 6, No. 7, 2010 2021



accuracy trends in this measure are similar for all three
models across the lanthanide series, making them equivalent
parametrizations. Figure 2 also presents a histogram compar-
ing UMEs for all three Sparkle Models. In this case, there
are more variations among the models, although their
behavior is constant across the lanthanide series; the most
accurate one being Sparkle/PM3, followed by Sparkle/AM1,
and finally Sparkle/PM6. These trends probably reflect
aspects of the original parametrizations of each method, not
for the lanthanide but mainly for the types of atoms normally
found in the coordination polyhedron.

In order to employ any of the Sparkle Models in
MOPAC2009,40 one must use the keyword SPARKLE
together with the keyword of the chosen method: AM1, PM3,
or PM6.41 Actually, to use Sparkle/PM6 the keyword
SPARKLE only is normally sufficient, since PM6 is the
default method of MOPAC2009. On the other hand, the PM6
article reports parameters for lanthanum and lutetium as
regular PM6 atoms with orbitals, parameters which are also

present and implemented in MOPAC2009. So, for the cases
of lanthanum and lutetium, complexes can also be computed
from pure PM6 parameters. Table 4 presents a comparison
among all three Sparkle Models and the pure PM6 for such
complexes with respect to several geometry accuracy mea-
sures. Clearly the geometry errors of pure PM6 for these
two lanthanide atoms are a few times larger than the
corresponding ones for all three Sparkle Models. Thus, only
if properties other than geometries are required, the usage
of pure PM6 for these two elements would be justified.
However, due to the magnitude of the errors, even in these
cases one could perhaps consider the possibility of optimizing
the geometry with Sparkle/PM6 and then computing the other
properties of interest with pure PM6 at the sparkle geometries.

As indicated above, Sparkle/PM6 is already implemented
in MOPAC200940 and has been tested independently by Seitz
and Alzakhem42 with respect to its ability to predict the
average bond lengths of Ln-OH2 for the technologically
important central lanthanides, Ln ) Eu, Gd, and Tb. These
authors studied two classes of complexes: the first composed
of pyridine-like ligands with 172 complexes, and the second
featured ligands with the cyclen motif with 51 complexes.
They concluded that Sparkle/AM1 is best for complexes with
pyridine-like ligands, whereas Sparkle/PM6 outperforms the
other two Sparkle Models in cyclen-derived species. This
assertion clearly illustrates and justifies the importance of
having all three Sparkle Models available because the
individual characteristics of each underlying semiempirical
method (AM1, PM3, or PM6) may be more applicable to
one or another specific situation.

Conclusions

Sparkle/PM6 stands as another option in the suite of
semiempirical models applicable to the quantum chemical
calculation of lanthanide complexes. Sparkle/PM6 is an
accurate and statistically valid tool for the prediction of the
geometrical features of lanthanide coordination polyhedra
and, by design, is expected to perform best with ligands with
nitrogen or oxygen as coordinating atoms present in the vast
majority of all coordination compounds of the trivalent rare
earth metals.

Figure 1. UME(Ln-L)s obtained using all three versions of the
Sparkle Model: Sparkle/AM1, Sparkle/PM3, and Sparkle/PM6,
for all complexes of the validation set and lanthanide trications,
from La(III) to Lu(III). The UMEs are calculated as the average
of the absolute value of the difference between the experi-
mental and calculated interatomic distances between the
lanthanide ion and the directly coordinating ligand atoms,
summed for all complexes for each of the lanthanides.

Figure 2. UMEs obtained using all three versions of the
Sparkle Model: Sparkle/AM1, Sparkle/PM3, and Sparkle/PM6,
for all complexes of the validation set and lanthanide trications,
from La(III) to Lu(III). The UMEs are calculated as the average
of the absolute value of the difference between the experi-
mental and calculated interatomic distances between all atoms
in the coordination polyhedron (lanthanide ion included),
summed for all complexes for each of the lanthanides.

Table 4. Sparkle/AM1, Sparkle/PM3, Sparkle/PM6, and
PM6 Unsigned Mean Errorsa

unsigned mean errors for specific
types of distances (Å)

Model Ln-Ln Ln-O Ln-N L-L′
Ln-L

and Ln-Ln
Ln-L, Ln-Ln,

and L-L′

Lanthanum(III)
Sparkle/AM1 0.176 0.086 0.048 0.208 0.077 0.182
Sparkle/PM3 0.104 0.060 0.083 0.179 0.066 0.158
Sparkle/PM6 0.208 0.076 0.062 0.240 0.074 0.213
PM6 2.392 0.711 0.494 0.796 0.544 0.714

Lutetium(III)
Sparkle/AM1 0.222 0.084 0.047 0.170 0.074 0.148
Sparkle/PM3 0.176 0.083 0.054 0.145 0.076 0.130
Sparkle/PM6 0.201 0.089 0.048 0.212 0.078 0.183
PM6 0.788 0.163 0.059 0.272 0.124 0.227

a For all distances involving the central lanthanide ion, Ln, and
the ligand atoms of the coordination polyhedron, L and L′, and the
specific cases when L is either oxygen or nitrogen for the 73
La(III) complexes and 30 Lu(III) complexes considered.
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Abstract: Two perturbation (PT) theories are developed starting from a multiconfiguration (MC)
zero-order function. To span the configuration space, the theories employ biorthogonal vector
sets introduced in the MCPT framework. At odds with previous formulations, the present
construction operates with the full Fockian corresponding to a principal determinant, giving rise
to a nondiagonal matrix of the zero-order resolvent. The theories provide a simple, generalized
Møller-Plesset (MP) second-order correction to improve any reference function, corresponding either
to a complete or incomplete model space. Computational demand of the procedure is determined
by the iterative inversion of the Fockian, similarly to the single reference MP theory calculated in a
localized basis. Relation of the theory to existing multireference (MR) PT formalisms is discussed.
The performance of the present theories is assessed by adopting the antisymmetric product of
strongly orthogonal geminal (APSG) wave functions as the reference function.

1. Introduction

Single-reference quantum chemical methods have achieved
great success in describing molecular electronic structures
at around equilibrium geometry. However, these methods
fail in calculating systems which have near degeneracy
around frontier orbitals, a situation often encountered at
geometries far from equilibrium structures. For treating these
latter systems, multireference (MR) variational theories have
been proposed, such as multiconfigurational self-consistent
field (MCSCF) theory,1 complete active space self-consistent
field (CASSCF) theory,2 geminal-based theories including
generalized valence bond (GVB) theory,3 or the antisym-
metric product of strongly orthogonal geminals (APSG)
theory.4-7 Although these methods can improve the descrip-

tion of degenerate systems qualitatively, they usually provide
an insufficient amount of dynamic correlation energy, unless
the variational space is extended to cover such a large portion
of the configuration space, which in turn reduces the practical
applicability of the approach. To achieve a significant
inclusion of dynamic and static correlation at the same time
it is well established to apply perturbation (PT) or coupled-
cluster (CC) theories based on a multideterminantal wave
function.

Multireference extension of PT theories has spawned a
number of alternative formulations, the developments con-
tinuously being carried out. As a guiding rule, MR PT
approaches can be categorized as being either (i) effective
Hamiltonian theories with a model space of dimension higher
than one (“perturb then diagonalize”)8,9 or (ii) theories that
apply to a one-dimensional model space (“diagonalize then
perturb”). Focusing on category ii, there is still a large variety
of different formulations. For its obvious success in the realm
of single-determinant dominated systems, the Møller-Plesset
(MP) partitioning of standard Rayleigh-Schrödinger PT (the
Fock operator playing the role of the unperturbed Hamilto-
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nian) was generalized to the MR case in particularly diverse
ways. A common origin of several of these theories is the
general expression of their zero-order Hamiltonian in the
form

where Ô is the projector corresponding to the one-
dimensional space spanned by the reference function and P̂
) 1 - Ô is the projector complementary and orthogonal to
Ô. Specific theories differ in the definition of the Fockian
F̂, the form of projector Ô, the definition of the reference
energy E(0), the functions applied to span space P̂, and the
treatment of their incidental overlap. It is also common to
apply a decoupled form of eq 1, as will be discussed below.

In the present study, we devise a novel PT scheme that
operates with the general form of eq 1 of the zero-order
Hamiltonian and can be considered as the extension of the
MP partitioning to the previously introduced multiconfigu-
ration PT (MCPT) framework.10,11 Previous variants of
MCPT employed a diagonal zero-order Hamiltonian with a
choice of zero-order energies. In the present formulation,
this flexibility is left off by projecting the full Fockian into
space P̂ according to eq 1. The zero-order Hamiltonian is
non-Hermitian, due to the application of biorthogonal vector
sets specific to MCPT. Two alternatives of handling the
overlap between excited determinants and the reference
function lead to two MCPT variants with the MP partitioning.
One will be referred to as projected or pMCPT; the other
will be called unprojected or uMCPT.

To avoid any confusion, we note that acronym “u” in
uMCPT is not the shorthand commonly used for unrestricted
orbitals. In the present work, we consider restricted orbitals
throughout. In principle, the determinant-based formalism
presented below makes the extension of the theory straight-
forward for unrestricted orbitals. Such an extension shows
relations with the USSG (unrestricted strongly orthogonal
singlet-type geminals)-based perturbation theory developed
by Rassolov and co-workers12 and may be achieved without
violation of the spin-symmetry.13

In this report, we first present the extension of MP
partitioning to the MCPT framework in section 2. This is
followed by a separate short section, section 3, devoted to
the question of size-consistency, followed by a survey of
related formulations in section 4. Finally, in section 5, we
give a numerical assessment of the new method by applying
it to the APSG reference wave function and show it as being
superior to the diagonal partitioning applied previously.

2. Theory

We assume that the normalized zero-order wave function ψ
satisfies the zero-order equation

and we search the improvement to ψ and E(0) in an order-
by-order expansion as

and

where Ψ and E are the exact eigenstate and eigenenergy of
the full Hamiltonian Ĥ partitioned as

To define a Fermi vacuum, let us distinguish a principal
determinant in ψ, denoted by |HF〉 [depending on the
molecular orbitals, |HF〉 may or may not be the Hartee-Fock
(HF) determinant]

and let us assume that cHF is nonzero. Here and further on,
notation |K〉, |L〉, etc. is used to indicate determinants excited
with respect to |HF〉. Occupied and virtual indices as well
as the excitation level of determinants |K〉 will be also
identified on the basis of the principal determinant |HF〉. Set
VR collects indices of those excited determinants which have
nonzero contribution to the reference function.

Provided that cHF is nonzero, function ψ together with
excited determinants |K〉 span the configuration space and
form an overlapping basis. To construct a representation of
the identity operator in terms of these vectors, we need to
handle their overlap. This may be done by invoking any of
the standard orthogonalization procedures which involve a
numerical treatment of the overlap matrix. The overlap can
be alternatively handled in an explicit manner if following
a biorthogonal approach, due to the fact that the overlap
matrix is invertible in a closed form. Two possible ways of
a biorthogonal treatment are to
(a) Schmidt-orthogonalize |K〉’s to ψ as a first step, to obtain
vectors

In a second step, construct the reciprocal vectors to vectors
|K′〉. This version of the theory is denoted pMCPT.
(b) Construct the reciprocal vector to the set formed by |ψ〉
and determinants |K〉. This version is denoted uMCPT.
Alternatives a and b lead to a different definition of the
projector corresponding to the one-dimensional model space,
namely
(a) Ô ) |ψ〉〈ψ| is a symmetrical projector if Schmidt-
orthogonalization is applied first
(b) Ô ) |ψ〉〈ψ̃| is a skew projector if the reciprocal set is
constructed right away. A tilde is used for denoting reciprocal
vectors, i.e., 〈L̃|K〉 ) δLK

The sum Ô + P̂ is invariant to the choice of basis vectors;
hence, a difference in the definition of Ô results in a
difference in P̂ as well. This is of importance since projectors
Ô and P̂ enter the definition of the zero-order Hamiltonian
(eq 1). Consequently, the partitioning and the resulting PT
series become different in the case of a and b. Before
developing the PT treatment in the two cases, let us specify
the Fockian, since it is common to both variants.

The Fockian F̂ enters the zero-order Hamiltonian projected
appropriately by Ô and P̂ to ensure fulfillment of the zero-

Ĥ(0) ) E(0)Ô + P̂F̂P̂ (1)

Ĥ(0)|ψ〉 ) E(0)|ψ〉 (2)

Ψ ) ψ + ψ(1) + ...

E ) E(0) + E(1) + E(2) + ...

Ĥ ) Ĥ(0) + Ŵ

|ψ〉 ) cHF|HF〉 + ∑
K∈VR

cK|K〉

|K'〉 ) (1 - |ψ〉〈ψ|)|K〉
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order Schrödingerseq 2. We employ here a Fockian of the
ordinary single reference form, constructed using the density
matrix corresponding to the principal determinant. In the
spin-orbital basis

with 〈ik||jk〉 standing for antisymmetrized two-electron
integrals in the 〈12|12〉 convention. In accordance with the
noncorrelated form of the Fockian, the zero-order energy of
both variants is defined as

just like in ordinary single-reference MP theory.
Considering computational economy, it is obvious that the

projection of F̂ into space P̂, as shown in eq 1, is impractical,
since the matrix of Ĥ(0) is nondiagonal, with offdiagonal
elements coupling subspaces of different excitation levels.
In the actual calculations, the expression of eq 1 is simplified,
as detailed in section 4.

2.1. pMCPT: Schmidt-Orthogonalization Prior to
Reciprocal Set Construction. Schmidt-orthogonalization of
determinant |K〉 to ψ produces

Obviously, |K′〉 ) |K〉 for K ∉ VR. Vectors |K′〉 together with
ψ form a basis in the configuration space. This basis is not
orthogonal, however, as projected determinants may exhibit
nonzero overlap among themselves. Reciprocal vectors to
|K′〉 are given by11

Again, 〈K̃′| ) 〈K| if K ∉ VR. Since the biorthogonal
treatment affects only excited vectors, projector Ô is
symmetrical

The energy up to first order is also given by the
symmetrical expression

Projector P̂, expressed with excited determinants and their
reciprocal counterparts, reads as

Note that in spite of P̂ looking like a skew-projector, it is
an ordinary Hermitean projector, since P̂ ) 1 - Ô. Given
the expressions of E(0), F̂, Ô and P̂, the zero-order
Hamiltonian is now well-defined by eq 1.

Imposing intermediate normalization for the wave function

implies that the first-order correction satisfies

giving rise to the expansion

Here, VI collects indices of those vectors which interact with
|ψ〉 via the Hamiltonian, i.e., 〈K̃′|Ĥ|ψ〉 * 0. Set VI is of course
much larger than VR. It includes HF and elements of VR in
the general case, while it may be reduced if introducing
approximations. Coefficients tK are determined from the first-
order equation

projected by 〈L̃′| ∈ VI to get

In obtaining eq 10, the zero-order Hamiltonian (eq 1) was
substituted on the left-hand side; the zero-order equation (eq
2) and 〈L̃′|ψ〉 ) 0 were applied on the right-hand side.

In the general case, the linear system of eq 10 determines
the first-order wave function. Upon substituting eq 3 for |K′〉
and eq 4 for 〈L̃′| one obtains

where

It is possible to simplify eq 11 if restricting ourselves to
APSG reference functions, which include exclusively doubly
excited determinants expressed in the natural basis. This
structure allows one to omit the fourth term on the left-hand
side of eq 11. Furthermore, we restrict set VI to include only
index of doubly excited determinants. This approximation
eliminates the third term on the left-hand side of eq 11.
Altogether, this means that reciprocal vector 〈L̃′| can be
substituted by 〈L| on the left-hand side of eq 10, leading to
the equations

The second-order equation

projected by 〈ψ| gives the second-order energy

F̂ ) ∑
ij

fiji
+j- ) ∑

ij

(hij + ∑
k

occ

〈ik| |jk〉)i+j-

E(0) ) 〈HF|F̂|HF〉

|K'〉 ) |K〉 - cK|ψ〉 (3)

〈K̃′| ) 〈K|-
cK

cHF
〈HF| (4)

Ô ) |ψ〉〈ψ|

E(0) + E(1) ) 〈ψ|Ĥ|ψ〉 ) Eref (5)

P̂ ) ∑
K

|K'〉〈K̃′| (6)

〈ψ|Ψ〉 ) 1 (7)

〈ψ|ψ(1)〉 ) 0

|ψ(1)〉 ) ∑
K∈VI

tK|K'〉 (8)

(Ĥ(0) - E(0))|ψ(1)〉 ) (E(1) - Ŵ)|ψ〉 (9)

∑
K∈VI

〈L̃′|F̂ - E(0)|K'〉tK ) -〈L̃′|Ĥ|ψ〉 (10)

∑
K∈VI

〈L|F̂ - E(0)|K〉tK - 〈L|F̂ - E(0)|ψ〉 ∑
K∈VI

cKtK

-
cL

cHF
∑
K∈VI

〈HF|F̂ - E(0)|K〉tK +
cL

cHF
〈HF|F̂ - E(0)|ψ〉 ∑

K∈VI

cKtK

) -〈L|Ĥ|ψ〉 + cLẼref

(11)

Ẽref ) 〈HF|Ĥ|ψ〉/cHF

∑
K

2× exc.

〈L|F̂ - E(0)|K〉tK - 〈L|F̂ - E(0)|ψ〉 ∑
K

2× exc.

cKtK )

-〈L|Ĥ|ψ〉 + cLẼref (12)

Ĥ(0)|ψ(2)〉 + Ŵ|ψ(1)〉 ) E(0)|ψ(2)〉 + E(1)|ψ(1)〉 + E(2)|ψ〉
(13)

E(2) ) 〈ψ|Ĥ|ψ(1)〉 ) ∑
K

2× exc.

〈ψ|Ĥ - cKEref|K〉tK (14)
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having utilized the fact that 〈ψ| is an eigenfunction of Ĥ(0)

from the left, normalization condition (eq 7), expansion (eq
8), eqs 3 and 5. Equations 12 and 14 are the working
equations of the method MP-pMCPT(APSG) presented in
the applications, where an APSG reference function is
adopted.

2.2. uMCPT: Reciprocal Set Construction without
Schmidt-Orthogonalization. Reciprocal vectors to the set
formed by |ψ〉 and |K〉’s can be given by

and

With the use of the above vectors, one can put down skew-
projector Ô in the form

The sum of zero and first-order energies is also evaluated
on the basis of the nonsymmetrical expression

This energy expression is equivalent to the symmetric form
Eref of eq 5 in the case where coefficients in the expansion
of ψ are determined from diagonalization of Ĥ in a subspace
of the configuration space. This holds true for an MCSCF
wave functions or functions produced by single- or multi-
reference CI procedures but not for the APSG wave function
considered in the present applications. A skew-projector
orthogonal and complementary to Ô is written as

With the above Ô and P̂ definition and E(0) and F̂ remaining
unaltered, the zero order Hamiltonian of uMCPT is again
defined by eq 1.

A suitable form of the intermediate normalization condi-
tion in this version of the theory is

Consequently, the first-order wave function should satisfy

Hence, in terms of vectors |K〉, it can be expanded as

In this formulation, HF is missing from VI, due to the
normalization (eq 17). Coefficients tK are determined from
the first-order eq 9, projected by 〈L̃| ∈ VI to get

In obtaining eq 19, the form of the zero-order Hamiltonian
(eq 1) was applied, as well as the zero-order eq 2 and 〈L̃|ψ〉
) 0. The general form of the equations determining function
ψ(1) in this variant of the theory is eq 19.

Considering the approximation where VI is restricted to
doubly excited indices, term -cL〈HF|F̂ - E(0)|K〉tK/cHF

stemming from the overlap of 〈L| with |ψ〉 can be omitted
on the left-hand side of eq 19, leading to

The second-order eq 13 projected by 〈ψ̃| gives the second-
order energy

having utilized that 〈ψ̃| is an eigenfunction of Ĥ(0) from the
left, normalization condition (eq 17), eq 15, and expansion
(eq 18). Equations 20 and 21 are the working equations of
the method denoted MP-uMCPT(APSG) in the applications,
where an APSG reference function is adopted.

3. Size-Consistency

Among previous versions of the theory, where the zero-order
Hamiltonian was assumed diagonal, uMCPT was shown to
provide size-consistent correction at second order, if energy
denominators were composed of one-particle indexed quanti-
ties.11 We investigate here whether this property subsists in
MP-uMCPT and find that canonical orbitals in the single-
reference sense ensure a second-order energy behaving well
in this respect. For noncanonical orbitals, deletion of the
occupied-virtual block of the Fockian in the definition of
Ĥ(0) is necessary to obtain this behavior.

By size consistency, we understand the criterion of
obtaining the energy as a sum of subsystem energies in the
case where subsystems do not interact. To study this, let us
suppose that the reference function is behaving well; i.e., it
is given as a product [antisymmetrization being immaterial
for noninteracting subsystems14] of noninteracting partner’s
reference functions

where index A and B label the subsystems. As a conse-
quence, the principal determinant is also given as the product

appearing in the expansion of |ψ〉 with weight cHF
A cHF

B ; hence,
the reciprocal vector 〈ψ̃| reads

Since both the total Hamiltonian and the Fockian are given
as a sum over noninteracting systems, the reference energy

and the zero-order energy

〈ψ̃| ) 1
cHF

〈HF| (15)

〈K̃| ) 〈K|-
cK

cHF
〈HF|

Ô ) |ψ〉〈ψ̃|

E(0) + E(1) ) 〈ψ̃|Ĥ|ψ〉 ) Ẽref

P̂ ) ∑
K

|K〉〈K̃| (16)

〈ψ̃|Ψ〉 ) 1 (17)

〈ψ̃|ψ(1)〉 ) 0

|ψ(1)〉 ) ∑
K∈VI

tK|K〉 (18)

∑
K∈VI

〈L̃|F̂ - E(0)|K〉tK ) -〈L̃|Ĥ|ψ〉 (19)

∑
K

2× exc.

〈L|F̂ - E(0)|K〉tK ) -〈L|Ĥ|ψ〉 + cLẼref (20)

E(2) ) 〈ψ̃|Ĥ|ψ(1)〉 ) 1
cHF

∑
K

2× exc.

〈HF|Ĥ|K〉tK (21)

|ψ〉 ) |ψAψB〉

|HF〉 ) |HFAHFB〉

〈ψ̃| ) 〈HFAHFB|/(cHF
A cHF

B )

Ẽref ) Ẽref
A + Ẽref

B
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separate for terms corresponding to individual subsystems.
Determinants appearing in the expansion of |ψ(1)〉 can be

classified as doubly excited on system A, doubly excited on
system B, or singly excited both on system A and B, giving
rise to the form

with self-explanatory notations. The above expansion sub-
stituted into the coefficients’ equation (eq 20), we have to
consider two distinct cases: (i) index L refers to a determinant
doubly excited on one subsystem, say A, or (ii) index L
belongs to a determinant singly excited on both subsystems.
In case i, 〈L| can be written as

and by trivial derivation, one arrives at the coefficient
equation

This equation should contain solely quantities belonging to
subsystem A, which does not hold because of the second
term on the left-hand side. (Coefficient cHF

B does not do any
harm; in fact, it has a proper role as seen in eq 23.) In the
study of case ii, it is seen that 〈L| adopts the form

and the coefficient equation is found to be

Due to A and B being noninteracting, coefficients of the type
tLJ
AB do not contribute to the second-order energy. The above

equationswhich corresponds to these rowssis therefore not
important provided it is not coupled to columns correspond-
ing to local excitations, e.g., |LAHFB〉. Unfortunately, the first
two terms on the left-hand side are just consistency-spoiling
coupling terms. When the two cases are summarized, the
coefficient matrix on the left-hand side of eq 20 can be
depicted as shown in Figure 1.

Substituting expansion 22 into the second-order energy
formula, one obtains

indicating that size consistency would hold if the equation
determining tKHF

AB /cHF
B would be the same as the equation for

tK
A, when computed alone. This is spoiled by the coupling

emerging in the blocks dotted in Figure 1. Nonzero elements
of these blocks are solely occupied-virtual matrix elements
of the Fockian and are zero only if the orbitals are canonical
in the single-reference sense. In general, it certainly does
not hold for multireference applications. To restore size
consistency in such a case, one can modify the partitioning
by allowing nonzero elements only in the occupied-occupied
and virtual-virtual block of the Fockian.

4. Properties of MP-MCPT and Survey of
Related Theories

Several MR extensions of MP theory are related to the MP-
MCPT scheme detailed above. A characteristic feature unique
to the MCPT framework is the biorthogonal treatment of
the overlap among basis vectors. This is in contrast to the
approach introduced by Wolinsky and co-workers15,16 where
internally contracted excited vectors are considered as basis
vectors and Schmidt-orthogonalization is applied to keep
subspaces of different excitation levels orthogonal to each
other. Vectors belonging to the same excited subspace can
be orthogonalized either by Löwdin’s symmetrical17 or
canonical scheme18,19 or by the Gram-Schmidt procedure.20

Diagonalization of the overlap matrix can become a bottle-
neck of this approach, which induces the application of a
partially contracted and partially uncontracted basis.17,21 To
avoid the overlap problem, Murphy and Messmer suggested
the use of totally uncontracted configuration state functions
(CSFs) as basis vectors in the excited space.22,23 This theory
has to cope with an increased dimension of the linear system
of equations to solve in return. Both the approaches of
Murphy and Messmer and the MRMP method introduced
by Hirao et al.24,25 assume the existence of a set of
multiconfigurational basis vectors orthogonal and noninter-

E(0) ) EA
(0) + EB

(0)

|ψ(1)〉 ) ∑
K

A

tKHF
AB |KAHFB〉 + ∑

K

B

tHFK
AB |HFAKB〉 +

∑
K

A

∑
I

B

tKI
AB|KAIB〉 (22)

〈L| ) 〈LAHFB|

∑
K

A

〈LA|F̂A - EA
(0)|KA〉tKHF

AB + ∑
I

B

〈HFB|F̂B|IB〉tLI
AB )

-〈LA|ĤA - Ẽref
A |ψA〉cHF

B

〈L| ) 〈LAJB|

〈JB|F̂B|HFB〉tLHF
AB + 〈LA|F̂A|HFA〉tHFJ

AB + ∑
K

A

〈LA|F̂A -

EA
(0)|KA〉tKJ

AB + ∑
I

B

〈JB|F̂B - EB
(0)|IB〉tLI

AB )

-〈LA|ĤA - Ẽref
A |ψA〉cJ

B - 〈IB|ĤB - Ẽref
B |ψB〉cL

A

Figure 1. Block structure of the coefficient matrix of the first-
order equation for noninteracting systems A and B.

E(2) ) ∑
K

A

〈ψ̃A|ĤA|KA〉tKHF
AB 1

cHF
B

+ {A T B exchanged}

(23)
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acting through Ĥ with the reference function (e.g., excited
CAS vectors). Explicit construction of these multiconfigu-
rational basis vectors becomes necessary only beyond third
order in energy, which was never investigated with these
theories to the best of our knowledge. Within the MRMP
framework, McDouall and Robinson have conducted exten-
sive research in the line of lifting orbital optimization
problems as well as reducing the size of the model space,
see ref 26 and references therein.

Specific treatment of overlap among excited basis vectors
is of course irrelevant as far as the zero-order Hamiltonian
is of the form eq 1 and E(0) and Ô are defined alike. Most
methods however do not apply the zero-order operator (eq
1) as it is. In their pioneering paper, Wolinsky et al.15

suggested decoupling interactions at the zero order using the
Hamiltonian

to break down the dimension of the inversion problem for
smaller sub-blocks. Here, P̂S, P̂D, etc. refer to singly, doubly,
etc. excited subspaces. With such a zero-order Hamiltonian,
the definition of P̂S, P̂D, etc. clearly becomes of importance
and affects the behavior of the PT series. Several different
decoupling schemes have been investigated over time,18,20

while Celani and Werner reported second-order energies with
the nondecoupled zero order of eq 1.21 It was also shown
that increasing the block-diagonal character of H̃(0) reduces
the size-consistency error of individual energy corrections.20,27

The MP-MCPT framework avoids the overlap problems
present in internally contracted theories by adopting a
determinant-based description and a biorthogonal treatment.
At the same time, the dimension of the linear system of
equations is kept at a manageable size by a decoupling of
the type given in eq 24. In fact, restricting expansion of the
first-order function to doubly excited determinants means that
the zero-order Hamiltonian of MP-MCPT reads

where P̂D is either of the form eq 6 or eq 16, with summation
index K restricted to doubly excited determinants. This zero-
order Hamiltonian is of course unfitted for calculating
energies beyond third order. Even third-order results are
omitted from the present study, where we intentionally aim
to capture a significant portion of the dynamical correlation
energy at the lowest order of a simple perturbation scheme.
The error committed by decoupling of eq 25 as compared
to eq 1 is expected to be negligible at order 2. At the same
time, decoupling eq 25 means that the coefficient matrix
on the left-hand side of eq 19 is of exactly the same form as
the matrix appearing in single-reference MP calculations
performed on a localized basis.28-30 The inversion of this
matrix is the rate determining step of MP-MCPT. Since the
Fockian is a one-body operator, the structure of the coef-
ficient matrix of the linear system of equations is comfortably
sparse and easily invertible by iterative algorithms.31,32 In
the MP-pMCPT variant of the theory, a correction term on
the left-hand side of eq 10 makes a difference with the
coefficient matrix of single-reference MP theory. This

correction affects those columns which correspond to the
determinants present in the expansion of ψ but does not alter
the size of the matrix.

The definition of the Fockian as well as the zero-order
energy E(0) is an important question in MR MP theories,
related to the sensitivity to intruder states. Most MP
extensions use the generalized Fockian33 built with the
correlated one-body density matrix of the reference function
and define the zero-order reference energy as the expectation
value 〈ψ|F̂|ψ〉. At odds with these, the density matrix of the
principal determinant is used to construct the Fockian in MP-
MCPT and we take 〈HF|F̂|HF〉 as zero-order energy, both
being the same constructions as in single-reference MP. Our
choice is motivated partly by computational simplicity and
partly by previous numerical experiences,11 indicating a
negligible difference in second-order results between using
the uncorrelated or generalized Fockian. In fact, a generalized
Fockian fits better to a multiconfiguration framework, and
it is preferred particularly if orbital invariance of the theory
is desirable. In our approach, however, a principal determi-
nant is pinpointed at the stage of defining reciprocal vectors.
This inhibits invariance to any orbital rotations and enhances
the single-reference character of the theory, making it rather
pointless to apply a generalized Fockian. Defining the ground
state zero-order energy as in single-reference MP theory
appears particularly dangerous due to the well-known quasi-
degeneracy problem upon bond-dissociation. This fear,
however, is just slightly justified according to the numerical
experiences presented in section 5. On the other hand,
working with a spectral representation of the Fockian built
with CASSCF orbitals and orbital energies has been found
to give a poor description of multireference problems if the
reference function is a single configuration state function.34

As already alluded to, MP-MCPT is not invariant to orbital
rotations that may leave the reference function unaffected.
This is undesirable, but not unique among MR MP theories;
e.g., assumption of a diagonal form of Ĥ(0) destroys the
invariance.8,10,11,35 In the case of MP-MCPT, orbital non-
invariance stems from the biorthogonal treatment and has
the further consequence that MP-MCPT is not invariant to
the choice of principal determinant either. This suggests that
MP-MCPT is safely applicable only in the case where one
of the determinants stands out in the expansion of the
reference function, in terms of coefficient squared. The
dissociation of the nitrogen molecule, where several deter-
minants become equally weighted at the end of the process,
is one test of this feature. As shown in section 5, performance
of MP-MCPT is surprisingly acceptable in this example apart
from the slight breakdown of the curve. In contrast to the
nitrogen dissociation example, serious qualitative failure is
in fact observed when the principal role is handed over from
one determinant to another during the process studied. These
are cases where MP-MCPT definitely should not be applied
as it is. Averaging over principal determinants has been
shown to be a possible cure to this problem.36

Choosing a suitable two-body zero-order Hamiltonian
satisfying eq 2 instead of definition of eq 1 is certainly
superior to any MP extension discussed here, and such
theories were shown to produce excellent results,37-40 at the

Ĥ(0) ) E(0)Ô + P̂SF̂P̂S + P̂DF̂P̂D + ... (24)

Ĥ(0) ) E(0)Ô + P̂DF̂P̂D (25)
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price of coping with a more tedious task when obtaining the
first-order coefficients. The present theorysbeing an un-
complicated version even among MP theories assuming a
one-body zero-order Hamiltoniansobviously cannot compete
with these methods either in accuracy or in desirable
properties like size consistency or orbital invariance. On the
other hand, we do observe an improvement in the numerical
performance as compared to considering a diagonal zero-
order Hamiltonian within the MCPT framework, suggested
previously,10,11,41 although in some cases the improvement
in total energies may be rather small.

5. Assessments

We assessed the present MP-MCPT methods by adopting
the APSG wave function expressed in the natural orbital basis
as a reference. The APSG function can be written as the
products of ground and pair-excited geminal functions as
follows:

where S(i) is the set of the unoccupied orbitals of the geminal
subset which has an occupied orbital i. We restricted the
expansion of the first-order wave function within doubly
excited determinants from |HF〉, as discussed previously.

We selected the H2O (water), HF (hydrogen fluoride), N2

(nitrogen), and F2 (fluorine) molecules as test systems and
obtained potential energy curves for the bond dissociations.
As a comparison, we present APSG, MP2, multireference
MP2 (MRMP2), and a PT designed for the APSG wave
function by Rosta and Surján (APSG-PT).40,42 In addition,
we also computed the equilibrium geometries of the diatomic
molecules and calculated vibrational frequencies by the finite
difference method. During the latter, we first determined
equilibrium distances Re up to the order of 0.1 pm and
evaluated the frequencies from three points, namely, Re and
Re ( 0.5 pm structures. All calculations were performed with
the 6-311G** basis set.43 The APSG geminal subsets were
defined to give six orbitals for each bonding geminal and
three orbitals for each lone-pair geminal, around the equi-
librium structure.

5.1. Dissociation Curves. We first calculated potential
energy curves for two types of bond-breaking processes of
the H2O molecule: (i) a heterogeneous one-bond dissociation,
with the other bond distance fixed to 95 pm, and (ii) a
homogeneous two-bond dissociation. In both processes, the
bond angle was fixed to 104.5°. The reference function
underlying the MRMP2 calculation was a CASSCF wave
function with four active electrons on four active orbitals,
CASSCF(4,4) shortly.

Figure 2 shows the potential energy curves for one-bond
dissociation of H2O. The APSG curve is much worse in
absolute energy than MRMP2. However, APSG can produce
a qualitatively nice dissociation curve: nonparallelity error
(NPE) with respect to MRMP2 is 0.0160 hartree. The single-
reference perturbation approach (MP2) starts to diverge at
about the 300 pm structure. Around equilibrium distance,
both MP-pMCPT and MP-uMCPT are much improved from

APSG in absolute energy, due to the consideration of
dynamical correlation. As the bond length gets large,
however, the two curves behave differently. The curve by
MP-pMCPT becomes similar to the MP2 one up to 250 pm
and levels out; hence, the dissociation energy is overesti-
mated compared to MRMP2. On the other hand, MP-uMCPT
reproduces the shape by MRMP2 or APSG-PT up to the
dissociation limit. This may be attributed to the quasi size
consistency of MP-uMCPT.

Figure 3 shows the potential energy curves for two-bond
homogeneous dissociation of the H2O molecule. Although
this sort of dissociation requires at least four-electron four-
orbital active space, APSG still gives a qualitatively nice
curve. APSG-PT cannot produce a correct dissociation curve
shape in this case. On the other hand, MP-pMCPT and MP-
uMCPT nicely level out with increasing bond length. The
MP-pMCPT curve again follows MP2 up to 200 pm and
overestimates the dissociation energy as compared to the
MRMP2 result. The MP-uMCPT produces a potential curve
similar to MRMP2 even for this multiple bond dissociation
example.

Next, we assessed the dissociation potential energy surface
for the bond-breaking process of the HF molecule, shown
in Figure 4. In this system, the full-configuration interaction
(FCI) results were obtained around equilibrium and dissoci-
ated structures by utilizing the sparse FCI algorithm of Rolik
et al.44 The behavior of the curves resembles that of Figure
2. In particular, MP-uMCPT reproduces the MRMP2 curve
well, while MP-pMCPT follows the MP2 curve up to 250

|ψ〉 ≡ |ψAPSG〉 ) cHF ∏
i

geminal (1 + ∑
a∈S(i)

ci
a

cHF
T̂iRi�

aRa�)|HF〉

Figure 2. Potential energy curves for the heterogeneous one-
bond dissociation of the H2O molecule. The other O-H bond
length is fixed to 95 pm and the bond angle is fixed to 104.5°.

Figure 3. Potential energy curves for the homogeneous two-
bond dissociation of the H2O molecule. The bond angle is
fixed to 104.5°.
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pm. Since the energy errors of MRMP2 with respect to FCI
are comparable (0.0071 and 0.0075 hartree at 90 and 500
pm bond length, respectively), the energy difference from
MRMP2 is a good indicator to assess the accuracy of the
methods. These data are shown in Figure 5. Around equilibrium
distance, the APSG energy error is larger than at the end of the
process, due to the lack of dynamical correlation. The errors of
MP-pMCPT and MP-uMCPT around equilibrium geometry are
improved to less than 0.01 hartree by taking dynamical
correlation into account. While the error of MP-pMCPT
becomes large as the bond is stretched, MP-uMCPT remains
fairly constant: NPEs of MP-pMCPT and MP-uMCPT are
0.0671 and 0.0102 hartree. The latter is comparable to the
0.0079 hartree error of APSG-PT.

Further, we assessed potential energy curves for the triple-
bond-breaking process of the N2 molecule, shown in Figure
6. The MRMP2 calculations for the N2 molecule were based
on a CASSCF(6,6) wave function as a reference. In this
example, APSG-PT as well as MP2 diverge, as expected.

The MP-pMCPT and MP-uMCPT methods give qualitatively
good dissociation profiles even for this triple-bond breaking,
although slight bumps can be seen between the equilibrum
and dissociated structures. It is to be noted here that the
APSG reference wave function underlying MP-MCPTs is
poorer than CASSCF(6,6) used for MRMP2, since sextuply
excited deteminants appear as products of two-electron
excitations in APSG. The imperfection of APSG to describle
triple bond breaking as compared with CASSCF may be
credited for the breakdown of MP-MCPT dissociation curves.

5.2. Parameters at Equilibrium Geometry. Next, we
calculated parameters at an equilibrium geometry of diatomic
molecules, i.e., equilibrium bond length (Re), harmonic
frequencies (f), and dissociation energies (De). Dissociation
energy is evaluated as the energy difference between the
equilibrium and 500 pm structures.

In Table 1, we summarize the parameters of the HF
molecule. Equilibrium bond disstance as calculated by either
of the present MP-MCPTs agrees with FCI within 0.3 pm.
This is better than the Re obtained by either MRMP2 or
APSG-PT. The MP-pMCPT frequency is larger than f
calculated by MP-uMCPT or MRMP2, which relates to the
overestimation of the dissociation energy in MP-pMCPT.
Both Re and f are remarkably well estimated by APSG in
this system.

The situation becomes different in the F2 molecule, which
has a much shallower potential than HF. Table 2 shows the
parameters of F2. For comparison, experimental data from
ref 45 are also indicated. Compared to experimental values,
APSG overestimates Re by more than 10 pm and underes-
timates De by 70%, which is also reflected in the underes-
timation of f. As a contrast to this, MP-pMCPT underesti-
mates Re by about 5 pm, overestimates De by more than
200%, and consequently also overestimates the harmonic

Figure 4. Potential energy curves for the dissociation of the
HF molecule.

Figure 5. Energy difference from the MRMP2 results for the
dissociation of the HF molecule.

Figure 6. Potential energy curves for the dissociation of the
N2 molecule.

Table 1. Calculated Equilibrium Distances (Re), Harmonic
Vibrational Frequencies (f ), and Dissociation Energies (De)
of the HF Molecule Adopting the 6-311G** Basis Set

method Re [pm] f [cm-1] De [eV]

HF 89.6 4496 22.14
APSG 91.0 4223 4.997
MP2 91.2 4247
MRMP2(CASSCF(2,2)) 91.9 4143 5.696
APSG-PT 91.8 4038 5.842
MP-pMCPT(APSG) 91.0 4280 7.368
MP-uMCPT(APSG) 91.6 4160 5.789
full CI 91.3 4213 5.679

Table 2. Calculated Equilibrium Distances (Re), Harmonic
Vibrational Frequencies (f ), and Dissociation Energies (De)
of the F2 Molecule Adopting the 6-311G** Basis Set

method Re [pm] f [cm-1] De [eV]

HF 133.1 1209 9.347
APSG 153.2 521 0.475
MP2 141.1 914
MRMP2(CASSCF(2,2)) 144.8 759 1.233
APSG-PT 146.1 711 1.068
MP-pMCPT(APSG) 136.8 1087 4.089
MP-uMCPT(APSG) 148.0 678 1.538
exptl.a 141.2 917 1.602

a Ref 45.
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frequency. On the other hand, MP-uMCPT gives reasonable
results: De is much improved from APSG, and Re and f agree
with those by APSG-PT or MRMP2 tolerably.

Finally, the parameters of N2 are summarized in Table 3
and compared to experimental data from ref 45. The
equilibrium bond length and the harmonic frequency are well
reproduced within 2 pm and 150 cm-1 except for HF and
MP2. Overestimation of Re and slight underestimation of f
is given by MP-uMCPT, showing resemblance to MRMP2
results. However, MP-uMCPT overestimates De, which is
contrary to MRMP2. The overshooting of De is larger by
MP-pMCPT, about 150%.

6. Concluding Remarks

Two simple extensions of single-reference MP theory to the
multireference case were presented at the second order. The
theories are strongly reminiscent of the single-reference MP2
procedure, particularly in what concerns the coefficient
matrix of the linear system of equations determining the first-
order wave function. Considering this equation, the present
MR extensions practically affect only the inhomogeneous
term, i.e., the right-hand side of the first-order equation.
Numerical implementation of the theories is straightforward
on the basis of an existing single-reference code adapted to
a localized basis. Computational requirements of the ap-
proaches agree with single-reference MP2 calculation on a
localized basis.

Among previous multireference MP theories, MP-MCPT
shows the most similarity with multiference PT methods
which apply a Fockian appropriately multiplied by Hilbert-
space projectors to define the zero-order Hamiltonian. The
novelty of the present scheme lies in the biorthogonal
treatment of the overlap among basis vectors in the config-
uration space.

The simplicity of MP-MCPT methods is counterweighted
by their failure to show desirable properties like orbital or
principal determinant invariance. Size consistency is achiev-
able only in MP-uMCPT, if assuming a block-diagonal form
of the Fockian. Numerical assessment shows that in spite of
their simplicity, the range of applicability does cover
problems of significant multireference character, like the
bond breaking process. Properties of equilibrium structures
are also well estimated by MP-uMCPT.
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(10) Rolik, Z.; Szabados, Á.; Surján, P. R. J. Chem. Phys. 2003,
119, 1922.
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Abstract: An eigenspace update method is introduced in this article for molecular geometry
optimization. This approach is used to obtain the nonredundant internal coordinate space and
diagonalize the Hessian matrix. A select set of large molecules is tested and compared with the
conventional method of direct diagonalization in redundant space. While all methods considered
herein take on similar optimization pathways for most molecules tested, the eigenspace update
algorithm becomes much more computationally efficient with increasing size of the molecular
system. A factor of 3 speed-up in overall computational cost is observed in geometry optimization
of the 25-alanine chain molecule. The contributing factors to the computational savings are the
reduction to the much smaller nonredundant coordinate space and the O(N2) scaling of the
algorithm.

I. Introduction

Molecular geometry optimization underlies all computational
chemistry investigations by providing characteristic stationary
point structures on potential energy surfaces (PESs).1,2 The
most widely used geometry optimization method is the so-
called quasi-Newton approach, in which analytical first
derivatives and approximate second derivatives are used to
search for a lower energy point on the PES. In this method,
a Newton-Raphson step, ∆x, is taken on a local quadratic
PES:

where g is the gradient (first derivative) and H is the Hessian
(second derivative). In practical implementations, the
Newton-Raphson step is stabilized with a control technique
such as the rational function optimization (RFO)3,4 and the
trust radius model (TRM).5-8 In the quasi-Newton approach
for geometry optimizations, computationally expensive ana-

lytical evaluations of the second derivatives are replaced with
a numerical Hessian update scheme, such as BFGS,9-12

SR1,13 and PSB.14,15 To obtain an optimization step ∆x, eq
1 can be solved with a direct inversion of the Hessian or
RFO/TRM in the eigenvector space of the Hessian. However,
inversion or diagonalization of a Hessian matrix incurs an
O(N3) scaling, where N is the number of nuclear degrees of
freedom. Such a cubic scaling can become a substantial
bottleneck in the optimization of large molecules with
semiempirical or linear scaling electronic structure methods.
Alternatively, an iterative O(N2) approach can be carried out
to search for the RFO solution in the reciprocal space of the
Hessian.16 However, iterative solutions are often associated
with numerical instabilities and a large scaling prefactor. In
addition, iterative solutions do not offer direct computation
of eigenvectors and eigenvalues that are important in
vibrational analysis and transition state optimizations.

On the other hand, the choice of coordinate system in
which the geometry optimization is conducted is crucial for
successful convergence of the geometry optimization algo-
rithm. Generally, geometry optimization in an appropriate
set of internal coordinates can converge significantly faster
than in Cartesian coordinates.17-19 However, a practical
internal coordinate system for molecular geometry optimiza-

* Corresponding author e-mail: li@chem.washington.edu.
† University of Washington, Seattle.
‡ Kunming University of Science and Technology.
§ Gaussian Inc.

∆x ) -H-1g (1)

J. Chem. Theory Comput. 2010, 6, 2034–20392034

10.1021/ct100214x  2010 American Chemical Society
Published on Web 06/07/2010



tions usually contains redundancy. For large-scale systems,
coordinate redundancy can become the speed-limiting factor
arising from operating on excessively large matrices. In
principle, redundancy can be removed by transformation to
the nonredundant internal coordinate, leading to a much
smaller coordinate space and less computationally expensive
matrix inversion. However, obtaining the redundant-
nonredundant vectors is another O(N3) procedure where N
is the number of nonredundant coordinates. This dilemma
largely prevents a practical application of geometry optimi-
zation in nonredundant coordinate space.

In this paper, we present an eigenspace update scheme
with an O(N2) scaling in the nonredundant internal coordinate
space. Computational performance and efficiency are com-
pared for a select set of large molecules with the standard
full diagonalization-based Berny algorithm18,20 in the re-
dundant internal coordinate with RFO.

II. Methodology

A. Eigenspace UpdatesAn O(N2) Algorithm for
Molecular Geometry Optimization. Assume eigenvectors,
C, and eigenvalues, λ, of the Hessian exist at step i:

Then, a forward optimization step, ∆xi, can be obtained by
means of RFO or TRM, using eq 1, resulting in a new
geometry, xi+1; a new gradient, gi+1; and a new and updated
Hessian, Hi+1. In the current implementation, we use a
weighted combination of BFGS9-12 and SR113 with the
square root of the Bofill21 weighting factor (see refs 22 and
23 for details). The new Hessian Hi+1 can be projected into
the previous eigenvector space Ci as

Equation 3 can be considered as an intermediate diagonal-
ization step. In principle, one can obtain the eigenvalues,
λi+1, and eigenvectors, Ci+1, of the Hessian by diagonalizing
∆i+1:

However, eqs 4 and 5 do not initially seem advantageous
over the traditional approach of direct diagonalization of Hi+1.
From the molecular vibration standpoint, nonzero off-
diagonal elements in eq 3 are related to vibrational couplings
and anharmonicities. For any given normal mode, there exists
a vibration which gives rise to the strongest coupling, or the
largest off-diagonal element in ∆i+1. Usually, in a nearly
quadratic potential energy surface, changes in the Hessian
matrix are small. If we only consider changes of the Hessian
from the strongest couplings, ∆i+1 in eqs 3 and 4 can be
replaced with a tridiagonal form, ∆3,i+1, where the only
nonzero off-diagonal elements are the first diagonal below/
above the main diagonal. Diagonalization of a tridiagonal
matrix in eq 4 formally scales as O(N2) when the DiVide
and Conquer24 algorithm is employed. As a result, eqs 3-5

become an eigenvector and eigenvalue update scheme, which
is much more efficient than direct diagonalization.

In the following tests, we use a LAPACK subroutine to
obtain eigenvalues and eigenvectors of a tridiagonal matrix
∆3,i+1. The projected Hessian matrix ∆i+1 is reorganized by
swapping rows/columns in every optimization step so that
the largest off-diagonal element for any given mode is
positioned in the first diagonal below/above the main
diagonal. The reorganization starts from the first projection
vector in Ci. When the projected Hessian matrix is reorga-
nized, the related projection eigenvectors Ci are also rear-
ranged consistently according to the rows/columns being
swapped in ∆i+1. Note that this reorganization does not
change the map between eigenvectors C and the geometric
coordinates x.

B. Transformation to Nonredundant Coordinate Space.
Analytical gradients, g, are usually computed in the
Cartesian coordinate and require geometries, x, represented
in the same coordinate as well. The transformation from
the Cartesian coordinate x to the redundant internal
coordinate q can be done with a symmetric G matrix built
from the Wilson B matrix:25

where dq and dx are infinitesimal displacements in internal
and Cartesian coordinates, respectively. With the trans-
formation matrices defined in eqs 6 and 7, the gradient
and optimization step can be transformed between two
representations (Cartesian and redundant internal):

where fx and fq are forces in the Cartesian and redundant
internal coordinate, and the Newton-Raphson step, ∆q,
in the redundant internal coordinate is

Note, in the quasi-Newton approach, the Hessian matrix
can be updated in redundant internal coordinates without
transformation back to the Cartesian coordinate.

For optimizations of large-scale systems, a smaller non-
redundant coordinate space is preferred. The redundancy
condition can be determined by single value decomposition
(SVD) of the matrix G:19

In eq 11, K corresponds to the nonredundant coordinate
space with nonzero eigenvalues Λ, and L consists of
redundant eigenvectors of G. However, obtaining the eigens-
pace of the G matrix is another O(N3) procedure and speed-
limiting step, and large molecules often have a large number
of redundant coordinates. The eigenspace update concept
introduced in section II.A can be used here to reduce the

Hi ) Ci · λi · Ci
† (2)

∆i+1 ) Ci
† · Hi+1 · Ci (3)

λi+1 ) Ai+1
† · ∆i+1 · Ai+1 (4)

Ci+1 ) Ci · Ai+1 (5)

B ) dq
dx

(6)

G ) BBT (7)

fq ) G-Bfx (8)

∆x ) BTG-∆q (9)

∆q ) H-1f (10)

G ) (KL)(Λ 0
0 0 )(KL)T, Λ * 0 (11)
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dimension of the G matrix. Assuming the linear dependence
in the internal coordinate space remains the same from step
to step, the full G matrix can then be reduced into the
nonredundant coordinate space using the previous nonre-
dundant vectors K, followed by an SVD of the reduced and
much smaller G̃ matrix.

The nonredundant coordinate space at the i + 1 step can be
constructed accordingly:

The SVD of the full G matrix in redundant internal space is
performed only once in the first step. Subsequent geometry
optimization steps will take advantage of this eigenspace
update scheme (eqs 12-14) to obtain the nonredundant
coordinate space Ki+1. As the reduced G̃ matrix is signifi-
cantly smaller than the original G matrix in redundant space,
the SVD on G̃ is no longer computationally dominant. As a
result, obtaining the redundant-nonredundant transformation
matrix Ki+1 becomes a pseudo-O(N2) approach.

With the eigenspace of the nonredundant internal coor-
dinate, the Newton-Raphson step in eq 10 can be trans-
formed into the nonredundant internal coordinate space with
the following equation:

If we define the Newton-Raphson step, Hessian, and force
in the nonredundant internal coordinate as

eq 15 becomes the familiar form of the Newton-Raphson
step, but in the nonredundant internal coordinate space:

The RFO correction can be applied to eq 19 with the Hessian
eigenspace update scheme presented in the previous section.
The displacement is then transformed back to redundant
internal coordinate:

followed by another transformation to the Cartesian coor-
dinate using the curvilinear eq 9 through an iterative
approach.19

III. Benchmarks and Discussion

Optimizations are carried out using the AM1 Hamiltonian
as implemented in the development version of the Gauss-
ian program26 with the addition of the geometry optimiza-
tion algorithm using the eigenspace update (ESU) method
in the nonredundant internal coordinate presented in
sections II.A and B. For all test cases, the geometry
optimization is considered converged when the maximum
component of the force vector is less than 4.5 × 10-4 au,
the root-mean-square (RMS) force is less than 3 × 10-4

au, the maximum component of the geometry displacement
is less than 1.8 × 10-3 au, and the RMS geometry
displacement is less than 1.2 × 10-3 au. To ensure a
smooth convergence, the tridiagonal approximation of the
reduced Hessian matrix is turned on when the regular RFO
correction is smaller than one-tenth of the minimum

Figure 1. Comparison of minimum eigenvalues of the
Hessian during optimization of a single water molecule, using
analytical Hessian, updated Hessian with diagonalization, and
Hessian eigenspace update approaches.

Table 1. Comparison of Computational Costs for RFO Approach Using the Diagonalization in Redundant Space and
Eigenspace Update Methoda

diagonalization in redundant space eigenspace update

molecules (numbers of atoms) energy (au) geomb SCF stepsc geomb SCF stepsc

hydrazobenzene (26) 0.129468 1.00 8.70 20 0.52 8.70 20
taxol (113) -0.666862 1.00 0.68 63 0.45 0.71 66
for-(Ala)10-NH2 (106) -0.733344 1.00 0.82 100 0.66 0.97 115
for-(Ala)20-NH2 (206) -1.424445 1.00 0.63 206 0.52 0.70 238
for-(Ala)25-NH2 (259) -1.779332 1.00 0.48 82 0.38 0.50 87
crambin (642) -4.167923 1.00 0.27 389
crambin (642) -4.169380 0.20 0.23 333

a The computational cost is evaluated using the total CPU time of geometry steps using full diagonalization in redundant internal
coordinate as the unit reference. b One geometry step includes forming the Wilson B matrix; obtaining the nonredundant eigenspace,
Hessian update, diagonalization, or eigenspace update; and solving the RFO equation. c Total number of geometry optimization steps.

G̃ ) Ki
T · Gi+1 · Ki (12)

G̃ ) Ui+1 · Λi+1 · Ui+1
T (13)

Ki+1 ) Ki · Ui+1 (14)

K-1∆q ) (KTHK)-1KTf (15)

∆q̃ ) K-1∆q (16)

H̃ ) KTHK (17)

f̃ ) KTf (18)

∆q̃ ) H̃-1f̃ (19)

∆q ) K∆q̃ (20)
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Hessian eigenvalue. In the following discussion, we refer
to a geometry step as the procedure including (1) forming
the Wilson B matrix; (2) obtaining the nonredundant
eigenspace (section II.B), (3) Hessian update, and (4)
diagonalization or eigenspace update (section II.A); and
(5) solving the RFO equation. For semiempirical and force
field methods, the computational cost of the analytical
gradient is not considered to be a computationally
expensive step.

In the ESU approach, the Hessian eigenspace is usually
an approximation and requires a number of optimization steps
to converge to the true value. Figure 1 shows the convergence
of the Hessian eigenspace using the ESU method and direct
diagonalization of the updated Hessian, compared to the true
analytical Hessian. It is known that the Hessian update
scheme is able to converge to the true Hessian within a few
geometry steps. Built on the Hessian update scheme, the
Hessian eigenspace update method (section II.A) adds an
additional degree of approximation. Therefore, the conver-
gence behavior of the ESU approach is slower than the
diagonalization-based method, but only by a few geometry
steps. Nevertheless, the gain in computational speed owing
to the O(N2) scaling and the nonredundancy is promising
for large scale systems.

Table 1 lists relative computational costs for geometry
optimizations using the ESU method for a select set of
molecules compared to those obtained with full diago-
nalization in the redundant internal coordinate. The
computational cost is evaluated using the total CPU time
of geometry steps of the Hessian diagonalization-based
RFO approach as the unit reference. For smaller mol-
ecules, such as hydrazobenzene, there are no savings in
the overall computational cost. Although the computational
cost for geometry steps is reduced, the approximate nature
of the Hessian eigenspace in ESU leads to several
additional optimization steps compared to the diagonal-
ization-based RFO approach. As a result, additional
computational cost incurs, arising from additional SCF

steps, and therefore the application of ESU for small
molecules is not particularly advantageous.

On the other hand, as the molecular size increases, the
cost for geometry steps becomes dominant in computational
cost for semiempirical self-consistent field (SCF) or force

Figure 2. Comparison of computational costs using diago-
nalization in the redundant coordinate and eigenspace update.
The computational cost of a single optimization step is plotted
against the number of atoms.

Figure 3. Comparison of optimizations using diagonalization
in redundant space and eigenspace update methods for (a)
taxol, (b) 25-alanine chain, and (c) crambin at the AM1 level
of theory. See Table 1 regarding the evaluation of computa-
tional cost.
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field energy calculations. In Table 1, we include test cases
of large-scale molecules, such as taxol, alanine chains, and
crambin. Because of excessive nuclear and electronic degrees
of freedom, and numerous undesirable shallow potential
wells on the PES, these molecules are often difficult and
computationally expensive to optimize. As the nuclear
degrees of freedom increase, the computational cost of the
ESU-based method is noticeably less expensive than the
conventional approach using full diagonalization in redundant
coordinates. For the 25-alanine chain case, a ∼60% com-
putational saving is observed. In this case, the total compu-
tational cost for SCF iterations in the ESU-based method is
slightly (∼1%) more expensive than the conventional ap-
proach due to a slightly larger number of geometry steps.
Therefore, such a large computational savings in the ESU-
based method can be ascribed to the efficient eigenspace
update algorithm in nonredundant internal coordinate space
introduced herein. Although we cannot make a direct
comparison for the largest test case, crambin, as the two
methods converge to different minima,27 a factor of 3 in
computational cost is definitely noticeable.

To further understand the computational performance of
the ESU approach, we plot in Figure 2 the computational
cost of a single geometry step as a function of the number
of atoms. It is clear that ESU is an O(N2) method while the
diagonalization-based approach exhibits an O(N3) scaling.
As the molecular sizes increase, the advantage of using an
O(N2) approach becomes highly appreciated. Figure 3a-c
illustrate optimization processes of selected large-sized
molecules: taxol, alanine-25, and crambin at the AM1 level
of theory. It shows that the ESU method takes a similar
optimization pathway as diagonalization in the redundant-
space-based RFO approach but has the advantage of being
much more efficient.

IV. Conclusion

This paper presents a geometry optimization method using
an eigenspace update approach. This method takes advantage
of previously computed eigenvectors for obtaining eigens-
paces of the transformation G matrix and the Hessian maxtrix
and exhibits an O(N2) scaling. This method shows an
encouraging efficiency for geometry optimization, with up
to a factor of 3 savings in computational cost for large-sized
molecular systems. The optimization pathways are similar
to those using conventional diagonalization in the redundant-
space-based RFO approach. An even more promising
implementation of the ESU method would be combination
direct inversion in the iterative subspace algorithm (DIIS),
as exemplified by the energy-represented DIIS23 and the
simultaneous DIIS methods.27
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Abstract: There is, in general, very good experience using hybrid DFT to study mechanisms
of enzyme reactions containing transition metals. For redox reactions, the B3LYP* functional,
which has 15% exact exchange, has been shown to be particularly accurate. Still, there are
some cases which have turned out to be quite difficult with large errors. In the present study,
the effects of van der Waals interaction have been investigated for these cases, using the
empirical formula of Grimme. The results are encouraging.

Introduction

Hybrid density functional theory has been an extremely
successful tool in studying mechanisms for enzymatic
reactions involving transition metals.1-3 Barriers and reaction
energies within 3-5 kcal/mol from experimental results have
generally been found, provided the chemical model is large
enough. Still, there are continuous reports of failures of
hybrid DFT for transition metal complexes. For example,
the energy differences between the peroxo and bis-µ-oxo
isomers of copper dimer complexes appear to show big errors
of 10-15 kcal/mol.4 Also, the binding of methyl and
adenosyl to cobalamin5 as well as the binding of small
molecules to heme groups have been reported to be
underestimated by the same, or even larger, magnitude.6 The
most common explanation for the DFT failures has been the
inability to describe multireference effects, since DFT is
inherently a single determinantal method.6,7 That explanation,
implying that B3LYP should very often be distrusted for
transition metal complexes, is in sharp contrast to the
excellent experience obtained when studying chemical reac-
tions with this method. In the present letter, these failures
for transition metal complexes are reinvestigated using recent
improvements of hybrid DFT, where van der Waals effects
are empirically included.8 A significant advantage of this
improvement is that it can be applied on top of the results

of a well established DFT method, such as B3LYP.9 Since
it has been argued that the fraction of exact exchange is a
way to tune nondynamical correlation effects in DFT,10

another advantage is that these effects and van der Waals
effects, which have different origins, can be separated. This
type of improvement is in contrast to suggestions to improve
the results in difficult cases by selecting a different functional
depending on the problem investigated. In that approach, the
hybrid B3LYP functional could be used for molecules
containing first and second row atoms, while a nonhybrid
functional like BP86 should be used for binding methyl and
adenosyl to cobalamin, and M06 functionals should be used
for copper complexes.4-7 There are some previous investiga-
tions on the inclusion of explicit van der Waals effects for
3d transition metal complexes. For example, significant
improvements were demonstrated for noncovalent ligand
binding energies in some chromium complexes.11 In a
benchmark test containing 3d transition metals, the inclusion
of a dispersion correction on top of the B97 functional
essentially removed cases with large errors.12 Also, the
M06-L functional has been demonstrated to show much
improved results for noncovalent interactions in 3d com-
plexes.13

Methods

In the calculations performed here, the B3LYP* functional14

has been used if not otherwise indicated. This is a slight
modification of the original B3LYP functional9 with 15%
exact exchange (rather than 20%), which has been found to
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be superior in most cases for describing oxidations of
transition metals.2,14,15 The energetics discussed were ob-
tained using large, nearly saturated basis sets (cc-pvtz(-f))
in single point calculations at geometries optimized using a
smaller basis set. Solvent effects were included with a
dielectric constant chosen from case to case. They were not
found to be significant in the reactions discussed below. The
calculations were performed using the Jaguar program.16

A Typical Energy Diagram. The discussion of the results
will start with a typical example of a reaction mechanism
involving a transition metal complex, taken from a recent
application.17 This reaction is for a biomimetic intradiol-
cleaving dioxygenase, where the details do not matter in the
present context. The energy diagram obtained at the B3LYP*
level for the suggested mechanism is shown in Figure 1. The
starting point of the reaction is an Fe(III) complex with a
bound catechol substrate. In the first step of the mechanism
in the figure, O2 binds to the complex. The mechanism then
proceeds by formation of a bridging peroxide, and the
cleavage of the O-O bond. Finally, the ring of the catechol
substrate is opened in between the carbons carrying the
hydroxyl groups, an intradiol cleavage. The competing
mechanism is an extradiol ring opening, and the main
question asked is why one mechanism is preferred and not
the other. This and other questions were answered by the
model calculations, and the barriers computed were reason-
able compared to experiments. In short, there was no sign
of any failure of B3LYP* in spite of the redox chemistry
occurring.

Also shown in Figure 1 are the relative effects (set to zero
for R2) from adding van der Waals interactions through the
empirical formula. The most striking feature is that these
effects are almost perfectly constant throughout the reaction,
except for the step from R1 to R2 when O2 becomes bound,
where there is a significant relative effect of -3.8 kcal/mol,
which is expected since two additional atoms are added to
the complex. The conclusion drawn is that, apart from this
effect, which has been pointed out before,18,19 the energy

diagram is almost unaffected by adding van der Waals
effects. The most important mechanistic issues, such as the
choice of the intradiol or extradiol pathway, are therefore
also unaffected.

Dicopper Complexes. The discussion of dicopper com-
plexes will start with the case with iPr3TACN ligands, shown
in Figure 2. This is an interesting system experimentally,
for which it has been shown that the bis-µ-oxo (in the figure)
and the peroxo complexes are in equilibrium.20 The experi-
mental estimate of the energy difference is 0.9 kcal/mol
favoring the peroxo complex. The previously calculated
B3LYP value is 15.0 kcal/mol, favoring the peroxo complex,
and was claimed to show “some of the worst agreement
between pure and hybrid functionals” ever reported.4 The
pure functional value was in good agreement with experi-
ments, and this type of functional was therefore strongly

Figure 1. Energy diagram for the biomimetic intradiol-cleaving dioxygenase discussed in the text. The red line is without, the
blue line with van der Waals effects.

Figure 2. Optimized Cu2(III,III)-bis-µ-oxo structure with
iPr3TACN ligands.
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recommended for these systems. The present B3LYP* value
is 4.2 kcal/mol. Adding the van der Waals effect of -3.6
kcal/mol leads to an energy difference of only 0.6 kcal/mol.
The solvent effects (already included) favor the bis-µ-oxo
structure by -1.7 kcal/mol. The zero-point effects of +2.0
kcal/mol (not included) favor the peroxo structure, while the
relativistic effects of -3.9 kcal/mol (not included)21 are in
the opposite direction. Overall, the present result is in quite
reasonable agreement with experiments. The difference
between the present and the previous results is partly
explained by the use of B3LYP*, which favors the bis-µ-
oxo structure by 5.7 kcal/mol compared to B3LYP, and the
van der Waals effects of 3.6 kcal/mol, also favoring the bis-
µ-oxo structure. However, this is not the full explanation,
since these corrections only sum up to 9.3 kcal/mol and the
difference amounts to 14.4 kcal/mol. The larger basis set
used here also appears to play a role. For the corresponding
case with iPr2TACD ligands, the present calculations favor
the peroxo structure by 5.3 kcal/mol, including a van der
Waals effect of -5.8 kcal/mol. This result is also in
qualitative agreement with experiments, even though the
exact energy difference is not known in that case. For another
type of ligand, termed DBED, the experimental energy
difference is shifted slightly (by 1 kcal/mol) toward the
peroxo complex, compared to the case with iPr3TACN
ligands.22 The present calculations give an energy difference
of 2.7 kcal/mol favoring the peroxo structure, where the van
der Waals contribution is -2.8 kcal/mol. The calculated
difference from the case with iPr3TACN ligands is thus +2.1
kcal/mol in favor of the peroxo structure, in comparison with
the experimental preference by about +1.0 kcal/mol.

Since the above results are in such good agreement with
experiments, it is interesting to investigate what the same
level of treatment gives for the energy difference between
the peroxo and the bis-µ-oxo structure of the dicopper
complexes appearing in the hemocyanin, tyrosinase, and
catechol oxidase enzymes, which has been a strongly debated
issue.23 In these cases, there are three histidine ligands on
each copper. Modeling these by imidazoles leads to an energy
difference of 14.1 kcal/mol favoring the peroxo structure,
which includes a van der Waals effect of -3.2 kcal/mol.
This result is in qualitative agreement with the fact that only
the peroxo complex has been observed. The previous
conclusion that the bis-µ-oxo structure does not enter into
the mechanisms in these enzymes,23 therefore, still appears
to hold.

Binding of Methyl and Adenosyl to Cobalamin. The
cleavage of the Co-C bond in methyl- or adensoyl-
cobalamin, see Figure 3, is a common first step in many
reactions catalyzed by enzymes including the vitamin B12

cofactor. In the case of adenosyl, the cleavage is homolytic,
and the resulting radical abstracts a hydrogen atom from the
substrate in the second step. In the case of methyl, the
cleavage is heterolytic, resulting in a methyl cation. A major
problem in quantum chemical studies of these enzymes has
been that it has turned out to be difficult to obtain a proper
homolytic bond dissociation energy for the Co-C bond.
B3LYP has been found to underestimate the bond strength
by 10-15 kcal/mol. In contrast, nonhybrid methods like

BP86 have given values much closer to experiments but have
instead had problems in describing the energetics of the
subsequent reaction steps.

Using the model in Figure 3, a B3LYP value for the Co-C
bond strength for methyl of 16.2 kcal/mol (including zero-
point and solvent corrections) was obtained in ethylene-
glycol (ε ) 40),24 compared to the experimental value of
37 ( 3 kcal/mol.25 A discrepancy of as much as 20 kcal/
mol is thus obtained, in line with previous bad experience
using hybrid DFT. At the B3LYP* level, the bond strength
increases to 20.7 kcal/mol, which is still a severe underes-
timation. However, in this case, the van der Waals effects
turn out to be quite large with 11.3 kcal/mol increasing the
bond strength. The resulting bond strength of 32.0 kcal/mol
is at least in reasonably good agreement with experiments.
For adenosyl, the corresponding results are 16.7 kcal/mol at
the B3LYP* level, and 29.5 kcal/mol with van der Waals
effects added. This result agrees very well with the experi-
mental value of 30 kcal/mol.26 The van der Waals contribu-
tion of 12.8 kcal/mol for adenosyl is remarkably large. The
reason is the large number of rather short atom-atom
distances between the substrate and the cobalamin. The van
der Waals contribution from the metal is very small due to
the cutoff value in the empirical formula. It is clear that the
mechanisms of these cobalamin-containing enzymes cannot
be described without van der Waals interactions.

Small Molecule-Heme Interactions. The binding of
molecular oxygen to heme-iron is important in several
biological processes, for example, in oxygen transport and
in respiration. Also, the binding of other small molecules,
such as CO and NO, to heme-iron plays an important role,
for example, as inhibitors for O2 binding. As has been pointed
out before, the binding energies of these small molecules to
heme-Fe(II) as calculated using the B3LYP functional are
significantly too small,6 at the same time as it was shown
that CASPT2 calculations gave good agreement with ex-
perimental results. Since this failure of the DFT calculations

Figure 3. Optimized structure for cobalamin with a bound
adenosyl ligand.
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can be due to the lack of both multireference and van der
Waals effects, new calculations have been performed using
both the B3LYP and the B3LYP* functionals, and adding
the empirical van der Waals corrections according to
Grimme, giving rise to four calculated binding energies for
each system: B3LYP, B3LYP-D, B3LYP*, and B3LYP*-
D. The model used in the calculations is shown for the NO
case in Figure 4, and the results are summarized in Table 1.

As can be seen from Table 1, the attractive van der Waals
effects are quite significant, 9.7 kcal/mol for CO, 9.3 kcal/
mol for NO, and 7.7 kcal/mol for O2. This is due to the
interaction between the binding molecule and the large
number of atoms in the heme group. The B3LYP-D values
therefore come quite close to the experimental values for
both CO and O2, while the binding of NO is still much too
small, 16.9 kcal/mol compared to the experimental value of
22.8 kcal/mol. Reducing the amount of exact exchange in
going from B3LYP to B3LYP* gives quite large increases
in the binding energy, 5.7 kcal/mol for CO, 8.6 kcal/mol for
NO, and 4.4 kcal/mol for O2. In the case of (heme)Fe-O2,
which has an antiferromagnetically coupled open shell singlet
ground state, there is also a calculated spin-correction of 4.8
kcal/mol, and in the table all values are given with and
without this spin correction. The spin correction and the
reduction of exact exchange are partly related effects,
connected to the multiconfigurational character of the wave
function, and if both effects are applied, the calculated

binding energy is clearly too large, 18.0 kcal/mol (with van
der Waals correction) as compared to the experimental values
of 10-12 kcal/mol. Without spin correction, the B3LYP*-D
value of 13.2 kcal/mol is in good agreement with the
experimental values. For NO, the B3LYP*-D value of 25.6
kcal/mol is a bit too large compared to the experimental value
(22.8 kcal/mol), but it is still the best calculated value for
NO binding.

In summary, for these heme systems, the situation is more
complicated than for the other systems discussed above. The
van der Waals effects are large and important, but for some
systems, B3LYP-D gives better agreement with experimental
values, while for others, B3LYP*-D gives better results.
Further investigations are therefore needed to find out how
these systems should be best described.

Conclusions

In a few important cases, taken from studies of enzyme
mechanisms, van der Waals effects have been shown to be
quite significant. In most cases they appear in the step where
a substrate becomes bound to the metal cofactor. Apart from
this step, the van der Waals effects are normally small. By
including the van der Waals effects, and reducing the amount
of exact exchange to 15%, the results are in good agreement
with experiments even for most of these difficult cases. The
most significant improvements appear for the binding of
adenosyl to cobalamin and for biomimetic dicopper com-
plexes, where very good results are obtained. Interestingly,
the previous exclusion of the Cu2(III,III) state in the
mechanism of tyrosinase23 still appears to hold. The excep-
tions to the excellent results are the cases when a small
molecule is bound to a heme group, where the results are
still not quite satisfactory. For these systems, more work and
experience are needed to improve the situation.

Supporting Information Available: Coordinates for
all the structures discussed in the present paper. This
information is available free of charge via the Internet at
http://pubs.acs.org/.
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Abstract: Since the behavior of biomolecules can be sensitive to temperature, the ability to
accurately calculate and control the temperature in molecular dynamics (MD) simulations is
important. Standard analysis of equilibrium MD simulationsseven constant-energy simulations
with negligible long-term energy driftsoften yields different calculated temperatures for different
motions, however, in apparent violation of the statistical mechanical principle of equipartition of
energy. Although such analysis provides a valuable warning that other simulation artifacts may
exist, it leaves the actual value of the temperature uncertain. We observe that Tolman’s
generalized equipartition theorem should hold for long stable simulations performed using
velocity-Verlet or other symplectic integrators, because the simulated trajectory is thought to
sample almost exactly from a continuous trajectory generated by a shadow Hamiltonian. From
this we conclude that all motions should share a single simulation temperature, and we provide
a new temperature estimator that we test numerically in simulations of a diatomic fluid and of
a solvated protein. Apparent temperature variations between different motions observed using
standard estimators do indeed disappear when using the new estimator. We use our estimator
to better understand how thermostats and barostats can exacerbate integration errors. In
particular, we find that with large (albeit widely used) time steps, the common practice of using
two thermostats to remedy so-called hot solvent-cold solute problems can have the counter-
intuitive effect of causing temperature imbalances. Our results, moreover, highlight the utility of
multiple-time step integrators for accurate and efficient simulation.

1. Introduction

Fueled by algorithmic improvements and by the growth of
computer power, molecular dynamics (MD) simulations are
making increasingly important scientific contributions to
biology. There is considerable interest in further accelerating
simulations and improving their accuracy. Since most
biomolecular simulations are of classical systems at equi-
librium, one useful measure of accuracy is the extent to which

the distribution of energy among different degrees of freedom
is consistent with the equipartition theorem of statistical
mechanics.1 The most familiar consequence of equipartition
is that each particle in an equilibrium system has an average
kinetic energy of kBT/2 (where T is the temperature of the
system and kB is the Boltzmann constant) arising from its
motion in each spatial dimension. This result does not depend
on details of the potential energy function (the “force field”).
In biomolecular simulations, thermalization of kinetic energy
typically occurs on a subnanosecond time scale,2,3 so sub-
stantial deviations from equipartition in long simulations are
likely symptoms of a problem with the simulation methodol-
ogy. One symptom, whose presence is often tested for in
practice, is a difference between the temperature of the
solvent and solute, often referred to as a hot solVent-cold
solute problem.4 A hot solvent-cold solute problem could

* Corresponding author. E-mail: David.Shaw@DEShawResearch.
com.

† David E. Shaw is also affiliated with the Center for Compu-
tational Biology and Bioinformatics, Columbia University, New
York, New York 10032.

§ Current address: Department of Biochemistry and Molecular
Biophysics, Columbia University, New York, NY 10032.

J. Chem. Theory Comput. 2010, 6, 2045–2058 2045

10.1021/ct9002916  2010 American Chemical Society
Published on Web 05/24/2010



have many potential causes, and testing for the presence of
this symptom (and similar deviations from equipartition) has
helped to diagnose underlying problems in barostats,5

thermostats6,7 and in approximate treatments of long-range
electrostatic8-10 and dispersive11 interactions and has led to
various methodological improvements.

Here, we investigate how truncation errors arising from
the finite simulation time step δt affect equipartition and the
calculation of temperature. We mainly focus on the widely
used velocity-Verlet integrator,12,13 but the basic theoretical
finding applies to symplectic integrators in general. To help
rule out the well-documented causes of a breakdown of
equipartition noted above,5-11 we initially focus on constant-
energy simulations that are stable (that is, those that show
little long-term energy drift). Fortunately, this is achievable
with currently typical simulation parameters, so the results
are directly relevant in practice. Although not as dramatic
as hot solvent-cold solute problems arising from other
origins, the effects of truncation errors can still be substantial.
In Figure 1, for example, the temperature of a protein and
the surrounding water molecules are shown as a function of
simulation time. The temperature of the protein is seen to
be lower than that of the water by about 6 K.

Such results are widely understood to expose real simula-
tion artifacts originating in the finite integration time step,
but it is unclear whether they reflect any actual temperature
differences or even whether temperature has a precise
definition for δt > 0. In this paper, we show how the
definition of temperature generalizes to δt > 0 and show that,
in examples like the one above, different motions do share
a single temperature. Our reasoning is straightforward. The
velocity-Verlet integrator is symplectic14 and is, thus, thought
to sample positions and momenta almost exactly from a
trajectory generated by a modified Hamiltonian,15 often
called a shadow Hamiltonian. Since particle momenta do
not enter this Hamiltonian quadratically, the equipartition
relation is not applicable. We expect, however, that general-
ized equipartition,1,16 which holds for a broad class of

Hamiltonians, will be applicable to the shadow Hamiltonian.
This implies the existence of a single well-defined simulation
temperature for all motions that is given by the product of
momentum and velocity and that is easily evaluated in practice.

To avoid potential confusion at the outset and to clarify
why estimating temperature from the product of momentum
p and velocity V (a “pV formula”) is distinct from previous
approaches, we emphasize the finding17 that when δt >
0, V * p/m, where m is mass; we also explain more carefully
what we mean here by velocity and momentum. By
momentum, we mean the canonical momentum that enters
the shadow Hamiltonian. This is directly provided by the
integrator. For velocity Verlet, the momentum is simply the
usual on-step velocity-Verlet momentum. By velocity, we
mean the instantaneous rate of change of position on the
underlying trajectory generated by the shadow Hamiltonian.
The integrator directly yields positions (and momenta) but
not their time derivatives, and the velocity cannot be exactly
expressed in terms of a finite number of positions and
momenta. In particular, as noted above, V * p/m, even though
p/m might commonly be called a velocity; for velocity Verlet,
p/m (often called the on-step “velocity-Verlet velocity”)
differs from the velocity by O(δt

2). Thus if only the on-step
velocity-Verlet momenta are used to evaluate temperature
(a “p2 formula,” as used in Figure 1), then temperatures will
also be in error by order δt

2. Nevertheless, it is straightfor-
ward to construct more accurate velocity estimators.18 One
simple approach is a polynomial interpolation over positions
sampled at different times; the velocity estimator appearing
in Beeman’s version of Verlet13 is a well-known special case,
and unsurprisingly it is possible to increase the accuracy
further by interpolating over more positions. Perhaps coun-
terintuitively, however, our pV formula shows that having
obtained an accurate estimate of V, the temperature follows
via the product pV (even though p/m may itself be a poor
estimator of V) and not the square of the accurately estimated
velocity (a “V2 formula”), as appears to be typically
assumed.18,19 Indeed, as will become clearer below, if
temperature is estimated using highly accurate velocities
alone, a hot solvent-cold protein problem, like that shown
in Figure 1, will simply be replaced by a cold solvent-hot
protein problem of similar magnitude.

We test our theoretical conclusions numerically for two
systems. First, we calculate the temperatures of vibrational
and translational motion in a diatomic fluid as a function of
δt. We find that p2 and V2 temperature estimates each yield
substantially different values for the two motions, but the
pV estimator shows that the temperatures of these motions
are in fact identical within a very small statistical error. Thus
although conventional equipartition (by which we mean the
usual, as opposed to generalized, equipartition relation)
breaks down, generalized equipartition holds, and a well-
defined temperature exists. Using analytical estimates, we
confirm that although deviations from conventional equi-
partition do not reflect temperature differences, they do reflect
the real difference between the Hamiltonian and its shadow.
Second, we perform all-atom MD simulations of ubiquitin
in explicit solvent, examining the temperature of the different
quasiharmonic protein motions and comparing the overall

Figure 1. A hot solvent-cold protein problem. Temperatures
of the protein ubiquitin (blue points) and water solvent (red
points) are shown as a function of simulation time. Data were
taken from an all-atom constant energy simulation that used
velocity-Verlet integration with a 2 fs time step and bonds to
hydrogen constrained; more details are given in Section 3.2.
Temperatures were evaluated using the squares of the on-
step velocity-Verlet momenta. The lines denote the average
temperature values over the entire simulation.
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temperature of the protein to the solvent. Again, we find
different motions to share a single temperature, even when
conventional equipartition is not satisfied.

In addition to providing an accurate estimator for simulation
temperature and using it to confirm that generalized equipartition
is satisfied in stable simulations, we use it to investigate how
integration errors can be exacerbated by use of a thermostat or
barostat. This danger has been recently highlighted;18 we discuss
it in light of the new estimator and demonstrate some potential
pitfalls. Notably, we use our estimator to show that unless the
time step is chosen to be sufficiently small, use of multiple
thermostats can lead to a breakdown of generalized equipartition
with genuine temperature imbalances and with heat flow in the
system. The commonly used remedy of hot solvent-cold solute
problems in which one thermostat is applied to protein and
another to the solvent, in an effort to maintain them at the same
temperature, can thus potentially have a counterintuitive, and
counterproductive, effect.

The root cause of all the simulation artifacts investigated
in this paper is truncation error. Satisfying generalized
equipartition by no means implies that the simulation is free
from this source of artifacts; indeed, the breakdown of
conventional equipartition signals their existence. Reducing
the time step naturally reduces truncation error and brings
the different temperature estimators into agreement, but due
to the computational expense of MD, this solution is often
unpalatable. One promising approach to reduce errors is to
modify the integration scheme. Using the deviations from
conventional equipartition as a criterion, we show, for
example, that for our test systems, the reversible reference
system propagation algorithm (r-RESPA) multiple-time step
scheme20 can achieve the benefit of a reduced velocity-Verlet
time step at a fraction of the computational expense.

2. Theory

To generalize the definition of simulation temperature to δt >
0, we make use of two established concepts: generalized
equipartition and the shadow Hamiltonian, which we briefly
review in Sections 2.1 and 2.2, respectively. In Section 2.3, we
give our definition of simulation temperature for δt > 0. Using
the harmonic oscillator as an analytically tractable example, we
quantify errors in some conventional estimates of simulation
temperature in Section 2.4. Appendix A describes how to
estimate temperatures of motions that involve multiple atoms,
such as quasiharmonic motions in proteins. The effect of
integration errors on simulation pressure is discussed in Ap-
pendix B.

2.1. Generalized Equipartition. Generalized equipartition
(eqs 2 and 3) was derived by Tolman,16 who considered the
following canonical ensemble average for the Hamiltonian
system H(p,q):

We use xi to label an element of either position or
momentum. Nf is the number of positional degrees of

freedom, � ) 1/kBT, and Q ) ∫ dx exp(-�H). Under the
relatively mild requirement that the surface (second) term
on the right-hand side vanishes, use of Hamilton’s equations
leads to the exact result:

where qi and pi label individual positions and conjugate
momenta respectively, and the dot denotes a time derivative.
The velocities are

We have presented Tolman’s original proof for the
canonical (NVT) ensemble, because of its brevity. For the
microcanonical (NVE) ensemble, which is relevant to our
development below, the proof is described elsewhere;1 the
result is identical, apart from an i-independent correction of
order Nf

-1.21 The use of periodic boundary conditions means
linear momentum is often conserved in simulations. This
constraint leads to a modification to eq 2 of order N-1, where
N is the number of particles in the simulation.21,22 We ignore
effects of this magnitude except where explicitly noted. More
importantly, if qi is a periodic coordinate, then the second
term on the right-hand side of eq 1 may be nonzero, in which
case eq 3 will not hold. A commonly encountered example
is for simulations using periodic boundary conditions in
which the position qi of an atom is restricted to values that
lie within the simulation box; assuming that the Hamiltonian
is translationally invariant, then knowledge of a single
positional coordinate qi provides no information about ṗi,
so evidently these quantities are uncorrelated, and 〈qiṗi〉 )
〈qi〉 〈ṗi〉 ) 0, as may also be demonstrated by explicitly
evaluating the second term on the right-hand side of eq 1.

In MD simulations we usually use a Hamiltonian of the
form

where q denotes atom positions, m is the diagonal mass
matrix (mij ) δijmi), and U is the force field. Since H0

contains only quadratic terms in pi, eq 4 shows thatsfor
exact trajectoriessvelocities and momenta are related through
miVi ) pi. Eq 2 thus reduces to the familiar form of kinetic
energy equipartition:

where the 0 is used to emphasize that a Hamiltonian of the
form H0 is assumed. The shadow Hamiltonian corresponding
to H0 need not take this form, however, as we review below.

MD simulations are often performed subject to holonomic
constraints, for example, to keep certain bond lengths fixed.
Since eq 2 assumes an unconstrained ensemble average, it
does not directly apply. In principle, one can construct a new
Hamiltonian describing the dynamics of a system subject to

〈xi
∂H
∂xi

〉 ) 1
Q ∫ dx(-xi

� )∂e-�H

∂xi

) kBT - 1
�Q ∫ dx1, ...,dxi-1dxi+1, ...,dx2Nf

[xie
-�H]xi

min
xi

max

(1)

〈piq̇i〉 ) kBT (2)

-〈qiṗi〉 ) kBT (3)

Vi ≡ q̇i )
∂H
∂pi

(4)

H0(p, q) ) U(q) + 1
2

pTm-1p (5)

〈miVi
2〉0 ) kBT (6)

〈pi
2/mi〉0 ) kBT (7)
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Nc constraints by finding 3N - Nc unconstrained generalized
positions and their conjugate momenta; eq 2 will then apply.
For our purposes, however, it is sufficient to establish two
results. First, for any subset A of position coordinates that
are not involved in a constraint with position coordinates
outside that subset, we findsafter some algebrasthat a result
similar to eq 2 holds

Here IA contains the indices of the coordinates in A, and
Nf;A - Nc;A is the number of positional degrees of freedom
in A minus the number of constraints to which they are
subject. Second, in the common case where the constraints
are functions only of interatomic distance, it is straightfor-
ward to identify some unconstrained generalized coordinates.
Formally, a subset B of the positions in A may be identified
and transformed to any linear average coordinate QB )
∑i∈IBwiqi, with ∑i∈IBwi ) 1 and Nf;B - 1 relative coordinates,
such that QB is unconstrained. Thus

where VB ) Q̇B and PB ) ∑i∈IBpi is the momentum conjugate
to QB. Typically, QB will be a center-of-mass coordinate.
Although eqs 8 and 9 are intuitively obvious, we mention
them here to make explicit that, like eq 2, they hold without
need to assume a Hamiltonian of the form H0. Only when a
Hamiltonian of form H0 is assumed can they be written in
terms of squared velocities or momenta, as in eqs 6 and 7.

2.2. Shadow Hamiltonian. We focus on the velocity-
Verlet integration of H0, for which

where the elements of the force vector are Fi ) -∂U/∂qi, as
usual. This integration scheme is symplectic, a property that
can be maintained in the presence of holonomic constraints.23

A symplectic integrator is one for which the mapping (p(t),
q(t)) f (p(t + δt), q(t + δt)) is a canonical transformation,
just as it is for continuous Hamiltonian dynamics. This
suggests there might be a Hamiltonian whose exact dynamics
generates the flow (p(t), q(t)) f (p(t + δt), q(t + δt)). This
shadow Hamiltonian Hδt is expected to be similar but not
equal to H0, whose approximate dynamics generates the same
flow. Finding Hδt is a problem of backward error analysis.15,24

One may construct an asymptotic expansion for Hδt by adding
terms to H0 to create a Hamiltonian whose exact dynamics
matches that of eqs 10 and 11 order by order in δt. Since
velocity Verlet is symmetric (reversing the sign of the time
step gives the inverse method), only even powers of δt appear

It is possible to construct accurate numerical approximations
for the correction terms;25 we note that an estimator (eq 68
of ref 26) for δH(2) with errors of order δt

2 (and thus an
estimator of Hδt with errors of order δt

4) has existed for many
years in the CHARMM code,27 where it is called a “high-
frequency correction.” Except for particularly simple forms
of H0, there is no guarantee eq 12 converges, but numerical
tests to high orders have found the conservation of the
shadow Hamiltonian to improve when successively higher
order terms are included.25

The second-order term in eq 12 is17

where the Hessian has elements Kij ) ∂2U/∂qi∂qj. Since K
depends on q, even at second-order, Hδt has a different form
than H0, and the velocities and momenta are thus no longer
related through a simple mass factor.17 Specifically, eq 4
gives

2.3. Equipartition for the Shadow Hamiltonian. The
nontrivial relationship between velocities and momenta (eq
14) for the shadow Hamiltonian has immediate consequences
for equipartition. In particular, eq 2 clearly no longer
precisely reduces to eqs 6 and 7. This suggests that the
simulation temperature should be defined using T ≡ TpV,
where

and the δt subscript emphasizes that the ensemble average
depends on the time step through the shadow Hamiltonian.
With this definition, the temperature for all motions {i} will
be the same, if generalized equipartition is satisfied. The
alternative quantities

differ from T by an amount O(δt
2). We use the terms pV, p2,

or V2 formula to refer to any method of calculating the
temperature that is in the spirit of eqs 15, 16, or 17,
respectively. (The p2 formula corresponds to the usual
method of obtaining temperature when using velocity-Verlet
integration, that is using only on-step momenta provided by
the integrator.) As demonstrated below, it is also possible
to calculate the temperature, making use of eq 3, provided
appropriate (nonperiodic) coordinates are used. Note that the
temperature, as defined in eq 15, is a property of the
distribution sampled during the simulation, rather than a
property of the desired distribution that would have been
sampled in the small-time-step limit. Statistical reweigh-
ting,24,28 while a powerful tool to infer the desired ensemble
from the one sampled, thus cannot be directly applied to
sampled p2 values to obtain T ≡ TpV. The temperature one
would obtain by such a reweighting is instead the (known)

∑
i∈IA

〈piVi〉 ) (Nf;A - Nc;A)kBT (8)

〈PBVB〉 ) kBT (9)

q(t + δt) ) q(t) + δtm
-1p(t) +

δt
2

2
m-1F(t) (10)

p(t + δt) ) p(t) +
δt

2
(F(t) + F(t + δt)) (11)

Hδt
(p, q) ) H0(p, q) +

δt
2

2!
δH(2)(p, q) +

δt
4

4!
δH(4)(p, q) + ...

(12)

δH(2) ) 1
6

(m-1p)TK(m-1p) - 1
12

FTm-1F (13)

v ) m-1p +
δt

2

6
m-1Km-1p + O(δt

4) (14)

kBTpV ) 〈piVi〉δt
(15)

kBTp2 ) 〈pi
2/mi〉δt

(16)

kBTV2 ) 〈miVi
2〉δt

(17)
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temperature of the desired ensemble. This has been explicitly
demonstrated (for NVT simulations using a Nosé-Poincaré
thermostat) in numerical experiments where reweighting T p2

accurately recovered the thermostat’s target temperature.24

To calculate the temperature from eq 15, one needs to
calculate both velocities and momenta. The momenta p are,
by construction, directly available at every step of the
simulation. The velocities v ≡ q̇ * m-1p are not but can be
accurately estimated from several consecutive positions via
interpolation, as described in Section 3.3. Since the standard
terminology we have adopted can lead to confusion, we
emphasize that velocity-Verlet samples momentasspeci-
fically, the canonical momenta of the shadow Hamiltonians
and not velocities. Naturally, this state of affairs is unaltered
if eqs 10 and 11 are explicitly written in terms of what are
called velocity-Verlet velocities, vvv ≡ m-1p. As its defini-
tion shows, vvv is simply and precisely related to the momenta
but differs from the velocities v ≡ q̇, when δt > 0.

In Section 2.1, we made a few comments on the ap-
plicability of the generalized equipartition formula. Here we
make some related comments on the applicability of eq 15
to MD simulations. First, eq 15 was derived assuming that
a shadow Hamiltonian exists, i.e., that the dynamics gener-
ated by the integrator is the exact dynamics of some
underlying Hamiltonian. This is strictly true for certain simple
forms of H0 but not for biomolecular force fields, where the
asymptotic expansion eq 12 does not converge. For simula-
tions with small energy drift, however, we find much
encouragement in earlier work25 that Hamiltonians defined
by truncating eq 12 can describe the dynamics generated by
the integrator extremely accurately. Nevertheless, an impor-
tant part of this paper is to test numerically whether
generalized equipartition holds. Second, in addition to the
usual statistical error, estimators for the temperature, based
on eq 15, contain errors from the velocity interpolation. As
discussed further below, nth-order polynomial interpolation
essentially leads to O(δt

n) errors, thus sufficiently high-order
interpolation can make the errors in the estimated temperature
negligible for practical purposes. Third, thermostats and
barostats used in MD simulations may entail modification
to the equations of motion such that they are no longer of
Hamiltonian form (this is the case for both Nosé-Hoover29

and Berendsen30 thermostats). Although a rigorous analysis
of such effects on eq 15 appears possible for some
thermostats, in this paper we make the simplifying assump-
tion that any modifications can be ignored. This is intuitively
reasonable for thermostats coupled to a large number of
degrees of freedom and is borne out by our numerical results
on ubiquitin, which are very similar for NVE and NVT
simulations. Similarly, although we focus on straightforward
MD simulations here, we expect eq 15 to be relevant to
Monte Carlo sampling methods that use molecular dynamics,
such as parallel tempering.31 Finally, we note that, while eq
15 was derived assuming a symplectic integrator, milder
conditions are sufficient. In particular, if the integrator
conserves phase-space volume and has a conserved quantity
H̃δt (p, q), which need not be a Hamiltonian, then eq 15 will
hold if ∂H̃δt/∂pi ) Vi.

2.4. Harmonic Oscillator. We briefly illustrate the above
results for the simple case of a one-dimensional harmonic
oscillator with mass m and spring constant k:

As is well-known (for example, see ref 17), the shadow
Hamiltonian is a harmonic oscillator with modified mass and
spring constant,

The modified parameters mδt and kδt are given by

where the modified frequency ωδt ) (kδt/mδt)
1/2 is

Both the shadow mass and spring constant decrease with
increasing time step, and vanish as ωδtf 2, which coincides
with the stability limit of the integrator.

Suppose that the harmonic oscillator is weakly coupled to a
heat bath at temperature T. The quantities T pV, T p2, and T V2

defined in the previous subsection are related to T as follows

Whereas T pV correctly shows the oscillator to have the same
temperature as the bath, T p2 underestimates and T V2 overesti-
mates the temperature by the same factor. The disagreement
between the three estimators provides a valuable indication of
the magnitude of truncation error. In addition, we may also use
eq 3; if we define kBT qṗ ) -〈qṗ〉δt and kBT qF ) 〈q(kq)〉δt, then

Finally, since some codes have estimators of the shadow energy
available, it is of interest to estimate the temperature obtained
using the difference of the shadow energy and the potential
energy. With the definition kBT H-U/2 ) 〈Hδt〉 - 〈kq2/2〉, we
find

showing that the difference of the shadow energy and potential
energy yields a temperature estimator with errors of order δt

2.
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3. Simulation and Analysis Details

All simulations were performed using Desmond.32 Periodic
boundary conditions were used, and center-of-mass motion
was removed every time step. Every picosecond, coordinates,
and velocities were saved for nine consecutive time steps to
allow interpolation. Since we wish to isolate truncation errors
from round-off errors, Desmond and analysis programs used
double-precision arithmetic. Energy drift was small: even
assuming it is converted entirely into kinetic energy, the drift
over the entire length of each NVE simulation corresponds
to a temperature change of less than 0.2 K. All errorbars
denote statistical errors, which were estimated using a
blocking method.33

3.1. Diatomic Fluid. The simulated system contained
1000 oxygen-like diatomic molecules of 32 atomic mass units
in a cubic box with a side length of 44.42 Å. The force field
contained only two kinds of terms, each a simple function
of interatomic distance r: intramolecular bond stretch terms
of the form k(r - r0)2/2, and van der Waals interactions of
Lennard-Jones form 4ε[(σ/r)12 - (σ/r)6] between atoms on
different molecules; there were no electrostatic interactions.
Most parameters (r0 ) 1.15 Å, σ ) 2.9 Å, and ε ) 0.586152
kJ/mol) were taken to be the OPLS-AA/L force field34 values
for oxygen. The bond force constant was reduced by
approximately a factor of six from the OPLS-AA/L value
for oxygen to k ) 1368 kJ/mol/Å2, which corresponds to a
lengthened bond-vibration period of 48.05 fs. These param-
eters ensure that energy transfer between the high-frequency
vibrations and the other motions is rapid (equipartition is
reached in hundreds of ps). The van der Waals interactions
were truncated at 10 Å and calculated using a neighbor list
of pairs within 11.25 Å that was updated every ∼15 fs. We
performed 10 NVE simulations of 400 ns using the velocity-
Verlet integration scheme with time steps ranging from 0.5
to 5 fs. We also performed 9 NVE simulations of 400 ns
using the r-RESPA integrator20 with bond stretches calculated
every 0.5 fs and with intermolecular interactions between 2
and 10 times less frequently. All simulations started from
the same configuration (which had been pre-equilibrated
using a thermostat at 300 K) and were each assigned different
initial velocities that were randomly chosen from a
Maxwell-Boltzmann distribution.

3.2. Ubiquitin. The set up and parameters for the ubiquitin
simulations were similar to those used previously.35 PDB
entry 1D3Z36 was solvated with 5302 explicit water mol-
ecules, giving a total of 17 137 atoms in a cubic box of side
55.71 Å. We used the OPLS-AA/L all-atom force field,34

as implemented in GROMACS version 3.1.4,37 for the
protein, together with the SPC water model.38 Electrostatic
forces were computed using the particle mesh Ewald
method39 with a screening Gaussian width of 10/(3�2) ≈
2.36 Å and with fifth-order interpolation to a cubic mesh of
64 × 64 × 64 points; real-space contributions to the
electrostatics and van der Waals interactions were truncated
at 10 Å and calculated from a list of pairs separated by less
than 11 Å that was assembled every ∼12 fs. Water molecules
and lengths of bonds to hydrogens were rigidly constrained
using M-SHAKE,40 as implemented41 in Desmond. Energy

minimization and equilibration under conditions of constant
temperature and pressure yielded a conformation, from which
8 simulations of 11 ns were started. These simulations were
as follows: three NVE velocity-Verlet simulations with different
time steps (1.25, 2, and 2.5 fs); one NVE simulation using an
r-RESPA multiple time step scheme,20 in which nonbonded
interactions were evaluated every 2.5 fs and the remaining
interactions every 1.25 fs; four simulations using a velocity-
Verlet time step of 2 fs and coupled in different ways to
Berendsen thermostats30 with relaxation times of 0.5 ps (either
a single thermostat coupled to the entire system, or the protein
or water alone, or two independent thermostats with the first
coupled to the water and the second to the protein).

To calculate the temperature of the protein, T pV
protein, we

made use of eq 8, where i ran over all protein atoms and
Cartesian dimensions. The temperatures of the water and the
entire system, T pV

water and T pV
system, were calculated analogously.

The quantities T p2
protein

, T p2
water

, T p2
system

were calculated in the
same way, except that the interpolated velocity was replaced
by the corresponding momenta divided by the mass; this is
how temperatures of components are normally calculated in
simulation. We also calculated the analogous V2 quantities.
The position coordinates used for the quasiharmonic analysis
were center-of-mass coordinates of protein heavy atoms and
their covalently bonded hydrogen atoms. This gives a total
of 1800 position coordinates when overall rotation and
translation are excluded.

3.3. Interpolation. While positions and momenta are
directly available from the integrator at every time step, their
time derivatives are not, but can be estimated by interpola-
tion. Here we use straightforward polynomial interpolation.
For velocities, fitting an nth-order polynomial through the
positions at the time of interest and the following n/2 and
preceding n/2 times and taking the time derivative gives a
time-symmetric nth-order approximation to the velocities, v(n).
The second-order result

simply recovers the velocity-Verlet velocities. Higher-order
results may be expressed in terms of the velocity-Verlet
results at different time steps. For example

where

Rates of change of momenta were calculated by fitting
polynomials to successive momenta in an analogous manner.
The same procedure may be used in the presence of
constraints.

v(2)(t) ) (x(t + δt) - x(t - δt))/(2δt) (26)

v(4)(t) ) 1
6

(8k1 - k2) (27)

v(6)(t) ) 1
30

(45k1 - 9k2 + k3) (28)

v(8)(t) ) 1
420

(672k1 - 168k2 + 32k3 - 3k4) (29)

kn ) ∑
m)1

n

v(2)(t + (2m - n - 1)δt) (30)
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Although the interpolation error in v(n) is O(δt
n), there is

no guarantee of convergence as n increases. In practice,
however, interpolation error appears to rapidly diminish with
increasing n, for small n. This is illustrated in Figure 2, where
we show the root-mean-square (rms) temperature difference
between nth- and tenth-order estimates for protein degrees
of freedom in NVE simulations of ubiquitin. Specifically,
we calculate σT (n) which we define via

where i runs over all protein atoms and R over dimensions
x, y, and z. Unless otherwise stated, below we use eighth-
order interpolation, which is sufficient to make interpolation
error substantially smaller than statistical error in the results
we present. Figure 2 suggests that even for the large 2.5 fs
time step, eighth-order interpolation corresponds to typical
errors in temperature of an individual degree of freedom of
less than 0.1 K, and a fourth-order approximation is already
a substantial improvement over the second-order result. We
have also found interpolation to be useful for trajectories
generated by the commonly used r-RESPA method, albeit
with slower convergence when tested with outer time steps
in the 4-6 fs range (data not shown).

Finally, polynomial fits through positions at times t + δt

and earlier are also possible (Figure 2). Although not time
symmetric, such interpolations may be useful for thermostats
because they have the advantage of giving improved accuracy
velocity estimates “on the fly.” In particular, the third-order
result recovers the velocities in Beeman’s implementation
of Verlet, ṽ(3)(t) ) (-v(2)(t - δt) + 2v(1/2)(t - δt/2) +
2v(2)(t))/3, where the half-step velocity is v(1/2)(t - δt/2) )
(x(t) - x(t - δt))/δt. Beeman’s algorithm is often used
instead of velocity Verlet or leapfrog when accurate velocities
are important, and Figure 2 shows the improvement over
the velocity-Verlet velocities.

4. Results

4.1. Diatomic Fluid. The diatomic fluid is a useful test
system, because it contains anharmonicities and motions of
different frequencies, yet is simple enough that approximation
errors can be estimated based on analytical harmonic
oscillator results. We performed velocity-Verlet simulations
with different time steps. These ranged up to 5 fs, or about
a tenth of the vibrational period of 48 fs. This range was
chosen because, in biomolecular simulations, time steps
of up to about a tenth of the fastest vibrational period are
in common use. (A time step of 2 fs is often chosen, for
example, in protein simulations in which bonds to
hydrogen are constrained; the fastest motionssangle
bending motions involving hydrogens and certain bond
stretchesshave periods of approximately 20 fs.) For each
time step, we calculated the ratio of vibrational and
translational temperatures. The translational temperature
depends on the center-of-mass velocities and momenta
{V, P}, while the vibrational temperature depends on {V, p}
(the rates of change of the bond lengths {r} and the
projections of relative momenta {pr} along the bonds,
respectively; see Appendix A):

The bar denotes an average over all Nmol molecules, and the
Nmol/(Nmol - 1) prefactor reflects the constraints on the center-
of-mass momenta arising from the conservation of the total
linear momentum. The atomic velocities were evaluated by
polynomial fitting. The center-of-mass and vibrational ve-
locities were calculated in terms of these interpolated
velocities. As shown in Figure 3, the ratio T pV

vib/T pV
trans is indeed

unity within statistical error, showing that generalized
equipartition is satisfied in the simulations.

The same ratio is shown on an enlarged y-scale in Figure
3a and compared to the results obtained using fourth, rather
than eighth, order interpolation for the velocities. The
observation that generalized equipartition holds, but appears
to be violated for larger time steps when the fourth-order
estimator is used, is consistent with the theoretical expecta-
tion that temperature can be estimated with errors that are
smaller (higher order) than O(δt

4).
We also calculated alternative temperature estimators,

starting with the typical p2 formulas:

where M and µ are molecular and reduced masses, respec-
tively. As seen in Figure 3, when calculated this way, the
vibrational (higher frequency) motion appears to be cooler.
In Figure 3, we also show the results of estimating the
temperature ratio using the V2 formulas (with accurate
velocity estimates):

Figure 2. Estimated velocity errors as a function of interpola-
tion order. The weighted rms velocity error defined in eq 31
is given in units of Kelvin. All points are from one of two NVE
simulations of ubiquitin. The simulation time step for the dark
circles was 1.25 fs and for the lighter triangles was 2.5 fs.
The lines are just guides to the eye. The solid points are time-
symmetric interpolations, and the open points with n ) 3 are
the time-asymmetric (Beeman) interpolations described in the
text.

σT
2(n) ) 1

kB
2Nf

∑
i,R

〈(piR(ViR
(n) - ViR

(10)))2〉δt
(31)

kBTpV
trans )

Nmol

Nmol - 1
〈P · V〉δt

kBTpV
vib ) 〈pV〉δt

(32)

kBTp2
trans )

Nmol/M

Nmol - 1
〈P · P〉δt

, kBTp2
vib ) 〈p2/µ〉δt

(33)

kBTV2
trans )

NmolM

Nmol - 1
〈V · V〉δt

, kBTV2
vib ) 〈µV2〉δt

(34)
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In this case, the higher frequency motion appears hotter.
The magnitude of the deviations from conventional
equipartition that are revealed using eqs 33 and 34 are
also seen to be well predicted using the harmonic oscillator
results of Section 2.4.

As shown in Appendix A, T qṗ
vib, defined by

is also essentially equal to the vibrational temperature. We
calculated T qṗ

vib in terms of the bond vectors {r} and the
molecular angular momenta and velocities {L, ω} using the
identity rṗ ≡ r · ṗr + L ·ω, with pr and the atomic velocities
contained in ω obtained from interpolation. Additionally, we
calculated the analogous, but approximate, temperature
estimator T qF

vib (Appendix B). Figure 3b shows that T qṗ
vib is

the same as the translational temperature within statistical
error, consistent with generalized equipartition being satisfied.
In contrast, the T qF

vib estimator leads to hotter temperatures
for the vibrational (i.e., higher frequency) motion. This
deviation can again be understood in terms of the harmonic
oscillator results. T qF is relevant to pressure computations,
as described in Appendix B. We find that the average
pressure calculated using a p2 expression for the ideal part
and a virial part calculated in the usual manner13 depends
on whether a molecular or atomic expression is used. For
the smallest (0.5 fs) time step, the molecular and atomic
results are the same within statistical error of 0.5 bar, but
for the largest (5 fs) time step they differ by 17.8 ( 0.4 bar,
which is close to the 17.0 bar predicted by eq 44.

Although eqs 33 and 34 are less accurate than eq 32 for
estimating temperature, the deviations from conventional
equipartition that they reveal do reflect real differences
between the shadow Hamiltonian and H0. They thus provide
a warning that truncation errors may affect other quantities.
We find vibrational frequencies and the magnitude of bond
length fluctuations to change, for example, by approximately
2% over the range of time steps studied, as would be
expected on the basis of the harmonic oscillator results. One
straightforward way to reduce truncation errors is to use a
multiple-time-step scheme, where the stiff-bonded forces are
evaluated more frequently than the softer intermolecular
interactions. Since the intermolecular interactions usually
dominate the computational expense, this approach often only
has modest cost. Figure 3c shows the vibrational to trans-
lational temperature ratios for the pV and p2 estimators from
r-RESPA simulations of the diatomic fluid as a function of
the outer time step. The intermolecular interactions were
calculated on the outer time step, while the bonded interac-
tions were evaluated every 0.5 fs. The agreement between
the estimators is excellent even for large outer time steps;
the V2 estimator (not shown) is also in agreement with the
other estimators.

4.2. Ubiquitin. As described in Appendix A, it is straight-
forward to calculate the temperature of different quasihar-
monic motions of a protein. We have done this for different
simulations of ubiquitin solvated in water. Initially, we
performed NVE simulations with differing values of δt. We
calculated the temperature T pV

(i) using eq 40 for all quasihar-

Figure 3. Equipartition for the diatomic fluid over a range of integration time steps. The main figure and insets (a) and (b) show
the time-step-dependence of the ratio of different estimates (based on eqs 32-35) of the vibrational and translational temperatures
for the same velocity-Verlet simulations. Lines show the harmonic oscillator results (eqs 20-24), with the dashed lines denoting
asymptotes that only include terms up to (ω0δt)2. The main figure shows that, with the pv estimator, the ratio T vib/T trans is one
within error, indicating that generalized equipartition is achieved in the simulations. The p2 estimator (blue) gives a ratio less
than one, making the vibrational motions appear cooler, whereas the v2 estimator gives a ratio greater than one. Inset (a) shows
only the results of the pv estimator in a region close to T vib/T trans ) 1. The red points are identical to those in the main figure,
and the purple circles show the result of using velocities obtained from a lower-order polynomial interpolation (fourth rather than
eighth). Inset (b) shows that the qṗ estimator gives a temperature ratio close to one, confirming generalized equipartition is
satisfied, but that the qF estimator (see main text) makes the vibrations appear hotter. Inset (c) shows the result of the pv and
p2 estimators for r-RESPA simulations (with a fixed inner time step of 0.5 fs) as a function of the outer time step.

-kBTqṗ
vib ) 〈rṗ〉δt

(35)
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monic modes i. As shown in Figure 4a-c, which corresponds
to time steps of 1.25, 2, and 2.5 fs, T pV

(i) is essentially
independent of i. This strongly suggests that generalized
equipartition is indeed achieved in these simulations. We also
estimated temperatures using kBT p2

(i)
) 〈pi

2〉δt. This estimate
varies substantially by mode and, as expected, is significantly
lower for higher-frequency motions. The deviation from
conventional equipartition increases with the size of the time
step (Figure 4). We also find T V2

(i)
) 〈Vi

2〉δt/kB to have a strong
but opposite dependence on mode (not shown). Note that
all three estimates agree well for the low-frequency motions.
Since the V2 formulas are found to overestimate temperature
by approximately as much as the p2 formula underestimates
it, we just discuss the pV and p2 results below.

It is natural to try to reduce the truncation errors signaled
by the breakdown of conventional equipartition. As noted
above, one approach is to use a multiple-time-step method.
In Figure 4d, we show the results of using the r-RESPA
method with bonded forces calculated every 1.25 fs and with
nonbonded interactions every 2.5 fs. The magnitude of the
discrepancy between T pV

(i) and T pp
(i) is reduced to an amount

similar to the 1.25 fs time step velocity-Verlet simulation.
This is because the highest frequency motions are bond
vibrations and angle-bending motions that involve hydrogen
atoms. The r-RESPA solution is inexpensive, if calculating
the bonded interactions takes a relatively small part of the
overall computation time, which is typically the case.

If a thermostat is applied to the system and the instanta-
neous temperatureswhich determines thermostat, and hence
particle, dynamicssis estimated using the p2 formula, then
integration errors may be amplified. A common, if fairly
innocuous, case is illustrated in Figure 4e, where a single
Berendsen thermostat is applied to the entire system. The

temperature as a function of mode is very similar to the NVE
simulation with the same (2 fs) time step. There is a small
discrepancy between the system temperature (301.76 ( 0.02
K) and the target temperature of 300 K. The discrepancy
reflects the fact that the p2 formula slightly underestimates
the water temperature (T p2

water < T pV
water).

Water models used in biomolecular simulation are often
rigid, so the highest frequency motions are in the protein.
Thus, although with the p2 formula the water may only
appear a degree or two cooler than the true value, the protein
may appear substantially cooler, leading to an apparent
temperature difference, ∆T p2 ≡ T p2

water
- T p2

protein
. In the NVE

simulations with a 2 fs time step, for example, ∆T p2 ) 5.6
( 0.1 K, and this rises to 8.9 ( 0.2 K for a 2.5 fs time step,
whereas the accurately calculated temperature difference
∆T pV ≡ T pV

water - T pV
protein is 0 within error in both cases; see

Table 1). If the symptom of truncation error revealed by the
p2 estimator is combatted by applying two thermostats
simultaneouslysone to protein and one to solventsthen
larger errors result than in the case of a single system-wide
thermostat. This is not due to an intrinsic problem with the
use of multiple thermostats, which can be used safely if an
appropriate time step is chosen. Rather, the relatively large
time steps commonly chosen in MD simulations for ef-

Figure 4. Temperature as a function of mode number i for ubiquitin. The modes are ordered by mean-square fluctuation,
with the largest-amplitude (lowest-frequency) motions to the left. The temperatures are averages over 50 consecutive
modes. The dark circles show the results of the pv formula (eq 40), and the light triangles are the results of the corresponding
p2 formula. Panels (a-c) show the results of NVE simulations with time steps of 1.25, 2, and 2.5 fs. Panel (d) shows
results of the NVE simulation using a r-RESPA multiple time step method. Panel (e) shows the results when the entire
system is coupled to a single thermostat, whereas panel (f) shows the results of simultaneously applying independent
thermostats to water and protein.

Table 1. Water-Protein Temperature Differences from p2

and v2 Estimators for NVE Simulationsa

time step/fs ∆T p2 ∆T pv

1.25 2.11 -0.11
2.0 5.62 -0.06
2.5 8.91 -0.08

a Temperature differences are expressed as ∆T ) T water -
T protein in Kelvin. Statistical errors are approximately 0.1 to 0.2 K.
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ficiency lead to errors that can be amplified by certain choices
of thermostat. For our simulation with a 2 fs time step and
two thermostats, we find that T pV

protein ) 306.3 ( 0.1 K,
whereas T pV

water ) 301.35 ( 0.02 K; in addition T pV
(i) is no

longer approximately constant (Figure 4f). This signals a
breakdown of generalized equipartition. Energy flows from
one thermostat to the protein, then transfers to the water,
and is finally removed by the other thermostat. Applying a
single thermostat to the system, but just coupling it to a subset
of the particles, should not lead to a breakdown of general-
ized equipartition, although if the component contains high-
frequency motions, then this can lead to a substantial error
in the system temperature. For example, we find that coupling
a single thermostat to the protein leads to a simulation
temperature about 7 K above the target temperature; see
Table 2. We stress that the underlying cause of these
problems is truncation error, not a problem with the
thermostat itself.

5. Discussion and Conclusions

In this paper, using the established concepts of generalized
equipartition and the shadow Hamiltonian, we have intro-
duced a clear definition of simulation temperature that
explicitly takes into account the finite simulation time step.
We have shown that this temperature can be evaluated
accurately and straightforwardly in practice. We tested
generalized equipartition in numerical examples relevant
to biomolecular simulation in which truncation errors lead
to deviations from conventional equipartition and thus to
different temperature estimates for different motions when
conventional estimators are used. We confirmed that general-
ized equipartition is in fact satisfied in these examples, with
different motions sharing a single well-defined simulation
temperature.

The observation that generalized equipartition can be
satisfied even for rather large time steps naturally does not
imply that the simulations are free from artifacts due to
truncation error, but it does help highlight the actual nature
of the errors. As signaled by the breakdown of conventional
equipartition, the shadow Hamiltonian differs from the
Hamiltonian that we wish to simulate by an amount O(δt

2),
and thus their dynamics and thermodynamics will differ too.

One practical benefit of obtaining accurate temperature
estimates, even when the Hamiltonian itself is subject to
O(δt

2) errors, is that testing generalized equipartition can be

a valuable simulation diagnostic. A violation of equipartition
demonstrated using the methods of this paper points to
underlying problems with the integration scheme, as in the
two-thermostat example described above. A second practical
benefit is that accurately estimating the temperature can
remove what may be the largest source of error in the
description of low-frequency motions, as we now briefly
explain. Low-frequency motions are often of greatest interest,
and by their nature, most error in their description comes
via their coupling to higher-frequency motions, which present
more of a challenge to the integrator. If high- and low-
frequency motions are weakly coupled, as expected for bond
vibrations and larger-scale protein conformational change,
for example, the low-frequency dynamics should be ac-
curately described by the integrator. Error in the estimated
temperature can then become the dominant error in the
overall description of the low-frequency motion, because the
temperatureswhen computed as a sum over all atomic
motions using the p2 formulasis polluted by errors due to
the fast motions.

Our results also make clear that for Verlet integration,
estimating the temperature using the V2 formula leads to
O(δt

2) errors even if the velocities could be computed
exactly. A corollary is that Beeman’s version of Verlet, which
gives velocities with only O(δt

3) errors, will still yield
temperatures with O(δt

2) errors if those temperatures are
estimated using a V2 formula, as is conventional when using
this integrator. Most simulations use some form of temper-
ature control, and an inaccurate estimated temperature can
affect the dynamics through the thermostat (or barostat).
Fortunately, for the common case of a small globular protein
solvated by constrained water molecules and coupled to a
single system-wide thermostat, the resultant errors will be
small because the fastest motions are in the protein, which
comprises only a small part of the system. Care might be
needed if the system contains a larger fraction of high-
frequency motions, as would be the case in a simulation of
a protein crystal or a lipid bilayer or in a simulation using
an unconstrained water model. Clearly, systems that are
particularly sensitive to temperature and pressure are more
likely to exhibit substantial artifacts. Systems near a phase
transition, for example, need more care; under ambient
conditions, such systems include certain lipid bilayers and
marginally stable small peptides and proteins.

For the simulation thermostat to accurately control tem-
perature, it would be desirable to calculate the instantaneous
temperature using the pV formula. We have shown that
improved estimates of temperature at a given time are
possible using information that can in principle be made
available by the integrator (see the non-time-symmetric
interpolation in Figure 2). Although constructing a thermostat
along these lines is possible, this may not be the most
promising approach. In addition to breaking time reversibil-
ity, such a thermostat would require the MD code to retain
information about particle positions from earlier time steps,
thereby adding complexity and likely reducing performance
of a parallel code. One simple way to side-step these issues
may be to continue to use the p2 formula but to couple the
thermostat to lower-frequency motions. This approach does

Table 2. Estimated Component Temperatures for NVT
Simulations Performed with Different Thermostatsa

thermostat T p2
system

T p2
water

T p2
protein

T pv
system T pv

water T pv
protein

one (system) 299.97 300.47 294.80 301.76 301.76 301.78
one (water) 299.49 299.97 294.55 301.28 301.26 301.52
one (protein) 305.02 305.50 300.03 306.84 306.81 307.14
two (protein,
water)

299.98 300.05 299.18 301.78 301.35 306.30

a Temperatures are in Kelvin. The target temperature was 300.0 K
in all simulations. The simulations differ only in the number of
thermostats (one or two) and the atoms to which the thermostats
are coupled. Statistical errors are approximately 0.1 to 0.2 K for
protein temperatures and 0.02 to 0.04 K for water/system
temperatures.
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not remove O(δt
2) errors from the p2 temperature estimate,

but it can substantially reduce the prefactor. In our NVE
ubiquitin simulations, for example, we find the error in T p2

water

to be reduced by a factor of over five when it is calculated
from translational motion only, rather than translational and
rotational. This suggests that coupling a single thermostat
to the translational motion of water molecules may be a
useful approach.

Our results warn against combining multiple thermostats
with large time steps. With a properly chosen time step,
multiple thermostats can be a valuable tool to ensure
equilibration even when equipartitioning is slow.42 Applica-
tion of multiple thermostats was also once useful to control
very large hot solvent-cold solute artifacts, such as can occur
when cutoff electrostatics are used. The improvements in
methodology and computer codes over the last 15-20 years,
however, have led to a situation where the dominant
deviations from conventional equipartition are truncation
errors and the generalized equipartition is satisfied. In such
a situation, using multiple thermostats to rectify the deviation
from conventional equipartition will have the counterproduc-
tive effect of causing true temperature imbalances in the
system. Although in this paper we reported results obtained
with the Berendsen thermostat, we have also found very
similar results in tests with a Nosé-Hoover thermostat.
Caution may also be required when combining stochastic
thermostats with large time steps (particularly if the ther-
mostat relaxation time is short), because such thermostats
are typically coupled to many individual degrees of freedom
(as in Langevin dynamics, for example).

The simplest way to reduce truncation error is obvious:
reduce the time step. In practice, there is often reluctance to
do this, in part because of the large computational expense
of simulations and in part because of the fact that, while
artifacts undeniably exist, their direct impact is largest on
fast motions and their effect on properties likely to be of
interest in long-time-scale simulations is much less clear.
Indeed, partly motivated by the observation that even the
large commonly used time steps (of about a tenth of the
period of the fastest motions) are approximately a factor of
three below the stability limit of velocity Verlet, some authors
have suggested increasing the time step further.43,44 By
showing that generalized equipartition can hold even for time
steps somewhat beyond the commonly used range, our results
lend some support to this idea. On the other hand, regardless
of whether generalized equipartition is satisfied, truncation
errors will affect simulation results, and it is difficult to assess
the impact on properties of interest in complicated biological
systems. Thus, a more promising approach to balancing
accuracy and efficiency may be to change the integrator.
Results for both our test systems highlighted the effectiveness
of the r-RESPA integrator for reducing errors at little cost;
such an approach is likely to be useful for biomolecular
simulation, since the fast motions that are the major source
of truncation error are usually inexpensive to calculate and
can thus be calculated with a reduced time step at little cost.
In some cases, in particular on specialized hardware that
greatly accelerates nonbonded interactions,45 a substantial
fraction of time may be spent on bonded interactions. In

future work, we will describe new integrators that increase
accuracy efficiently in such cases.

Appendix A

Alternative Coordinate Systems. It can be helpful to
calculate temperatures for different modes of motion, such
as the collective motions of a large subset of atoms. In
principle, a straightforward recipe to do this is to identify a
canonical transformation between the Cartesian atomic
coordinates and conjugate momenta and a set of coordinates
of interest. If this can be done, generalized equipartition
should then hold for the new variables, which can be
evaluated in terms of the atomic coordinates and momenta
provided by the integrator. Time derivatives of the general-
ized coordinates may be obtained using interpolation. We
illustrate with two examples relevant to the systems studied
in this paper.

Translation, Vibration, and Rotation for a Diatomic
Molecule. Consider a diatomic molecule, which may be part
of a larger system, that consists of atoms A and B with mass
mA and mB, respectively. The transformation from the atomic
positions and momenta (qA, qB, pA, pB) to center-of-mass
and relative positions and momenta (R ) (mAqA + mBqB)/
M, r ≡ (x, y, z) ) qB - qA, P ) pA + pB, pr ≡ (pr;x, pr;y, pr;z)
) µ(pB/mB - pA/mA)), where M ) mA + mB and 1/µ )
1/mA + 1/mB, is canonical. So is the further transformation
of the relative motion into vibrational and rotational motion
(r ) |r|, θ ) arccos (z/r), φ ) arctan (y/x), p ) pr · r/r, lθ )
-(x2 + y2)1/2pr;z + (xpr;x + ypr;y)z/(x2 + y2)1/2, lφ ) xpr;y -
ypr;x). Generalized equipartition relations may thus be written
for translational and internal motion and for rotational and
vibrational contributions to the internal motion:

Here V ) Ṙ, vr ) ṙ, V ) ṙ, and we have identified L ·ω ≡
lθθ̇ + lφφ̈, where by definition L ) r × pr and ω ) r ×
vr/r2 as usual. Likewise, using eq 3, we have the additional
expressions for the total internal and the vibrational motion:

which are valid even with periodic boundary conditions (in
the unlikely situation that the bond length can exceed half
the simulation box length, care must be taken not to
incorrectly wrap the relative position coordinate). Replace-
ment of ṗr in the above formula with the analogously defined
relative force

where FA ) -∂U/∂qA denotes an atomic force, would be an
approximation for finite integration time steps.

The generalized equipartition formulas obtained in this
section are very familiar in the case δt f 0; the formal
reasoning here makes clear that they should also apply to

1
3

〈P · V〉δt
) 1

3
〈pr · vr〉δt

) kBT (36)

1
2

〈L · ω〉δt
) 〈pV〉δt

) kBT (37)

1
3

〈r · ṗr〉δt
) 〈rṗ〉δt

) -kBT (38)

Fr ) µ(FB/mB - FA/mA) (39)
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the shadow Hamiltonian and thus hold in simulation,
provided that the time derivatives that they contain can be
accurately estimated.

Quasiharmonic Motions of a Protein. Quasiharmonic
analysis and principal component analysis are popular closely
related methods for analyzing protein motions46 and have
occasionally been used in the context of equipartition.47 The
basic approach can often be decomposed into three trans-
formations: First, and optionally, the protein atoms or
some subset are mass-weighted (q0, p0) f (q1 )
m1/2q, p1 ) m-1/2p); then these coordinates are transformed
by means of a q1-dependent overall translation and rotation
to minimize the root-mean-square deviation (rmsd) of q1 to
a reference structure, (q1, p1) f (q2 ) ArotÂtransq1, p2 )
Arotp1); finally, an orthogonal transformation (q2, p2) f (q′
) RTq2, p′ ) RTp2) makes the covariance matrix 〈(q′ -
〈q′〉)(q′ - 〈q′〉)T〉δt ) RT〈(q2 - 〈q2〉)(q2 - 〈q2〉)T〉δtR diagonal.
Motion along a subset of the q′ coordinates with the largest
eigenvalues often correspond to interesting fluctuations of
the protein around its native state. It is natural to define a
temperature for mode i via

(or 〈q′iṗ′i〉δt ) kBT qṗ
(i)), where V′i ) q̇′i. Unfortunately, although

the first and last transformations above are canonical, the
momenta generated in the rmsd-fitting step are only ap-
proximations to the true conjugate momenta. We thus expect
T pV

(i) to differ slightly from T. In practice, we expect this
discrepancy to be small for an ordered protein with a large
number of degrees of freedom, and we neglect it.

Appendix B

Pressure. We show here, by means of a simple example,
that the equivalence of atomic and molecular definitions of
the simulation pressure for δt > 0 may be viewed as a
consequence of generalized equipartition and that this
equivalence is broken, if the virial is computed in the normal
way and the temperature is evaluated using a p2 (or indeed
pV or V2) estimate. Although it is straightforward to obtain
exact expressions for the simulation pressure, we have not
found a practical method to estimate it from simulation data
in a way that is as simple as evaluating the simulation
temperature. Our results suggest that using a pV estimate for
temperature will reduce pressure errors relative to a p2

estimate but not eliminate them. This is consistent with the
work of Pastor et al., who demonstrated that a different
estimator of temperature (derived from Verlet velocities from
the previous half-step) leads to exact estimates of pressure
for a harmonic oscillator (unlike the use of p2, pV, or V2

estimates) due to a favorable cancellation of errors.48

In the canonical ensemble, starting from the thermody-
namic definition of pressure as a volume derivative of the
free energy, P ) -∂F/∂V, it is straightforward to express
the simulation pressure as a sum of kinetic and virial
contributions. Assuming periodic boundary conditions and
no constraints and viewing the Hamiltonian as a function of
atomic positions and momenta, one obtains the atomic
expression:

In terms of molecular center-of-mass positions and momenta
{R, P}, and relative coordinates {r, pr}, the following
molecular expression is more natural:

Nmol denotes the number of molecules, and N denotes the
number of atoms. The two expressions are equivalent, but
this equivalence can be broken by the (approximate) method
used to compute the temperature and virial, as we explain
by means of a simple example.

Consider an ideal diatomic gas with some intramolecular
bonded interaction but negligible intermolecular interactions.
Since the molecular virial vanishes, the molecular pressure
formula immediately yields the correct result, PV ) NmolkBT.
(Assuming that the T appearing in the molecular pressure is
obtained from the kinetic energy of molecular center-of-mass
motion, T will be estimated correctly for this idealized system
regardless of whether a pV or p2 formula is used, provided the
integratorslike velocity Verletspreserves translational invari-
ance.) We find that the atomic virial of our ideal system reduces
to (Nmol/3)〈r · ṗr〉δt, where the overbar simply denotes an average
over all molecules. If generalized equipartition (eq 38) holds,
then the atomic virial further reduces to - NmolkBT and thus
precisely cancels half of the kinetic term, yielding the correct
pressure. The natural approach to computing the pressure when
using velocity-Verlet integration, however, is to estimate T from
the atomic momenta using a p2 formula and from the atomic
virial using (Nmol/3)〈r · (- ∂U/∂r)〉δt. (This is essentially the
approach implemented in Desmond,32 for example.) Then we
find that the atomic pressure differs from the molecular pressure
according to

where the two different approximations to the vibrational
temperatures are T p2

vib
) 〈p2/µ〉δt, and T qF

vib ) 〈rFeff〉δt. The
effective force includes a centrifugal term and is defined via
rFeff ) r ·Fr + L ·L/(µr2), with Fr defined in eq 39.

Equation 43 depends on the details of the intramolecular
interaction, but if we assume that the effective intramolecular
potential, i.e., with a L2/(2µr2) centrifugal term included, is
approximately harmonic, then we may use the results of
Section 2.4 to yield

Using the atomic formula, in the way described above, will
thus underestimate the simulation pressure. For a time step

〈p′iV′i〉δt
) kBTpV

(i) (40)

P ) N
V

kBT - 〈(∂Hδt
(p, q, V)

∂V )
p,q

〉
δt

(41)

P )
Nmol

V
kBT - 〈(∂Hδt

({P, R, pr, r}, V)

∂V )
{P,R,pr,r}〉δt

(42)

(Pmol
ideal - Patom

ideal)V ) 1
3

NmolkB(TqF
vib - Tp2

vib) (43)

(Pmol
ideal - Patom

ideal)V ) 1
3

NmolkBT( k
kδt

-
mδt

m )
≈ 1

3
NmolkBT( 1

12
(ωδt)

2 + 1
6

(ωδt)
2)

) NmolkBT
(ωδt)

2

12
(44)
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of ωδt ) 0.6, the overall error in the atomic pressure is 3%
of the ideal gas value. For condensed-phase systems under
ambient conditions, similar errors could easily dominate
the pressure, which is itself the difference of two large
almost canceling terms. For compressible systems, such
as membranes, this is cause for caution. Using a molecular
(or group-based) pressure is one obvious way to reduce
errors (in our simple example, this approach eliminates
errors). Alternatively, or in addition, the temperature
estimate could be improved. Since two-thirds of the error
in the atomic pressure estimate originates in the temper-
ature estimate and one-third from the virial estimate, use
of a perfect estimate of temperature will improve the
pressure estimate but will not eliminate errors. As noted
above, however, Pastor et al. have shown how the
temperature estimate may be changed to cancel errors
arising from the virial part, thus providing an even more
accurate pressure estimator; this method is available in
CHARMM.27
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Abstract: The hydration free energy, structure, and dynamics of the zinc divalent cation are studied
using a polarizable force field in molecular dynamics simulations. Parameters for the Zn2+ are derived
from gas-phase ab initio calculation of the Zn2+-water dimer. The Thole-based dipole polarization
is adjusted on the basis of the constrained space orbital variations (CSOV) calculation, while the
symmetry adapted perturbation theory (SAPT) approach is also discussed. The vdW parameters of
Zn2+ have been obtained by comparing the AMOEBA Zn2+-water dimerization energy with results
from several theory levels and basis sets over a range of distances. Molecular dynamics simulations
of Zn2+ solvation in bulk water are subsequently performed with the polarizable force field. The
calculated first-shell water coordination number, water residence time, and free energy of hydration
are consistent with experimental and previous theoretical values. The study is supplemented with
extensive reduced variational space (RVS) and electron localization function (ELF) computations in
order to unravel the nature of the bonding in Zn2+(H2O)n (n ) 1, 6) complexes and to analyze the
charge transfer contribution to the complexes. Results show that the importance of charge transfer
decreases as the size of the Zn-water cluster grows due to anticooperativity and to changes in the
nature of the metal-ligand bonds. Induction could be dominated by polarization when the system
approaches the condensed phase and the covalent effects are eliminated from the Zn(II)-water
interaction. To construct an “effective” classical polarizable potential for Zn2+ in bulk water, one
should therefore avoid overfitting to the ab initio charge transfer energy of the Zn2+-water dimer.
Indeed, in order to avoid overestimation of the condensed-phase many-body effects, which is crucial
to the transferability of polarizable molecular dynamics, charge transfer should not be included within
the classical polarization contribution and should preferably be either incorporated into the pairwise
van der Waals contribution or treated explicitly.

I. Introduction

Since the 1940s, we have begun to appreciate that specific
biological functions critically depend on the presence of

zinc.1 Moreover, its divalent cation, Zn2+, plays an important
role in many metalloenzymes by acting directly as a structural
element in proteins such as Zn-fingers2 or by serving as a
cofactor.3 Due to zinc’s soft character and the subtle nature
of its interactions with the biological environment,4 quantum
mechanics (QM) is usually the primary methodology for the
study of Zn2+-metalloproteins.5-7 Of course, such an
approach is limited to “static” structures of relatively small
biomimetic models due to the high computational demands
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by state of the art QM approaches. Hybrid methods that
combine QM and molecular mechanics (QM/MM)8-11 offer
the possibility to treat the whole protein on longer time
scales. Nevertheless, if one is interested in the dynamical
behavior of Zn2+ complexes, available methods remain
sparse. Traditional fixed charge force fields are unable to
capture the interactions between Zn2+ and its ligands, or even
to keep the Zn2+ “in place”, unless using artificial bonds12

or extra charge sites.13 Recent studies based on quasi-
chemical theory have shown the importance of polarization
in ion hydration.14,15

As an alternative to QM, anisotropic polarizable molecular
mechanics (APMM) methods, such as SIBFA (sum of
interactions between fragments ab initio computed)16,17 and
AMOEBA,18 have been developed in recent years. Such
techniques are computationally more efficient and provide
potential energy surfaces in close agreement with QM. For
the specific case of Zn2+, SIBFA, which treats both polariza-
tion and charge transfer contributions, has been shown to
be particularly accurate and has enabled the study of large
biological systems.16,19-23 As SIBFA’s extension to MD is
under development, AMOEBA has already been extensively
tested in simulations of various systems including proteins24-26

and has been shown to be particularly suited for the
computation of dynamical properties of metal cations of
biological interest.19-22,27-29

In this contribution, as a first step toward modeling Zn2+

metalloenzymes, we will show that AMOEBA is able to
accurately capture Zn2+ solvation properties. In the first part
of this work, we will detail the parametrization process which
is grounded on gas phase ab initio calculations following a
“bottom-up” approach.16 The application of energy decom-
position analyses (EDA) techniques17 such as the constrained
space orbital variations (CSOV),30 reduced variational space
(RVS),31 and symmetry adapted perturbation theory
(SAPT)32 to AMOEBA’s parametrization will be discussed.
Moreover, such approaches are used to evaluate the impor-
tance of the charge transfer contribution. The nature of the
interaction of Zn2+ with water will be investigated using
the electron localization function (ELF)33 topological analy-
sis.34 In the second part, we will perform extensive condensed-
phase simulations using AMOEBA to compute Zn2+ solva-
tion properties such as the ion-water radial distribution
function (RDF), water residence times, and the coordination
number, as well as the solvation free energy. Comparison is
made to experimental results as well as other divalent cations
that have previously been studied using AMOEBA.

II. Computational Details

Gas Phase ab Initio Calculations. The intermolecular
interaction energies of Zn2+-H2O at various separations
were calculated using Gaussian 0335 at the MP2(full) level.
Basis set superposition error (BSSE) correction was included
in the binding energy. The geometry of the previously
derived AMOEBA water model was applied.36,37 The aug-
cc-pVTZ basis set38 was employed for water and the
6-31G(2d,2p) basis set for the Zn2+ cation. Post-Hartree-Fock
symmetry adapted perturbation theory (SAPT) calculations
were performed with the same basis sets at the MP2 and

CCSD levels using the Dalton package38 and SAPT 96.39

CSOV polarization energy calculations were performed using
a modified version40 of HONDO95.340 with the B3LYP
methods41,42 using the above basis sets. The Zn2+ atomic
polarizability was computed using Gaussian 03 at the
MP2(full)/6-31G** level.

Additional energy decomposition analysis was performed
on the zinc hydrated cluster with the reduced variational
space (RVS) scheme as implemented in the GAMESS43

software. The RVS energy decomposition computations were
performed at the Hartree-Fock (HF) level using the CEP
4-31G(2d) basis set44 augmented with two diffuse 3d
polarization functions on heavy atoms (double-�-quality
pseudopotential) and at the aug-cc-pVTZ basis set level (6-
31G** for Zn(II)).

Electron Localization Function Analysis (ELF). In the
framework of the ELF33,45 topological analysis,34 the mo-
lecular space is divided into a set of molecular volumes or
regions (the so-called “basins”) localized around maxima
(attractors) of the vector field of the scalar ELF function.
The ELF function can be interpreted as a signature of the
electronic-pair distribution, and ELF is defined to have values
restricted between 0 and 1 to facilitate its computation on a
3D grid and its interpretation. The core regions can be
determined (if Z > 2) for any atom A. Regions associated to
lone pairs are referred to as V(A), and bonding regions
denoting chemical bonds are denoted V(A,B). The approach
offers an evaluation of the basin electronic population as well
as an evaluation of local electrostatic moments. It is also
important to point out that metal cations exhibit a specific
topological signature in the electron localization of their
density interacting with ligands according to their “soft” or
“hard” character. Indeed, a metal cation can split its outer-
shell density (the so-called subvalent domains or basins)
according to its capability to form a partly covalent bond
involving charge transfer.46 More details about the ELF
function and its application to biology can be found in a
recent review.47 All computations have been performed using
a modified version48 of the Top-Mod package.49

III. Parameterization and Free Energy
Simulations

Use of CSOV and SAPT Energy Decompositions
Schemes. Following a procedure that has already shown
success with Ca(II) and Mg(II),29 the Zn2+ cation is
parametrized by first matching the distance dependence of
AMOEBA polarization energies of the ion-water dimer in
the gas phase with reference ab initio CSOV polarization
energy results. In order to supplement the CSOV decomposi-
tion, we have also performed SAPT computations (available
in the Supporting Information). It is important to note that,
despite the fact that SAPT could be expected to be the
reference analysis offering up to CCSD correlation correc-
tions to compute the contributions, a close examination of
the results clearly shows that SAPT has problems with
converging to the supermolecular interaction energy. A
similar trend has recently been observed by Rayon et al.6 It
appears that difficulty with convergence is mainly due to
the second order induction term, which consists of both
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polarization and charge transfer energies.17 Such a problem
is not new, as Claverie50 and then Kutzelnigg51 showed 30
years ago that the convergence of the SAPT expansion was
not guaranteed. As in recent studies on water,52 the discrep-
ancy of total SAPT energies compared to supermolecular
interaction energy results can be traced back to the impor-
tance of the third order induction correction. Their inclusion
clearly enhances the binding energy and could therefore
improve SAPT results. We reported here extensive SAPT
results in a detailed Supporting Information section dealing
with the Zn2+-water complex. As one can see from the
Supporting Information, at the Hartree-Fock level, the SAPT
approximation tends not to converge at short-range, the total
SAPT energy being far from the supermolecular HF value.
Around the equilibrium (Zn2+-O ) 2.0 Å), and beyond,
this discrepancy tends to diminish, becoming negligible at
long range. However, since the AMOEBA force field is
based on the reproduction of supermolecular interaction
energies, we need short-range induction data in order to refine
the parameters. Moreover, as SAPT induction embodies both
charge transfer and polarization, we cannot fit directly the
sole “polarization only” Thole model to these values.
Consequently, for the present purpose of AMOEBA’s fitting,
we have limited our use of the SAPT results to a comparison
of the accuracy of AMOEBA’s Halgren 14-7 van der Waals
function53 at long-range directly to the sum of the SAPT
exchange-repulsion, dispersion, and exchange-dispersion.
Such a fit is reflected in the good agreement between the
AMOEBA and ab initio total interaction energy at long range
(see Figure 5).

In summary, we fit AMOEBA’s polarization contribution
(the damping factor “a” in the next section) to the CSOV
results. The remaining induction contribution (charge trans-
fer) will be included in the van der Waals term as a result
of matching the total binding energy of AMOEBA to that
of QM. In the absence of an explicit charge transfer term,
such a strategy is justified, as the charge transfer contribution
is notably smaller in magnitude compared to polariza-
tion4,16,22,23 and a good percentage of it (namely the two-
body part) could be accurately included within AMOEBA’s
van der Waals term assuming that many-body charge transfer
is not the driving force of Zn(II) solvation dynamics. The
validity of such an assumption and the applicability of the
present parametrization scheme to Zn2+ will be discussed
in the first section of the discussion.

AMOEBA Calculation Details. The AMOEBA polariz-
able force field28,36,37 is used to study the solvation dynamics
of Zn(II). Hence, the electrostatic term of the model accounts
for polarizability via atomic dipole induction:

where Mj ) [qj,µj,1,µj,2,µj,3,...]T are the permanent charge,
dipole, and quadrupole moments and TR

ij ) [TR,TR1,TR2,TR3,...]
is the interaction matrix between atoms i and j. The Einstein
convention is used to sum over indices R and �. The atomic
polarizability, Ri, is parametrized for the zinc cation in this
work. Note that the first term within the parentheses
corresponds to the polarization field due to permanent

multipoles, while the second term corresponds to the
polarization field due to induced dipoles produced at the other
atoms.

The dipole polarization is damped via smeared charge
distributions as proposed by Thole:54

where u ) Rij/(RiRj)1/6 is the effective distance between atoms
i and j. The scalar a, a dimensionless parameter correspond-
ing to the width of the smeared charge distribution, is
parametrized to be 0.39 for water36 and monovalent ions.55

A previous study suggested that, for monovalent ions,
AMOEBA is able to reproduce ab initio MP2 correlated
results and hydration enthalpies without modifying the
damping factor. However, since divalent ions, such as Ca2+

and Mg2+,28,29 require a wider charge distribution in order
to agree with QM ion-water dimer energy, smaller values
of a were assigned. The value for Zn2+ is also adjusted from
0.39 and is compared with those of Ca2+ and Mg2+ below.

The repulsion-dispersion (van der Waals) interaction is
represented by a buffered 14-7 function:53

where εij is the potential well depth. In addition, Fij is Rij/Rij
0,

where Rij is the separation distance between atoms i and j,
and Rij

0 is the minimum energy distance. Following Halgren,
we used fixed values of n ) 14, m ) 7, δ ) 0.07, and γ )
0.12. The values for Rij

0 and εij are parametrized. The
polarizable water model as developed by Ren and Ponder36

is employed in this study.
With water geometry fixed, the Zn2+-O distances were

varied between 1.5 and 5 Å. The damping factor “a” was
adjusted so that the AMOEBA polarization energy matched
the CSOV values as much as possible. Next, parameters for
the van der Waals interaction, R0 (radius) and ε (well-depth),
were derived by comparing the total ion-water binding
energy computed by AMOEBA to the ab initio values at
various distances. For interactions between different types
of atoms, these parameters undergo combination rules as
described by Ponder et al.26 The binding energies were
computed as the total energy less the isolated water and ion
energies at an infinite separation distance.

Molecular dynamics simulations were performed via the
TINKER 5 package56 to compute the solvation free energy
of Zn2+. Fourteen independent simulations were first per-
formed to “grow” the Zn vdW particle by gradually varying
R(λ) ) λ(Rfinal) and ε(λ) ) λ(εfinal), where λ ) (0.0, 0.0001,
0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).
Subsequently, 30 simulations were performed to “grow” the
(+2) charge of Zn2+ along with its polarizability such that
q(λ′) ) λ′(qfinal) and R(λ′) ) λ′(Rfinal), where λ′ ) (0.0, 0.1,
0.2, 0.3, 0.325, 0.350, 0.375, 0.400, 0.425, 0.450, 0.475,
0.500, ..., 1.0). The long-range electrostatics are modeled
with particle-mesh Ewald summation for atomic multipoles
with a cutoff of 7 Å in real space and 0.5 Å spacing and a
fifth-order spline in reciprocal space.57 The convergence

µi,R
ind ) Ri( ∑

{j}

TR
ijMj + ∑

{j′}
TR�

ij′ µj′,�
ind) for R,� ) 1,2,3

F ) 3a
4π

exp(-au3)

Uij
buff ) εij( 1 + δ

Fij + δ)n-m( 1 + γ
Fij

m + γ
- 2)
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criteria for induced dipole computation is 0.01 D. Molecular
dynamics simulations were performed with a 1 fs time step
for 500 ps at each perturbation step. Trajectories were saved
every 0.1 ps after the first 50 ps equilibration period. The
temperature was maintained using the Berendsen weak
coupling method at 298 K.58 The system contained 512 water
molecules with one Zn2+ ion, and 24.857 Å is the length of
each side of the cube.

The absolute free energy was computed from the perturba-
tion steps by using the Bennett acceptance ratio (BAR), a
free energy calculation method that utilizes forward and
reverse perturbations to minimize variance.59,60 MD simula-
tions were extended for 2.2 ns (total 2.7 ns) with the final
Zn2+ parameters, and the resulting trajectory was used in
the analysis of the structure and dynamics of water molecules
in the first solvation shell. Water molecules separated by a
distance less than the first minimum of the Zn2+-O RDF
were considered to be in the first solvation shell. The
averaged residence time of the first shell water molecules
was directly measured by monitoring the entering and exiing
events.

IV. Results and Discussion

Contribution of Charge Transfer in Zn2+-Water
Complexes. The lack of explicit charge transfer (CT) in
AMOEBA presents an interesting challenge. When the CT
contribution is significant, despite its limited magnitude in
many-body complexes, it may be difficult to capture the
overall many-body effect by only considering polarization.
Therefore, it is important to investigate the CT contribution
to the Zn2+-water interaction energy and its dependence
on the system size. To estimate the magnitude of charge
transfer, we performed several RVS energy decomposition
analyses on complexes up to [Zn(H2O)6]2+.

We report here complexes that were initially studied by
Gresh et al.:22,61,62 the monoligated [Zn(H2O)]2+ complex
and polyligated [Zn(H2O)6]2+, [Zn(H2O)5(H2O)]2+, and
[Zn(H2O)4(H2O)2]2+ arrangements (octahedralf pyramidal
f tetrahedral first-shell). As we can see in Table 1, the
importance of charge transfer relative to polarization varies
with the size of the Zn2+-(H2O)n complex and depends on
the basis set. It makes up a significant portion of induction
for a monoligated [Zn(H2O)]2+, and its contribution decreases
as the number of ligating water molecules increases to 6.
The charge transfer effect appears to be diluted within the
entire induction energy (polarization and charge transfer) as
the number of water molecules grows in agreement with the
previous observation of anticooperative effects.22,61,62 Note
that basis set superposition error (BSSE) is not taken into
account. As indicated by Stone,63 such systematic error can

be clearly associated with the charge transfer effect. In
contrast to the inverse relationship between CT and water
ligation expressed by the zinc cation, the CT contribution
associated with anions, such as Cl-, has been observed to
increase as ligation increases.64 This phenomenon may be
due to the asymmetric solvation environment for the anions
as well as their modes of water ligation. However, analyses
of CT effects are not apparent, as they are found in both
induction energy and basis set superposition error.63 For the
largest complex [Zn(H2O)6]2+, the BSSE amounts to 3.3 kcal/
mol. If removed, the relative weight of charge transfer to
the total induction reduces from 16.6% (Table 1) to 15.3%
at the CEP-31G(2d) level. Using the large aug-cc-PVTZ for
water coupled to the 6-31G** basis set for Zn(II), the
observed trends are even more pronounced as the relative
importance of charge transfer strongly diminishes from 6.4%
of the whole induction for [Zn(H2O)4]2+ to less than 4% for
the [Zn(H2O)6]2+ complex while polarization becomes more
dominant. Thus, the magnitude of the CT estimated by ab
initio methods is greatly dependent on the basis set used.
While our results have been obtained at the Hartree-Fock
level, recent studies clearly show that correlation acts on
induction and leads to greater charge transfer energy.17,40

For this reason, we computed the induction energies on
selected water clusters at both the HF and DFT level using
a recently introduced energy decomposition analysis (EDA)
technique based on single configuration-interaction (CI)
localized fragment orbitals.65 We indeed find that the CT
contribution increases slightly with DFT; however, overall
it accounts for less than 20% of the total induction energy
for monoligated complexes and presumably would be even
less in the bulk water environment.

To gain further insight into the interaction of Zn2+ with
water, we performed the electron localization function (ELF)
analysis. An important asset of the ELF topological analysis
is that it provides a clear description of a covalent bond
between two atoms as it exhibits a basin between atoms to
indicate electron sharing. Here, we have considered several
Zn2+-(water)n complexes, n ) 1-6. An important discovery
from ELF analysis is that a covalent V(Zn,O) is only
observed in the monoligated Zn2+-water complex (Figure
1). In that case, we observe a net concentration of electrons
between the zinc cation and the water oxygen, a clear sign
of covalent bonding (1.9 e- on the bond). As n increases,
the covalent V(Zn,O) feature disappears despite a residual
mixing of Zn2+ contributions in the oxygen basin. Indeed,
as the Zn-O distances increase with n (Figures 2 and 3),
the Zn-O bond becomes more ionic as the charge transfer
quickly diminishes. Such behavior could be then understood
using the subvalence concept.46 As shown by de Courcy

Table 1. Polarization Energy and Charge Transfer Energy from Restricted Variational Space (RVS) Energy Decomposition
of Zn2+ in the Presence of Water Clusters of Sizes 1, 4, 5, and 6 at the HF/CEP-41G(2d) Level (or HF/aug-cc-PVTZ/
6-31G**, Results in Parentheses)a

complex Zn(H2O) [Zn(H2O)4]2+ [Zn(H2O)5]2+ [Zn(H2O)6]2+

Epol (RVS) -37.6 -118.7 (-135.3) -110.8 (-127.5) -104.3 (-117.5)
ECT (RVS) -10.9 -28.7 (-9.3) -24.5 (-6.7) -21.8 (-4.51)
(ECT/(Epol + ECT)) × 100 22.5 19.4 (6.4) 18.1 (5.0) 16.6 (3.7)

a Percentage of induction energy due to charge transfer is presented in the last row. All are in units of kcal/mol.
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et al.,4,46 the cation density is split into several “subvalent”
domains as its outer shells appear strongly polarized, which
explains why covalency is not achieved. If the cation electron
density is strongly delocalized toward the oxygen atoms, the
center of the basin remains closer to Zn2+ (covalent bonding
would implicate a polarized bond with a covalent V(Zn,O)
basin localized closer to the more electronegative oxygen).
ELF results thus suggest that, although the induction in the
Zn2+-water monoligated complex is dominated by charge
transfer, this is not to the case for n from 2 to 6. In the latter
case, the many-body effects are driven by the Zn2+ outer
shells’ plasticity that accommodates the strongly polarized
water molecules. The atoms in molecules (AIM) population
analysis confirms that such behavior is present in DFT as
well as at the MP2 level. As expected (see refs 6 and 40,
for example), DFT tends to slightly overbind the complexes
as compared to MP2, which clearly gives a better description
of the bonding over Hartree-Fock.

To conclude on these various results, we expect that
AMOEBA will improve in accuracy with an increase in
system size as the charge transfer effect becomes less
important and the total induction will be dominated by
polarization. In other words, we anticipate the discrepancy
between AMOEBA and QM observed in the monoligated
water-Zn2+ complex to disappear in the condensed phase.
This also suggests that an “ad-hoc” inclusion of the charge
transfer into the polarization contribution by adjusting the
polarization damping scheme (see the Thole model in the
Computational Details) is probably not a suitable strategy.
Indeed, charge transfer can rapidly vanish, and “polarization
only” models overfitted on monoligated complexes to include
charge transfer will lead to an overestimated many-body
effect in bulk-phase simulation as the polarization would still
contain the unphysical charge transfer. Charge transfer should
be treated explicitly or included in the van der Waals to a
certain extent. In this study, we adopt the latter approach to
effectively incorporate the charge transfer in the bulk
environment into the vdW interactions.

Accuracy of the AMOEBA Parametrization. The dis-
tance-dependent dimer binding energies were used to adjust
vdW parameters (R and ε), and the damping factor of
polarizability (a) for Zn2+ was adjusted to match the CSOV
polarization energy. Table 2 lists the final parameters of the
Zn2+ cation as well as the Mg2+ and Ca2+ cations param-
etrized by Jiao et al.28 that are optimized for the Tinker
implementation of AMOEBA. Meanwhile, parameters op-
timized for a slightly modified implementation of the
AMOEBA force field present in Amber which embodies a
modified periodic boundary condition treatment of long-range
van der Waals are available as well.29 It should be noted
that, although the previously reported parameters for Mg2+

Figure 1. ELF localization domains (basins) for the
Zn2+-H2O complex. A covalent V(Zn,O) basin reflecting
electron sharing is observed and reveals the covalent nature
of the Zn-O interaction.

Figure 2. ELF localization domains (basins) for the
Zn2+-(H2O)2 complex. Noncovalent V(Zn) basin are ob-
served describing the deformation of Zn2+ outer-shells’
density within the fields of the water molecules.

Figure 3. ELF localization domains (basins) for the
Zn2+-(H2O)4 and Zn2+-(H2O)6 complexes. Again, noncova-
lent V(Zn) basins are observed.

Table 2. Ion Parameters: Diameter, Well Depth,
Polarizability, and Dimensionless Damping Coefficient

ion R (Å) ε (kcal/mol) R (Å3) aa

Zn2+ 2.68 0.222 0.260 0.2096
Mg2+ 2.94 0.300 0.080 0.0952
Ca2+ 3.63 0.350 0.550 0.1585

a a is the dimensionless damping coefficient.

Molecular Dynamics Simulation of Zn(II) J. Chem. Theory Comput., Vol. 6, No. 7, 2010 2063



and Ca2+ contained typographic inconsistencies,28 results
from that work (thermodynamic energy, structural analysis,
etc.) are obtained from parameters consistent with Table 2.
Figure 4 compares CSOV polarization energy calculations
with the AMOEBA polarizable force field as a function of
distance between the cation and water. The difference
between the two methods is mainly found at distances
between 2 and 3 Å, where the charge transfer effect in the
two-body system is strong. However, such discrepancy is
expected to diminish in bulk water as the charge transfer
effect is expected to be less important, as explained above.
Comparisons between total binding energies of the AMOEBA
polarizable model and ab initio calculations are shown in
Figure 5. As expected, the interaction energy between 2 and
3.5 Å appears to be underestimated (less negative) compared
to the ab initio result. The strategy here is, however, not to
overfit the AMOEBA model to the monoligated Zn2+

complex, as the polarization energy and total interaction
energy are already very reasonable considering the relatively
simple force field functional form. The AMOEBA associa-
tion energies for [Zn(H2O)6]2+, [Zn(H2O)5(H2O)]2+, and
[Zn(H2O)4(H2O)2]2 complexes are -334.4, -333.4, and
-331.9/-333.7 kcal/mol, respectively. Given that AMOEBA
is mainly targeting the condensed phase, the trend observed
here is in reasonable agreement with the previous ab initio
results (-345.3, -341.3, -337.4/-337.8 kcal/mol using CEP
4-31G (2d) basis set; -365.9, -363.3, -360.0/-362.4 kcal/
mol using 6-311G** basis set).62 Our approach is further
validated in the condensed-phase hydration properties cal-
culation next.

Evaluation of Zn2+ Solvation in Water Using
AMOEBA. The hydration free energy is the key quantity
describing the thermodynamic stability of an ion in solution.
The solvation free energy of zinc in water has been computed

from molecular dynamics simulations using free energy
perturbation (FEP). Table 3 lists the free energy of hydration
for Zn2+, Mg2+, and Ca2+ compared with experiment-
derived values66,67 and the results from the quasi-chemical
approximation method.14 The free energy values computed
from AMOEBA are closer to those from quasi-chemical
approximation (QCA) than to the data interpreted from
experimental measurement. In the QCA method, the region
around the solute of interest is partitioned into inner and outer
shell domains. The inner shell was treated quantum mechani-
cally, while the outer shell was evaluated using a dielectric
continuum model. Note that, to decompose the hydration free
energy of a neutral ion pair, tetraphenylarsonium tetraphe-
nylborate (TATB) has been most widely chosen as a
reference salt, on the basis of the extra thermodynamic
assumption that the large and hydrophobic ions do not
produce charge-specific solvent ordering effects.55,66 Our
results show better agreement with “experimental values”
for Ca2+ and Mg2+ ions by Schmid et al., who derived the
single ion hydration free energy by using the theoretically
determined proton hydration free energy as a reference.67

The hydration free energy for the Zn2+ ion computed using
AMOEBA is in good agreement with values given by
Marcus66 and Asthagiri et al.,14 with deviations less than
1.9% and 0.2%, respectively.

Solvent Structure and Dynamics. To characterize the
structure of water molecules around the ion, the radial
distribution function (RDF) between the Zn2+ and oxygen
atom of the water molecule has been obtained from the 2.7
ns molecular dynamics simulation (Figure 6). The running
integration of Zn-O, which imparts water-ion coordination
information, is also plotted. The first minimum in the ion-O
RDF is at a distance of 2.85 Å, which can be interpreted as
the effective “size” of the complex composed of the ion and
first water solvent shell. The running integration indicates a
water-coordination number of 6 in the first solvation shell,
which is consistent with experimental observations.68-73 As
expected, the zinc cation binds to the first water shell more
tightly than other ions, as evident in the more pronounced
and narrow first peak as well as the shortest separation, as
shown in the ion-O RDFs in Figure 7. Overall, the zinc
solvation structure show greater similarity to Mg2+ than
Ca2+.

The Born theory of ion solvation74 states that there exists
an effective solvation radius, RB, for each ion such that the
solvation free energy of the ion in a dielectric medium is
given by

where q is the charge of the ion and εd is the dielectric
constant of the medium (80 for water). We have calculated
the effective radius of zinc on the basis of the Born equation
from the solvation free energy obtained from our simulations.
Table 4 gives a detailed comparison among Zn2+, Mg2+,
and Ca2+. It should be noted, however, that previous studies
have shown that ion hydration energy is not symmetric with
respect to electronegativity,27,75,76 as is implied by the Born
theory. The first peak of the Zn2+-O RDF is at 1.98 Å, and

Figure 4. Polarization energy of the zinc and water dimer in
the gas phase as a function of separation distance.
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the effective Born radius of the cation is calculated to be
1.47 Å. A difference of ∼0.5 Å between the two quantities
is consistent with the results of other mono- and divalent
metal ions.27,28,77-79 The difference between the first mini-
mum in the Zn2+-O RDF and the Born radius is 1.38 Å
and is consistent with studies of other ions as well.27,28

In addition to the RDF, the solvation structure has been
analyzed from the distribution of the angles formed by
O-ion-O in the first water shell. Figure 8 compares the
distribution of angles for Zn2+, Mg2+, and Ca2+ cations.
With sharp peaks located near 90° and 180°, the distribution
of the O-Zn2+-O angle suggests a rigid octahedron
geometry with the Zn2+ surrounded by six water molecules.
Mg2+ shares a similar but slightly more flexible geometry,
while results for Ca2+ suggest a more amorphous structure.
Figure 9 shows the dipole moment at each distance (Å)

around the ion. Figure 10 is a sample frame from the
molecular dynamics simulation to illustrate the octahedron
arrangement between the zinc and the first shell water
molecules.

Dipole Moment. The average dipole moment of water as
a function of distance away from the zinc cation is computed.
At the closest distance of 1.9-2.5 Å, water experiences a
dipole moment from 3.0 to 3.9 D. Due to the highly
organized structure of the first water shell, a “vacuum” space
free of water molecules is observed between 2.6 and 3.2 Å
away from the cation, also evident in the Zn2+-O RDF.
The higher dipole moment of Zn2+ relative to bulk water
(2.77 D36) within the first water shell is consistent with a
previous observation of other divalent cations.28 The dipole
moment of water in the first solvation shell of monovalent
cations such as K+ and Na+, however, is lower than that of
bulk water.55

Residence Time. We have investigated the lifetime of
ion-water coordination by directly examining the average
amount of time that a water molecule resides within the first
solvation shell. The first solvation shell is determined by the
position of the first minimum of the Zn-O RDF. If an
oxygen atom is less than 2.85 Å away from the Zn2+, the
water is considered to be in the first solvation shell. Cutoff

Figure 5. Binding energy of the zinc and water dimer in the gas phase as a function of separation distance. The 6-31G(2d,2p)/
aug-cc-pVTZ indicates that 6-31G(2d,2p) was used to represent the Zn2+ cation and aug-cc-pVTZ was used to represent the
water molecule. Binding energy obtained from the last two basis sets used the same basis sets for both the ion and water.

Table 3. Solvation Free Energy of Zinc in Watera

ion ∆G (kcal/mol) experimental quasi-chemicalb

Zn2+ -458.9(4.4) -467.7c -460.0
Mg

2+
-431.1(2.9) -435.4d -435.2

Ca
2+

-354.9(1.7) -357.2d -356.6

a A 1 mol L-1 solution is chosen as the standard state. b Ref
14. c Ref 66. d Ref 67.

Figure 6. Radial distribution function of Zn2+-O (left axis)
and water coordination number (right axis).

Figure 7. Radial distribution function of divalent cations
(Zn2+, Mg2+, and Ca2+) and the oxygen atom in water.
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distances used for the first solvation shells of Mg2+ and Ca2+

are 2.95 and 3.23 Å, respectively. In Table 5, coordination
numbers and residence times from AMOEBA simulations
are compared with experimental values for Zn2+, Mg2+, and
Ca2+.20,80-86 The Zn2+ to water-proton dynamics are studied
with quasi-elastic neutron scattering methods (QENS) as
described by Salmon et al.80 The water residence times
directly sampled from the MD simulations are in better
agreement with experimental results than those previously
inferred from the time correlation function of the instanta-
neous first shell coordination number.28 According to
AMOEBA simulations, the residence time in the first
solvation shell around Zn2+ is at least 2 ns, and the water
molecules around Ca2+ have a lifetime on the order of several
picoseconds, both of which are within the experimental
ranges. For Mg2+, experimental results suggest that water
molecules could live up to a few microseconds, while the
simulations using AMOEBA indicate a residence time similar

to that of Zn2+. Classical fixed-charge molecular mechanic
methods suggest a residence time of 146 ps87 for water
around Zn2+, while quantum mechanical methods have not
attained simulation times long enough to observe the
exchange of water molecules in the first shell.68,88 The cal-
culated water residence times are consistent with the analyses
of the radial distribution function and water angle distribu-
tion. A longer residence time is accompanied by a more
ordered and closely packed water structure near the cation.

Conclusions

We showed in this contribution that AMOEBA was able to
provide a reasonably accurate description of Zn2+ interaction
with water, especially in the bulk water environment. We
explained in detail one of the reasons for such good
performancesthe ab initio calculations demonstrated that the
relative importance of charge transfer diminishes as the
number of water molecule increases, a sign of anticooper-
ativity. We have established a fitting strategy for induction:

Table 4. Radii Results for Zn2+, Mg2+, and Ca2+ Cationsa

ion Born radius (Å) first peak in ion-O RDF experimental first peak in ion-O RDF QM/MM first peak first minimum in ion-O RDF

Zn2+ 1.47 1.98 2.07b 2.11-2.18b 2.85
Mg2+ 1.56c 2.07 2.09d 2.13e 2.95
Ca2+ 1.89c 2.41 2.41-2.44;2.437;2.46d 2.43-2.44e 3.23

a Born radii, first peak in ion-O RDF with AMOEBA polarizable force field, experimental first peak in ion-O RDF, and first minimum in
ion-O RDF are all indicated in Å. b Ref 69. c Ref 28 d Refs 77, 78, and 79. e Refs 77, 78.

Figure 8. Water-ion-water angle distribution of divalent
cations (Zn2+, Mg2+, and Ca2+) and the oxygen atom in
water.

Figure 9. Dipole moment at each distance (Å) around the ion.

Figure 10. First solvation shell around the Zn2+ ion.

Table 5. Coordination Number, Experimental Coordination
Number, Residence Time, Experimental Residence Time,
and QM/MM Residence Times for Each Type of Divalent
Cations.

ion
coordination

number
exp. coordination

number
residence
time (s)

exp residence
time (s)

Zn2+ 6 6a 2.2 × 10-9 10-10 to 10-9b

Mg2+ 6 6c 1.9 × 10-9 2 × 10-6 to 10-5d,e

Ca2+ 7.3 7.2 ( 1.2f 1.33 × 10-10 <10-10 to 10-7e

a Refs 68-73. b Refs 80 and 20. c Ref 85. d Refs 81. e Refs 84,
82 and references within, and 83. f Ref 86.
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charge transfer can be included in the pairwise dispersion
in the van der Waals contribution; incorporation of charge
transfer into polarization would lead to an overestimation
of the many-body effects. Despite the difficulty involved with
the AMOEBA model reproducing the binding energy of the
monoligated Zn2+-water complex, which exhibits nonclas-
sical covalent bonding as shown by ELF topological analysis,
AMOEBA is able to afford robust estimation of the hydration
free energy along with reasonable solvation structure and
dynamics. The current and previous studies suggest that the
classical polarizable multipole-based AMOEBA is an effec-
tive tool for modeling ions in bulk solution, as good relative
solvation free energies, structures, and dynamic properties
have been obtained for a range of mono- and divalent cations.
The work clearly demonstrates the need for “interpretative”
ab initio techniques (ELF, EDA methods) in order to follow
a bottom-up approach going from the gas-phase ab initio
calculations to condensed-phase MD simulations. In addition,
the zinc model developed in this work opens the door for
future study of zinc-containing metalloproteins. Further
investigation is necessary to determine whether the presence
of negatively charged species interacting with Zn2+ would
require an explicit consideration of charge transfer contribu-
tion in the classical energy function.
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Denis Jacquemin,*,† Eric A. Perpète,† Ilaria Ciofini,‡ Carlo Adamo,*,‡

Rosendo Valero,§,⊥ Yan Zhao,§,| and Donald G. Truhlar§
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Abstract: We assessed the accuracy of the four members of the M06 family of functionals (M06-
L, M06, M06-2X, and M06-HF) for the prediction of electronic excitation energies of main-group
compounds by time-dependent density functional theory. This is accomplished by comparing the
predictions both to high-level theoretical benchmark calculations and some experimental data for
gas-phase excitation energies of small molecules and to experimental data for midsize and large
chromogens in liquid-phase solutions. The latter comparisons are carried out using implicit solvation
models to include the electrostatic effects of solvation. We find that M06-L is one of the most accurate
local functionals for evaluating electronic excitation energies, that M06-2X outperforms BHHLYP,
and that M06-HF outperforms HF, although in each case, the compared functionals have the same
or a similar amount of Hartree-Fock exchange. For the majority of investigated excited states, M06
emerges as the most accurate functional among the four tested, and it provides an accuracy similar
to the best of the other global hybrids such as B3LYP, B98, and PBE0. For 190 valence excited
states, 20 Rydberg states, and 16 charge transfer states, we try to provide an overall assessment
by comparing the quality of the predictions to those of time-dependent Hartree-Fock theory and
nine other density functionals. For the valence excited states, M06 yields a mean absolute deviation
(MAD) of 0.23 eV, whereas B3LYP, B98, and PBE0 have MADs in the range 0.19-0.22 eV. Of the
functionals tested, M05-2X, M06-2X, and BMK are found to perform best for Rydberg states, and
M06-HF performs best for charge transfer states, but no single functional performs satisfactorily for
all three kinds of excitation. The performance of functionals with no Hartree-Fock exchange is of
great practical interest because of their high computational efficiency, and we find that M06-L predicts
more accurate excitation energies than other such functionals.

I. Introduction

Time-dependent density functional theory (TD-DFT)1-4 is
a powerful tool for evaluating properties of electronically

excited states; its predictions are often more accurate than
those that can be obtained with other schemes applicable to
very large molecules.5-24 In addition, medium effects can
be readily included in TD-DFT with the help of continuum
models25-28 (for solvents) or of hybrid quantum mechanical
and molecular mechanical (QM/MM) approaches29-31 (for
biological environments and solid-state catalysts). However,
TD-DFT, like DFT for ground electronic states, is in practice
applied with approximate density functionals, since an exact
functional is unavailable, and many approximate functionals
have systematic deficiencies, which have made the predic-
tions less accurate for transitions with Rydberg,9,17 long-
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range charge-transfer,7,17 or double-excitation32-34 character
in the excited state than for single-excitation valence transi-
tions. It was recently concluded that TD-DFT “still represents
the best compromise between accuracy and computational
effort. However, large differences in the results are found
between the various functionals.”24 Therefore, a well in-
formed choice of the density functional is crucial to generat-
ing reliable results. Several extensive tests of various density
functionals in the TD-DFT framework have been published;
tests have been carried for main-group molecules both in
the gas phase and in liquid-phase solutions.9,10,12,14-18,20-24

Although the most extensive tests involved more than 20
functionals,23 the M06 family14,35 (M06-L,36 M06,14 M06-
2X,14 and M06-HF10) was too new to be included. The
present contribution endeavors to fill this lacuna. As in the
previous tests,9,10,12,14-18,20-24,37 the present results are
restricted to the adiabatic linear-response formulation of TD-
DFT with density functionals independent of frequency and
current, and in particular the adiabatic approximation implies
that the functionals developed for ground-state applications
are used without change.

In addition to specific applications, the performance of the
functionals of the M06 family has been systematically
appraised for numerous properties including thermochemi-
stry,14,38-42 reaction barriers,14,39,41,43,44 catalysis,45-48 struc-
tural features,14,49-52 spin-state energetics,49,53 vibrational
frequencies and intensities,14,54,55 noncovalent interac-
tions,14,39,50,51,56-61 and NMR shieldings and related
properties.62-65 In most cases, the functionals of the M06
family have been found to be relatively broadly accurate and
among the most accurate of their respective categories; in
particular, M06-L is a very effective local functional (by
which we mean a functional that depends on local values of
the densities and occupied spin-orbitals (of the noninter-
acting reference state) and their local derivatives but does
not involve an integral over all space as in the Hartree-Fock
exchange operator), and the other three are very effective
hybrid meta functionals (where “hybrid” denotes the inclu-
sion of Hartree-Fock exchange, and “meta” denotes the
inclusion of kinetic energy density, which depends on local
derivatives of the spin-orbitals). The investigations in the
TD-DFT framework are sparser, but encouraging. One set
of tests10 of M06-HF and six other functionals for main-
group excitation energies involved 20 valence excitations,
20 Rydberg-state excitations, and three charge transfer
excitations. A later test extended this to M06-L, M06, and
M06-2X and 12 older functionals; this test involved 25
valence excitations, 20 Ry excitations, and three charge
transfer excitations.14 In the former study,10 M06-HF was
third best for Rydberg states and best for charge transfer
states, but performed poorly for valence excitations. Weight-
ing the three classes of functionals equally, though, it was
the best of the seven functionals tested. For these same
excitations, weighting the three classes of excitations equally,
the subsequent study14 found M06-HF was best followed
by M05-2X (a precursor of M06-2X) and M06-2X. Omitting
charge transfer excitations, these three functionals were
respectively fifth, second, and third best, out of 16. The 16
density functionals in this study were also applied14 to five

excitation energies of neutral and cationic metal atoms
(including two main-group cases); M06-L and M06 had the
third and fourth lowest mean unsigned error for these. In a
third systematic study,39 M05-2X, the four members of the
M06 family, M08-HX and M08-SO (which are later versions
of M06-2X), and six older functionals were applied to nine
multiplicity-changing excitation energies; M08-HX, M08-
SO, and M06-2X had respectively the first, fourth, and fifth
lowest mean unsigned errors, out of 13 functionals tested.
One would not necessarily always want to use the functional
that predicts, on average, the most accurate excitation
energies; in many cases where excitations energies are
important, one also needs to accurately model noncovalent
interactions and/or barrier heights on the ground potential
energy surface, so a broadly accurate functional with good
performance for spectroscopy (even if not the best for
excitation energies) may be preferable.

In order to more completely evaluate the behavior of the
M06 family for the prediction of vertical excitation energies,
in this paper, we will test its performance using a vartiety
of databases, designed to include various types of transitions,
ranging from valence excitations to charge transfer (CT) and
Rydberg states. More specifically, we will consider five
databases: two large databases taken from the previous most
extensive study of functional performances23 and three
smaller databases covering also CT and Rydberg transi-
tions.14 The two large databases are called VT and VE to
denote “versus theory” and “versus experiment,” respectively.

For the VT tests, we compare TD-DFT results to accurate
wave function values for the same transition; in particular,
we use data proposed in the recent publications of Thiel and
co-workers,18,32 in which multistate complete-active-space
second-order perturbation theory (MS-CASPT2) and coupled
cluster (CC2 and CC3) vertical transition energies were
reported for 28 small molecules. This data set was also
employed by Goerigk et al. in a study21 of doubly hybrid
functionals. These VT comparisons entail little ambiguity
but have the consequence that only a small and restricted
group of molecules (those for which reliable benchmark
results are affordable) can be examined. Therefore, in the
VE tests, typical families of organic dyes (see Figure 1)
encompassing different types of transitions (n f π*, π f
π*, and σ f π*; delocalized and localized) in neutral and
charged molecules have been included. Although tests against
diverse experimental data are of the greatest importance for
validation of theoretical approximations, potential drawbacks
of such studies include the difficulty of emulating the environ-
ment of the chromophoric molecule under the experimental
conditions and sometimes of assigning the transition corre-
sponding to the reported data. One can turn the former issue,
namely, environmental effects, into an advantage by using the
comparisons as a combined test of density functional ap-
proximations and solvation treatments, but it does make a
conclusion about the quality of individual density functionals
less reliable since it is possible that the best performance could
be achieved by a cancellation of errors between the description
of the excited state and the treatment of environmental effects.
We will minimize the latter issue by choosing molecules where
we believe the assignment of the transition or transitions in
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question can be made with reasonable confidence. To organize
the presentation, the VE database is broken into six subsets.

The transitions in the VT set are all single-excitation
valence excitations, and the transitions in the VE set are also
predominantly single-excitation valence excitations, although
(as discussed below) some of them possess a partial charge
transfer character. Other studies, though, showed that one
does not draw the same conclusions for Rydberg states,10,24

which comprise a large part of the higher-energy spectrum,
and for charge transfer states.10 Two of the smaller databases
used here complement the VT and VE databases in that one
contains 20 Rydberg-state transitions and the other contains
three dominantly charge transfer excitations. These databases
are denoted RES20 and CTES3, respectively.14 RES20
contains experimental data for 20 Rydberg-state transitions
of N2, CO, and HCHO. CTES3 contains theoretical data for
NH3 · · ·F2 at 6 Å and C2H4 · · ·C2F4 at 8 Å and experimental
data for tetracene. The other small database, VES20, contains
20 energies of valence excited states of N2, CO, HCHO, and
tetracene.10,14

II. Methodology

All calculations have been performed with the Gaussian suite
of programs, using both standard versions and development
versions.66-69 All four functionals of the M06 family have
been used: M06-HF,10 M06-L,36 M06,14 and M06-2X.14

M06-L is a local meta-GGA functional. Note that, for an
open-shell system, “local” denotes that it depends on the local
up-spin and down-spin densities and the magnitudes of their
gradients and on the local up-spin and down-spin kinetic
energy densities (which depend on the self-consistent-field
occupied spin-orbitals, which are themselves formally

functionals of the densities). The other three functionals are
global-hybrid meta-GGA functionals, where “global-hybrid”
denotes the inclusion of a certain percentage (X) of
Hartree-Fock exchange, and “hybrid meta” denotes that the
functionals depend on all the variables of a meta-GGA as
well as containing Hartree-Fock exchange (which is com-
puted from the self-consistent-field occupied spin-orbitals).
The percentages of Hartree-Fock exchange are 27% for
M06, 54% for M06-2X, and 100% for M06-HF. Further
details and discussion of the functionals are given else-
where.10,14,35-37

II.A. Small Molecules: the VT Set. In building the
present VT training set, we start with the work of Thiel and
co-workers.18,32 In their first paper32 (which we will label
ES1), they made best estimates for 104 singlets and 63
triplets, out of a total of 223 states (152 singlets and 71
triplets) considered. The best estimates are sometimes from
their CC3 calculations, sometimes from their MS-CASPT2
calculations with empirical shifts based on ionization po-
tentials and electron affinities and sometimes from the
literature. In a following article18 (which we label ES2), they
provided MS-CASPT2 results for 146 singlets and best
estimates for 103 singlets (omitting the 1B3g state of
s-tetrazine from ES1)sin 20 of these cases, they changed
the ES1 best estimates, although only by small amounts. The
changes are due to relativistic effects, and the mean absolute
difference of the MS-CASPT2 estimates of ES1 and ES2 is
only 0.01 eV. Here, as in a previous paper,23 we use the
103 singlets for which ES2 presents best estimates (column
6 of their Table 1); these are all valence transitions (i.e.,
excited states that are primarily of Rydberg or charge transfer
character are not included).

Figure 1. Molecules in the VE set.
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In order to allow consistent comparisons with the results
of Thiel’s group, we have employed the same basis set
(TZVP) and ground-state geometry (MP2/6-31G(d), given
elsewhere32 in Cartesian coordinates) that they used18,32 for
MS-CASPT2 calculations. Note, however, that the “best
theoretical estimates” do not always correspond to this
geometry or basis set. To provide a comparison with a more
consistent choice of geometry and basis set, we also compare
to the previously reported32 MS-CASPT2/TZVP results.
Although these theoretical values are not completely con-
verged, they are plausibly close enough to the theoretical
limit for vertical gas-phase transitions that they may serve
as benchmarks for the present work, whose goal is to test
the exchange-correlation functionals. This second comparison
is not completely independent of the first since some of the
best estimates are actually MS-CASPT2/TZVP results.

II.B. The VE Set. For the VE set, we followed the same
procedures as in recent tests of other density functionals for
dye molecules.16,19,70 In this approach, the ground-state
structures are first optimized at the PBE071,72 level using
the 6-311G(d,p) basis set and the PCM ground-state solvation
model27 to simulate bulk liquid solvent effects. Subsequent
vibrational analysissstep twosallows confirmation of whether
the computed structure is a local minimum of the free energy
surface. PBE0 is reasonably accurate for structural parameters
of organic molecules,73 and the use of the same PBE0
geometries for all of the liquid-phase tests has the effect that
the comparisons of density functionals are not complicated
by differences in the geometrical parameters;16,74 it also
provides consistency with previous work.23 In the third and
final step, the vertical transition energies to the first few
valence excited states are calculated using TD-DFT with each
of the four density functionals and using the PCM model in
a nonequilibrium absorption formulation26,27 for inclusion
of electrostatic solvent effects. We use the 6-311+G(2d,p)
basis set for the TD-DFT calculations on the VE molecules;
a summary of tests showing that this basis set is adequate
for the kinds of low-lying excited states under consideration
here has been provided previously.23 It is worth noting that
the PCM parameters used in the calculations (such as the
use of UAKS or UA0 radii or presence or absence of
smoothing spheres in defining the solute cavities) vary from
one family of dye to another and also depend on the
functional (in part because the M06 calculations were carried
out with a later version of the code), but the liquid-phase
geometries are close enough to the gas-phase ones in most
cases that this variation should not be significant enough to
affect our conclusions.

The PCM model for electronic spectroscopy includes
electrostatic effects of the medium, including the electronic
polarizability of the solvent for absorption spectra, but it
neglects the difference in dispersion interactions of the
solvent with the ground and excited states, and it does not
include hydrogen bonding effects beyond their bulk-
electrostatic component and so is less accurate for protic
solvents. The PCM model employed here could fail when
specific solvent-solute interactions take place or when the
molecular dipole moment is very different in the ground to
the excited states.75 The solvents for the VE data used in

this article are benzene (Benz), cyclohexane (CH), chloro-
form (CHL), dichloroethane (DCE), dichloromethane (DCM),
diethyl ether (DEE), dioxane (Diox), ethanol (EtOH), heptane
(Hept), hexane (Hex), methanol (MeOH), 2-methylbutane
(2MPB), toluene (Tol), and water (Wat). One example of
an estimate of the size of the neglected effects on excitation
energies is a study of the n f π* excitation of acetone in
nine solvents, where dispersion effects were estimated to
range from 0.07 to 0.09 eV and specific hydrogen bonding
effects were estimated to range from 0 to 0.16 eV.76 When
the errors in the predicted excitation energies of the ap-
proximate density functionals are larger than these omitted
effects and larger than the errors due to the uncertainties in
the included bulk electrostatic effects (we do not have a
quantitative estimate of the size of the uncertainties in
electrostatics, but they are probably also on the order of
0.1-0.15 eV), we can draw useful conclusions about the
density functionals from the comparisons to liquid-phase
experimental data.

In principle, one should compare theoretical 0-0 transi-
tions to experimental 0-0 transition energies, but since the
latter are usually not available, we compare theoretical
vertical transition energies to transition energies calculated
from experimental77-106 λmax values, which entails an
unknown but probably not insignificant error.23,107,108

Throughout the discussion of the VT molecules, mean
absolute deviations (MADs) from the experiment are cal-
culated for the four functionals of the M06 family and
compared to those for functionals not in the M06 family and
sometimes also to wave function results obtained by time-
dependent Hartree-Fock5,109 (HF) theory. The latter are
calculated from results presented previously23,70 for the
subsets of cases under discussion in each case.

The last part of the VE data set is a set of five large
chromophores (MG-1 to MG-5, Figure 1) for which Goerigk
et al.21 estimated gas-phase vertical excitation energies from
experimental liquid-phase 0-0 transition energies. We
compare to the liquid-phase 0-0 data for these five
moleculessnot to the gas-phase estimatessbecause medium
effects are included in our approach. In particular, we applied
our VE methodology to these molecules; i.e., the structures
provided by Goerigk et al.21 have been reoptimized at the
PCM-PBE0/6-311G(d,p) level and vertical (nonequilibrium)
PCM-TD-DFT/6-311+G(2d,p) excitation energies have been
calculated in the liquid.

In a break with the above, for five of the nitroso dyes in
the VE molecule set, we will compare to gas-phase rather
than liquid-phase spectra.

II.C. Rydberg and Charge Transfer Excitations. The
three small databases, RES20 (Rydberg states), CTES3 (long-
range charge transfer excitations), and VES20, are taken from
previous work without change.10,14

III. VT Benchmarks

The transition energies obtained for the VT set are listed in
Table 1. Discussions of the accuracy obtained for each state
bystandardGGA(BP86110,111),18globalhybrids(B3LYP112,113

and BHHLYP114),18 doubly hybrid functionals (B2-LYP,
B2GP-LYP, B2-PLYP, and B2GP-PLYP),21 and range-
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Table 1. VT Test Set: Gas-Phase Electronic Excitation Energies (eV) of Singlet States of Small Moleculesa

molecule state M06-L M06 M06-2X M06-HF BEb MS-CASPT2c

ethene B1u(π) 7.92 7.49 7.80 7.69 7.80 8.54
butadiene Bu(π) 5.78 5.64 5.97 6.09 6.18 6.47

Ag(π) 6.67 6.88 7.54 7.88 6.55 6.62
hexatriene Ag(π) 5.34 5.80 6.58 7.19 5.09 5.42

Bu(π) 4.67 4.63 4.95 5.15 5.10 5.31
octatetraene Ag(π) 4.42 4.96 5.76 6.41 4.47 4.64

Bu(π) 3.97 3.99 4.29 4.53 4.66 4.70
cyclopropene B1(σ) 6.70 6.33 6.39 6.17 6.76 6.76

B2(π) 6.43 6.16 6.55 6.64 7.06 7.06
cyclopentadiene B2(π) 5.05 4.88 5.25 5.36 5.55 5.51

A1(σ) 6.40 6.53 7.07 7.69 6.31 6.31
norbonadiene A2(π) 4.82 4.78 5.15 5.24 5.34 5.34

B2(π) 5.36 5.55 6.04 6.30 6.11 6.11
benzene B2u(π) 5.41 5.30 5.57 5.77 5.08 5.04

B1u(π) 6.10 5.87 6.40 6.62 6.54 6.42
E1u(π) 7.20 6.94 7.20 7.21 7.13 7.13
E2g(π) 8.65 8.88 9.65 10.23 8.41 8.18

naphthalene B3u(π) 4.38 4.38 4.64 4.86 4.24 4.24
B2u(π) 4.24 4.28 4.73 5.08 4.77 4.77
Ag(π) 6.11 6.13 6.55 6.94 5.87 5.87
B1 g(π) 5.36 5.67 6.27 6.54 5.99 5.99
B3u(π) 5.96 5.86 6.11 6.21 6.06 6.06
B2u(π) 6.06 6.00 6.45 6.68 6.33 6.33
B1g(π) 6.36 6.17 6.66 7.42 6.47 6.47
Ag(π) 6.87 6.89 7.67 8.08 6.67 6.67

furan B2(π) 6.29 6.03 6.37 6.47 6.32 6.39
A1(π) 6.66 6.68 7.14 7.54 6.57 6.50
A1(π) 8.43 8.09 8.40 8.40 8.13 8.17

pyrrole A1(π) 6.50 6.48 6.90 7.27 6.37 6.31
B2(π) 6.48 6.24 6.62 6.77 6.57 6.33
A1(π) 8.11 7.80 8.11 8.14 7.91 8.17

imidazole A0(π) 6.50 6.34 6.75 6.97 6.19 6.81
A′′ (n) 6.37 6.36 6.77 6.57 6.81 6.19
A0(π) 7.05 6.94 7.39 7.72 6.93 6.93

pyridine B1(n) 4.76 4.72 4.88 4.68 4.59 5.17
B2(π) 5.51 5.40 5.66 5.84 4.85 5.02
A2(n) 4.92 5.05 5.53 6.00 5.11 5.51
A1(π) 6.30 6.09 6.61 6.83 6.26 6.39
A1(π) 7.42 7.21 7.50 7.54 7.18 7.46
B2(π) 7.39 7.18 7.48 7.57 7.27 7.27

pyrazine B3u(n) 3.90 3.87 3.99 3.80 3.95 4.12
B2u(π) 5.40 5.26 5.52 5.67 4.64 4.85
Au(n) 4.47 4.61 5.04 5.51 4.81 4.70
B2g(n) 5.55 5.48 5.66 5.27 5.56 5.68
B1u(π) 6.51 6.28 6.78 6.97 6.58 6.89
B1 g(n) 6.13 6.39 7.15 8.13 6.60 6.41
B2u(π) 7.83 7.69 8.04 8.20 7.60 7.66
B1u(π) 7.77 7.57 7.90 7.92 7.72 7.79

pyrimidine B1(n) 4.15 4.19 4.43 4.44 4.55 4.44
A2(n) 4.40 4.51 4.92 5.12 4.91 4.80
B2(π) 5.75 5.65 5.93 6.12 5.44 5.24
A1(π) 6.58 6.39 6.89 7.10 6.95 6.63

pyridazine B1(n) 3.54 3.47 3.68 3.50 3.78 3.78
A2(n) 3.96 4.06 4.56 4.71 4.31 4.31
A1(π) 5.61 5.52 5.79 5.99 5.18 5.18
A2(n) 5.34 5.32 5.66 5.99 5.77 5.77

s-triazine A1′′(n) 4.20 4.35 4.87 5.46 4.60 4.60
A2′′(n) 4.43 4.46 4.70 4.73 4.66 4.66
E′′(n) 4.37 4.45 4.79 4.99 4.70 4.70
A2

0(π) 6.14 6.08 6.37 6.63 5.79 5.79
s-tetrazine B3u(n) 2.11 2.07 2.28 2.20 2.29 2.29

Au(n) 3.20 3.36 3.89 4.27 3.51 3.51
B1g(n) 4.64 4.64 4.94 4.57 4.73 4.73
B2u(π) 5.58 5.48 5.75 5.94 4.93 4.93
B2g(n) 5.13 5.17 5.47 5.32 5.20 5.20
Au(n) 4.89 4.88 5.23 5.45 5.50 5.50

formaldehyde A2(n) 4.23 3.78 3.59 2.99 3.88 3.99
B1(σ) 9.19 8.67 8.66 8.16 9.10 9.14
A1(π) 10.61 10.10 9.45 9.33 9.30 9.32

acetone A2(n) 4.63 4.30 4.10 3.35 4.40 4.44
B1(σ) 8.61 8.50 8.58 8.11 9.10 9.14
A1(π) 9.05 9.00 8.91 8.96 9.40 9.32
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separated hybrids (e.g., LC-BLYP,115 LC-ωPBE,116 and
CAM-B3LYP117)23 have already been given in the literature,
and therefore we will not discuss individual transitions in
detail here; rather we will discuss typical examples.

For the polyenes (butadiene, hexatriene, and octatetraene),
the energy of Bu states is always underestimated by M06-L,
M06, and M06-2X, but not by M06-HF, which has the
smallest average error. It is encouraging that the M06-HF
estimates are more accurate than those of the doubly hybrid
functionals21 for these cases. The Ag states are poorly
described due to their significant double-excitation character.
We know that ground-state systems with high multireference
character are generally treated better by local exchange than
Hartree-Fock exchange, and if one makes an analogy
between ground states with significant multireference char-
acter and excited states with significant double-excitation
character, then it is not surprising that the best results for
the Ag states are obtained with M06-L, which has only local
exchange. The excitation energies of these states are over-
estimated by the hybrid functionals with the extent of the
overestimation increasing with X, leading, for example, to
very large errors of ∼2 eV in the M06-HF calculations on
hexatriene and octatetraene.

For benzene and naphthalene, the transition energies
obtained with the three hybrids usually follow the trend that
a larger X yields larger transition energies, although the trend
between M06-L and M06 is sometimes an exception. For
these two aromatic compounds, the MADs from the bench-

mark values increase with X: 0.29 eV with M06-L, 0.33 eV
with M06, 0.40 eV with M06-2X, and 0.72 eV with M06-
HF.

In the heterocyclic series, the first B2u state of pyrazine
and the first πf π* transition of s-triazine are examples of
challenging states.23 For the former, M06 (5.26 eV) is closer
to the best estimate (4.64 eV) and MS-CASPT2 results (4.85
eV) than B3LYP (5.37 eV)18 or PBE0 (5.44 eV),23 but B2-
PLYP is the most accurate of all functionals examined (5.16
eV).21 The same ranking in accuracy is obtained for the latter
case. For the 20 nf π* transitions of the heterocyclic subset,
the MAD (using MS-CASPT2/TZVP values as benchmarks)
is 0.31 eV for M06-L, 0.26 eV for M06, 0.19 eV for M06-
2X, and 0.41 eV for M06-HF. In comparison, PBE0 gives
notably smaller deviations for this subset (MAD of 0.13
eV),23 and the accuracy of doubly hybrid functionals is also
superior.21

In the series containing ketones, aldehydes, and amines,
M06 is the best performing functional of Table 1 (MAD of
0.28 eV); it provides an error similar to that of B3LYP18

and PBE0.23

For the four nucleotide bases, which are the largest systems
of the VT set, the M06 and M06-2X functionals produce
similar average deviations, with MADs of 0.21 and 0.25 eV,
respectively, vs the MS-CASPT2 reference. Therefore, the
deviations of M06 are similar to those of B3LYP, but M06-
2X is almost twice as accurate as BHHLYP.

Table 1. Continued

molecule state M06-L M06 M06-2X M06-HF BEb MS-CASPT2c

p-benzoquinone B1g(n) 2.22 2.48 2.67 2.38 2.76 2.76
Au(n) 2.37 2.65 2.85 2.54 2.77 2.77
B3g(π) 3.61 3.78 4.25 4.74 4.26 4.26
B1u(π) 4.69 4.89 5.24 5.60 5.28 5.28
B3u(n) 4.89 5.52 6.36 6.88 5.64 5.64
B3g(π) 6.46 6.65 7.23 7.86 6.96 6.96

formamide A′′(n) 5.87 5.48 5.37 4.85 5.63 5.63
A0(π) 8.02 7.90 8.69 7.68 7.39 7.39

acetamide A′′(n) 5.84 5.54 5.43 4.85 5.69 5.69
A0(π) 7.60 7.54 7.97 7.66 7.27 7.27

propamide A′′(n) 5.87 5.57 5.47 4.89 5.72 5.72
A0(π) 7.42 7.39 7.62 7.64 7.20 7.20

cytosine A0(π) 4.50 4.74 5.03 5.24 4.66 4.67
A′′(n) 4.19 4.80 5.77 5.36 4.87 5.12
A′′(n) 4.88 5.23 5.26 5.49 5.26 5.53
A0(π) 5.27 5.55 5.96 6.28 5.62 5.53

thymine A′′(n) 4.48 4.74 4.94 4.61 4.82 4.95
A0(π) 4.93 5.05 5.33 5.50 5.20 5.06
A′′(n) 5.24 5.96 6.25 5.85 6.16 6.38
A0(π) 5.71 6.19 6.69 6.92 6.27 6.15
A0(π) 6.21 6.40 6.78 7.28 6.53 6.53

uracil A′′(n) 4.36 4.67 4.91 4.58 4.80 4.90
A0(π) 5.10 5.25 5.51 5.65 5.35 5.23
A′′(n) 5.20 5.87 6.18 5.79 6.10 6.28
A0(π) 5.59 6.09 6.56 7.01 6.26 6.15
A′′(n) 5.74 6.30 6.93 6.94 6.56 6.98
A0(π) 6.41 6.61 6.94 7.36 6.70 6.74

adenine A′′(n) 4.64 4.90 5.38 5.67 5.12 5.19
A0(π) 5.24 5.27 5.57 5.83 5.25 5.20
A0(π) 4.85 5.03 5.43 5.66 5.25 5.29
A′′(n) 5.42 5.54 5.93 6.02 5.75 5.96

a All density functional results use the same TZVP basis set and the MP2/6-31G(d) geometry as in ref 32. The orbital in parentheses (π,
n, or σ) denotes a π f π*, n f π*, or σ f π* transition, respectively. b The BE values are the “best estimates” from ref 18, that is, either
CC3 or MS-CASPT2 calculations with empirical IPEA shifts, or are taken from the literature as specified in Table 1 of ref 18 (column 6).
c MS-CASPT2/TZVP results from ref 18.
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The mean signed deviations (MSDs), MADs, and root-
mean-square deviations (RMSDs) obtained with the M06
family of functionals are compared to previous benchmarks
in Table 2, and for the M06 functional, a graphical
comparison to the best estimates is given in Figure 2. The
squares of the correlation coefficients (R2) obtained by linear
fitting, are also reported. Using MS-CASPT2/TZVP instead
of “best estimates” as reference values leads to a small
increase of the MSD (+0.04 eV) and MAD (+0.02 eV) but
does not significantly affect the trends.

Irrespective of the chosen reference, M06 systematically
provides the smallest errors and the largest correlation
coefficient of the four functionals of the M06 family. The
quality of the M06 results for the present tests is similar to
that reported previously18 for B3LYP. Comparing the two
functionals with X ) 0, we see that M06-L surpasses BP86,
with a MSD reduced by a factor of 3 and an RMSD reduced
by 0.2 eV! The errors of M06-L do remain sizable, but this
meta-GGA reduces the differences with respect to global
hybrids, which is interesting from the point of view of the
Jacob’s ladder classification118 of functionals since meta-
GGAs are on rung 3 and hybrid GGAs and hybrid meta-
GGAs are on rung 4.

Moving on to the larger percentages of Hartree-Fock
exchange (larger X values), M06-2X has a similar perfor-
mance to BHHLYP, although they have similar percentages;
the improvement is pronounced in terms of both correlation
and average deviations. M06-HF produces large errors
(similar to those of BP86, but with the opposite sign) and a
poor correlation: it is unlikely to be of interest for calculations
on excited states if only valence excitations are of interest.
The DFT/MRCI scheme18,119 and the B2-PLYP doubly
hybrid functional are significantly more accurate (although
also more complicated, especially DFT/MRCI, which at-
tempts to provide a more realistic treatment of doubly excited
states) than M06, and B2-PLYP is the most accurate
functional tested up to now for this set. This finding is again
consistent with the Jacob’s ladder classification, since B2-
PLYP is a doubly hybrid functional21,120 on rung 5 (the
highest rung), whereas all the other functionals with nonzero
X in Table 2 are on rung 4. The DFT/MRCI method in Table
2 also uses unoccupied DFT orbitals.

Figure 2 shows a graphical comparison of the M06
excitation energies to the best estimates for the full VT test
set.

IV. The VE Database

The molecules belonging to the VE database can be divided
into six families: the 9,10-anthraquinones (AQ, Figure 1),
the (nitro)-diphenylamines (DPA, Figure 1), the 1,8-naph-
thalimides (NI, Figure 1), the nitroso dyes (RNO, Figure 1)
the cyanines (CYA-x, Figure 1), and the large chromophores
(MG-y). This latter is a subset of five dyes (MG1-MG5,
Figure 1), recently studied by Goerigk et al.21 Table 3 collects
the MSDs, MADs, RMSDs, and R2 values computed using
the four functionals belonging to the M06 family for all these
systems, while a detailed list of the computed transition
energies for the six families as well as specific discussions
can be found in the Supporting Information (Tables SI.1 to
Table SI.6 and related text).

IV.A. Anthraquinones (AQ), Diphenylamines (DPA),
and Naphthalimides (NI): The ππ*D49 Subset. The AQ,
DPA, and NI families are constituted by dyes (AQ and DPA)
and fluorophores (NI) largely studied both experimen-
tally102,103,121-123 and theoretically,22,23,70,124-129,131-134 and
taken together, they provided a suitable database of 49
excitation energies (30 AQ, 11 DPA, and 7 NI, respectively),

Table 2. Mean Deviations (in eV) of the Density Functional Predictions from the Best Estimates of ref 32a

functional X MSD MAD RMSD R2 ref

BP86 0 0.44 0.52 0.62 0.92 22
M06-L 0 0.14 (0.18) 0.35 (0.37) 0.42 (0.47) 0.91 (0.93) this work
B3LYP 20 0.07 0.27 0.33 0.94 22
M06 27 0.12 (0.16) 0.28 (0.31) 0.34 (0.38) 0.95 (0.95) this work
BHHLYP 50 -0.43 0.50 0.62 0.89 22
DFT/MRCI 50 0.13 0.22 0.29 0.96 22
B2-LYP 53 0.45 0.52 0.62 0.90 24b

B2-PLYP 53 0.01 0.18 0.25 0.97 24b

M06-2X 54 -0.23 (-0.18) 0.34 (0.35) 0.46 (0.46) 0.92 (0.92) this work
M06-HF 100 -0.32 (-0.28) 0.55 (0.56) 0.70 (0.70) 0.83 (0.83) this work

a The values in parentheses are deviations from MS-CASPT2/TZVP benchmarks for the same series of states (see Table 1 for both the
best estimates and MS-CASPT2/TZVP results). The MSD, MAD, and RMSD are in eV, and R2 is the square of the linear correlation
coefficient. b Note that the values listed for B2-LYP and B2-PLYP have been recalculated from the raw data of ref 21 in order to use the
same standard values for all results in the whole table.

Figure 2. Comparison between TD-M06 predictions and best
estimates for vertical transition energies for the full VT set
(103 transitions). All values are in eV. The line at 45°
corresponds to a perfect match between the two sets of
values. For this data set, the MAD of M06 is 0.28 eV.
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all of the π-π* type, allowing for a robust benchmark to assess
density functional performances for this type of transition. The
MADs for the Hartree-Fock approximation and 14 density
functionals for this data set (hereafter called ππ*D49) are
reported in Table 4. The table also gives references for the
density functionals10,14,36,71,72,109,110,112,113,135-141 to which we
compare.

In all cases, even though the members of the M06 family
have different exchange and correlation potentials, as well
as different valus of X, the computed transition energies of
the M06 family perfectly follow the percentage of Hartree-
Fock exchange, i.e., M06-L < M06 < M06-2X < M06-HF;
thus this percentage seems to be the most important
parameter, as already observed for π-π* excitations.70,130

Three other common features for these three families of
compounds can also be observed by inspection of Tables 3
and 4, in particular: (i) M06-L underestimates the transition
energies but nevertheless outperforms all the previously

benchmarked GGA functionals (such as PBE and BLYP)
and also meta-GGAs (e.g., VSXC); (ii) the performance of
M06 makes it one of the best global hybrids for this category
of dyes (in the case of the ππ*D49 data set, a MAD of 0.11
eV is computed for M06 as compared to 0.09 eV for PBE0
and 0.14 eV for B3LYP); (iii) M06-2X and M06-HF predict
systematically higher transition energies; (iv) the MAD
achieved with M06-HF is much smaller than with TD-HF
(0.75 eV versus 1.13 eV for the ππ*D49). Moreover, the
correlation between experimental and theoretical values is
usually good (R2 ) 0.91-0.98) for the hybrid functionals
of the M06 family (with the only noteworthy exception being
M06-HF for DPA) but can be significantly lower for M06-L
(R2 is only 0.81 and 0.89, in the case of NI and AQ,
respectively). Finally, it is also worthwhile to remember that,
in addition to the performance of the M06 functional being
very close to the performances of other global hybrids that
include a similar amount of Hartree-Fock exchange, fine
details of substituent effects are better described by M06.
For instance, M06 predicts the correct ordering for the 1,4-
OH versus 1-NH2 substitutions as well as for the 1,2-OH
versus 1,8-OH patterns in the AQ family, a feat that neither
PBE0 nor range-separated hybrids could achieve.70 A more
detailed discussion of computed transitions energies can be
found in the Supporting Information.

IV.B. Nitroso Dyes (NO18) and Cyanines (CYA13)
Subsets. Due to the large separation between the n f π*
and π f π* bands, nitroso derivatives (NO, Figure 1) are
well-known nf π* chromogens.121,122 The UV/vis features
of NO dyes have been tackled by some of us in three
previous studies of TD-DFT.12,23,142 The full list of the
transitions (18) computed using the M06 family and a brief
comment on their ordering are reported in the Supporting
Information (Table SI.4 and related text).

The general trends for the nitroso dyes do not follow the
pattern seen in section IV.A. For example, larger percentages
of Hartree-Fock exchange generally imply smaller transition
energies for nitroso dyes. Consequently, the MSDs all have
the opposite sign of those for the AQ dyes (Table 3). M06
again has the smallest MAD and the largest correlation

Table 3. Mean Signed (MSD) and Unsigned (MAD)
Deviations (in eV) from Experimental Transitions Computed
for the Molecules Belonging to the AQ, DPA, NI, RNO,
Cya-x, and MG-y Families Together with the
Corresponding RMSD (in eV) and R2 Valuesa

MSD

M06-L M06 M06-2X M06-HF

AQ 0.27 -0.03 -0.43 -0.84
DPA 0.45 0.13 -0.33 -0.64
NI 0.19 0.01 -0.30 -0.58
RNO -0.21 0.20 0.39 1.08
Cya-x -0.67 -0.55 -0.57 -0.50
MG-y 0.20 0.11 -0.13 -0.31

MAD

M06-L M06 M06-2X M06-HF

AQ 0.29 0.11 0.43 0.84
DPA 0.45 0.14 0.33 0.64
NI 0.19 0.08 0.30 0.58
RNO 0.23 0.21 0.39 1.08
Cya-x 0.67 0.55 0.57 0.50
MG-y 0.26 0.18 0.14 0.31

RMSD

M06-L M06 M06-2X M06-HF

AQ 0.33 0.13 0.43 0.85
DPA 0.47 0.15 0.35 0.67
NI 0.22 0.10 0.30 0.58
RNO 0.22 0.28 0.41 1.13
Cya-x 0.68 0.56 0.57 0.51
MG-y 0.29 0.19 0.17 0.34

R2

M06-L M06 M06-2X M06-HF

AQ 0.89 0.96 0.98 0.97
DPA 0.91 0.95 0.91 0.78
NI 0.81 0.91 0.96 0.98
RNO 0.96 0.99 0.98 0.81
Cya-x 0.99 0.99 1.00 0.99
MG-y 0.73 0.87 0.94 0.95

a A detailed list of computed and experimental transition
energies is reported in the Supporting Information (Tables
SI.1-SI.6).

Table 4. Mean Unsigned Deviations (eV) from Best
Estimates for the ππ*D49 Data Set

functional Xa ref AQ DPA NI ππ*D49

M06-HF 100 10 0.84 0.64 0.58 0.75
M05-2X 56 136 0.45 0.40 0.41 0.43
M06-2X 54 14 0.43 0.33 0.30 0.39
HFb 100 109 1.15 1.26 0.81 1.13
BMK 42 137 0.31 0.27 0.32 0.30
PBE0 25 71, 72 0.10 0.06 0.11 0.09
B98 21.98 138 0.11 0.12 0.09 0.11
M05 28 135 0.11 0.09 0.12 0.11
B3LYP 20 112, 113 0.13 0.18 0.08 0.14
M06 27 14 0.11 0.14 0.08 0.11
TPSSh 10 139 0.23 0.31 0.08 0.23
M06-L 0 36 0.29 0.45 0.19 0.31
VSXC 0 140 0.35 0.49 0.20 0.36
PBE 0 141 0.47 0.60 0.32 0.48
BLYP 0 110, 112 0.47 0.65 0.34 0.50

a X denotes percentage of Hartree-Fock exchange. b This row
(Hartree-Fock) is wave function theory; other rows are density
functional theory.
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coefficient of any member of the M06 family. The M06
MAD (0.21 eV) is significantly smaller than for its M05
precursor (0.33 eV), but larger than for PBE0 (0.08 eV). As
a group, the M06 family does relatively poorly compared to
other density functionals for the nitroso dyes.

Cyanine dyes are charged dyes (both anionic and cationic
derivatives are considered) with highly delocalized structures.
Although the four series treated in the present contribution
(CYA-x, Figure 1) belong to the streptocyanine subcategory,
other structures (like malachite green or nile blue) have
similar electronic characteristics.99 Due to the strong mul-
tideterminantal nature of the states of these dyes,143 TD-
DFT does not correctly predict the absolute variations of the
transition energies as chain length increases. This is true with
conventional hybrids,144,145 range-separated hybrids,23,130 and
even doubly hybrid functionals,146 though the latter provide
slightly smaller absolute deviations. Table SI.5, collecting
the 13 computed transitions, and Table 3 show that no
functional of the M06 family succeeds in improving the usual
dreadful errors, and the transition energies are still uniformly
overestimated. More positively, one notes excellent correla-
tion coefficients (Table 3) for all four functionals, just as
good correlation coefficients can be obtained with other
theoretical methods as well.23 In fact, for CYA-x, the nature
of the selected functional appears to be almost irrelevant,
although MS-CASPT2 seems capable of mirroring the
experimental measurements.143 We will return to the clas-
sification of these transitions in section V.

IV.C. Large Chromophores (MG-y) Subset. In Table
SI.6 (Supporting Information), we report the M06 family
results (five transitions) for the set of large dyes recently
studied by Goerigk et al.21 As explained in the Methodology
section, estimates were made for the energies of the
experimental vertical transitions, thereby attempting to
remove the drawback of comparing calculated vertical
transition energies to transition energies corresponding to the
wavelength of maximum absorption.

Two challenging cases are discussed in more detail in the
Supporting Information, and here we consider average errors
for all five large chromophores, Table 3 shows the smallest
errors for M06 (MAD of 0.18 eV) and M06-2X (MAD of
0.14 eV); it also shows that M06-L usually underestimates
the transition energies, and M06-HF always overestimates
them. For the sake of comparison, we have computed a PBE0
MAD (MSD) of 0.14 eV (0.03 eV) for the same set of five
large chromophores. This is the same average error as the
one obtained for a much larger set of dyes.23 This implies
that the errors obtained for low-lying excited states of organic
dyes (the VE set) are smaller (on average) than for high-
energy states of small molecules (see the VT set). This MAD
(MSD) is substantially smaller than the one reported previ-
ously for the same functional: 0.20 eV (0.11 eV),21 illustrat-
ing that changes in the geometrical parameters (PBE/TZVP21

versus PCM-PBE0/6-311G(d,p)) and basis set (TZVP versus
6-311+G(2d,p)) substantially affect the conclusions. The
most effective functional was previously21 found to be B2GP-
PLYP, which is associated with a MAD of 0.16 eV, but this
value could also be overestimated due to the testing
methodology. Therefore, although we expect a non-negligible

improvement by using doubly hybrid functionals, the quan-
titative extent of this effect remains unsettled for large
molecules.

Figure 3 shows a graphical comparison of the M06
predictions to the best estimates for the full VE data set.

V. Including Rydberg and Charge Transfer
Excitations in the Assessment

The final classes of data that we consider are for Rydberg
and charge transfer excitations. It is important that practical
density functionals do not have large errors for these classes
of excitations, because in complex molecules many transi-
tions have some Rydberg and/or charge transfer character,
and if this kind of excitation is not treated well, some
components of the excited state will be misrepresented even
when the predominant character of an excitation is valence-
like. For example, even to treat the π f π* excitation of
ethylene correctly, it is necessary to treat valence and
Rydberg states on an even-handed basis,147,148 and the
amount of Rydberg character in a given transition can depend
strongly on geometry. Charge transfer presents similar
difficulties in that the extent of charge transfer covers a very
wide range when one surveys a range of molecules.17

Furthermore, as mentioned at the end of section I, Rydberg
states are not included in the test cases considered in both
the VT and VE sets, nor is charge transfer character strongly
represented in those test cases.

To illustrate the problems encountered in charge transfer
states, we first consider a prototype charge transfer case,
namely, the C2H4 molecule at a fixed distance R from a
C2F4 molecule. The orientation is shown in Figure 4. We
consider two values of R, in particular, 4 Å and 8 Å. At
these distances, there is little spatial overlap of the
densities of the HOMO and the LUMO, so the lowest
excitation may be classified unambiguously as a charge
transfer excitation (transitions that may be classified this
way due to lack of overlap are called long-range charge
transfer). Best estimates are obtained from the wave
function calculations of Tawada et al.149 and Dreuw et

Figure 3. Comparison between experimental and theoretical
(M06) transition energies (eV) for the VE set consisting of the
combined ππ*D49, NO18, and CYA13 data sets. The closed
diamonds correspond to the CYA-x series. For this data set,
the MAD of M06 is 0.20 eV.
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al.,150 as explained in a footnote to Table 5, which also
shows results for PBE0 with four basis sets, M06-HF with
two, andswith one basis setsseveral other density func-

tional approximations14,23,36,109,110,112,113,116,17,135-138,151-154

and two wave function calculations. The basis set dependence
is small compared to the errors for PBE0. The MADs from
the best estimates are also shown. These results are typical
for long-range charge transfer excitations; only functionals
with both electron correlation and 100% Hartree-Fock
exchange at all values of the electronic coordinates show
useful accuracy. Even the long-range corrected TD-LC-
ωPBE and TD-LC-ωPBE(20) methods, which have 100%
Hartree-Fock exchange in the limit of large interelectronic
separation, have large errors. These results are consistent with
earlier studies showing how difficult it is to get useful results
for long-range charge transfer.10,14,17,145

We next illustrate a similarsbut not quite as dramatics
problem with Rydberg transitions. For these calculations, we
used the RES20 database of 20 Rydberg-state excitation
energies10,14 and the augmented Sadlej pVTZ basis set, and
the mean unsigned errors are in Table 3. Again, we compare
the results obtained with the M06 family to calculations with
several other methods.23,71,72,109-114,116,117,135-138,151-153,155-159

Table 6 shows that all functionals with less than 42% Hartree-
Fock exchange give very poor results for Rydberg states. M06-
HF, M05-2X, M06-2X, BMK, LC-ωPBE, LC-BLYP, LC-
OLYP, and LC-PBE give MADs from the best results of less
than 0.45 eV, but only LC-ωPBE, LC-BLYP, and LC-OLYP
give MADs of 0.22 eV or less.

On the basis of the above considerations, in order to
consider valence, Rydberg, and long-range charge transfer

Figure 4. C2H4 molecule at a fixed distance R from a C2F4

molecule. In the figure, R is 8 Å.

Table 5. Charge Transfer Excitation Energies of
C2H4 · · ·C2F4 Separated by 4 and 8 Å and Mean Absolute
Deviations from Best Estimatesa

ref X 4 Å 8 Å MAD

TD-PBE0/6-31G(d) 71, 72 25 6.74 7.41 4.60
TD-PBE0/6-31+G(d) 71, 72 25 6.53 7.35 4.74
TD-PBE0/6-31++G(2d,p) 71, 72 25 6.44 7.22 4.85
TD-PBE0b 71, 72 25 6.48 7.26 4.81
TD-M06-HF/6-31G(d) 10 100 10.58 12.62 0.08
TD-M06-HF 10 100 9.30 11.45 1.30
TD-M05-2X 136 56 7.62 9.32 3.21
TD-M06-2X 14 54 7.17 8.89 3.65
TD-HFc 109 100 10.36 12.30 0.35
TD-HFLYP 109, 112 100 11.47 12.84 0.48
TD-BMK 137 42 7.41 8.54 3.70
TD-B97-3 151 26.93 6.68 7.45 4.61
TD-B98 138 21.98 6.36 7.04 4.98
TD-M05 135 28 6.50 7.40 4.73
TD-B3LYP 112, 113 20 6.25 6.90 5.10
TD-mPW1PW 152 25 6.50 7.29 4.78
TD-X3LYP 153 21.8 6.30 7.04 5.01
TD-M06 14 27 6.77 7.21 4.69
TD-M06-L 36 0 5.43 5.70 6.11
TD-BLYP 110, 112 0 5.06 5.26 6.52
TD-CAM-B3LYP 117 19-65d 7.11 9.01 3.62
TD-LC-ωPBE(20) 23 0-100d 6.48 8.42 4.23
TD-LC-ωPBE 116 0-100d 9.08 10.81 1.73
MS-CASPT2(4e/4o)c,e 154 100 9.15 10.09 2.06
best estimatef 10.72 12.63 0

a Complex constructed taking the experimental geometries of
the monomers. b In this table, if the basis set is not indicated, it is
6-311+G(2d,p). c Wave function theory (other entries are density
functional theory). d The lower end of the range applies at zero
interelectronic distance, and the upper end of the range applies at
infinite interelectronic distance. e 4e/4o denotes four electrons in
four active orbitals. These calculations were performed with
MOLCAS and are based on four-state-averaged CASSCF orbitals.
f For R ) 8.00 Å, the best estimate comes from the SAC-CI
results of Tawada et al.149 The SAC-CI results are only available
for R g 5 Å, but for 5 and 6 Å, the difference between the
SAC-CI excitation energies and the CIS results in Figure 3 of
Dreuw et al.150 is constant at 0.53 eV. With this difference, the
SAC-CI value at R ) 5 Å of 11.49 eV and the CIS difference
between R ) 4 and 5 Å of 0.77 eV, we obtain a best estimate of
10.72 eV at 4 Å.

Table 6. Mean Absolute Deviations from Best Estimates
for RES20 Database of Rydberg Excitation Energiesa

ref X MADa

TD-M06-HF 10 100 0.43
TD-M05-2X 136 56 0.31
TD-M06-2X 14 54 0.35
TD-HF 109 100 1.18
TD-HFLYP 109, 112 100 1.72
TD-BMK 137 42 0.35
TD-BHHLYP 114 50 0.17
TD-B97-3 151 26.93 0.78
TD-PBE0 71, 72 25 0.86
TD-B98 138 21.98 0.88
TD-M05 135 28 1.10
TD-B3LYP 112, 113 20 0.67
TD-mPW1PW 152 25 0.84
TD-X3LYP 153 21.8 0.99
TD-O3LYP 112, 155 11.61 1.55
TD-M06 14 27 1.67
TD-M06-L 36 0 1.62
TD-τ-HCTHhyb 156 15 1.08
TD-τ-HCTH 156 0 1.69
TD-TPSS 157 0 1.72
TD-BP86 110, 111 0 1.85
TD-BLYP 110, 112 0 2.00
TD-OLYP 112, 155 0 2.13
TD-SVWN5 158 0 1.77
TD-CAM-B3LYP 117 19-65 0.50
TD-LC-ωPBE(20) 23 0-100 1.14
TD-LC-ωPBE 116 0-100 0.15
TD-LC-BLYP 159 0-100 0.21
TD-LC-OLYP 23, 159 0-100 0.22
TD-LC-PBE 23, 159 0-100 0.34
TD-LC-τ-HCTH 23, 159 0-100 0.92
TD-LC-TPSS 23, 159 0-100 0.48

a Augmented Sadlej pVTZ basis set.
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in our assessment, results from different data sets are
combined in Table 7. To this end, three small data sets
(VES20, RES20, and CTES3swith all results taken from a
previous paper,14 which can be consulted for details such as
basis sets, geometries, and sources of accurate data) are
compared to several data sets from this paper, namely,
VT103, which consists of the results for the 103 excitations
energies in the VT set; ππ*D49, which is defined above
(recall that it consists of 49 π f π* excitations of various
neutral dyes); NO18, which consists of 18 nf π* transitions
of neutral nitroso dyes; and CYA13, which consists of 13
transitions involving highly multiconfigurational states of
charged cyanines.

Table 7 does not include the five large chromophores
(MG-y family, Table SI.6, Supporting Information) because
we do not have results for those molecules for most of the
density functionals included in Table 7. The VES190,
VRES210, ES226, and BES226 columns of Table 7 are
explained below.

First, we notice the difference between the trends in the
CTES3 column and the VT103, ππ*D49, NO18, and VES20
columns of Table 7. For the long-range charge transfer states
of CTES3, the errors are smallest for M06-HF, with X )
100, whereas for the VT103, ππ*D49, NO18, and VES20
databases of valence excitations, the errors are smallest for
X ) 10-28. The CYA13 column shows a trend more in
line with CTES3 than with the valence-excitation databases,
although the trend is not as pronounced as for the long-range
charge transfer excitations of CTES3. On the basis of this
observation, we will classify the cyanine data as charge
transfer excitations for the rest of this discussion.

We next defined VES190 as a database of the 190 valence
excitations in VT103, ππ*D49, NO18, and VES20, and
Table 7 shows the mean errors over all 190 data. The five
best performing functionals are the ones with X ) 20-28,
and they all have MADs in the range 0.19-0.25 eV. TPSSh,
BMK, M06-L, and M06-2X are the closest trailers, with
MADs in the range 0.26-0.36 eV. Adding in the Rydberg
transitions of RES20 makes database VRES210 with 210
valence and Rydberg excited states; for these data, PBE0
and B98 have the best performance with MAD ) 0.26 eV.
M06 and M06-2X both have a MAD of 0.36 eV. Finally,

we add in the 16 charge transfer excitations of CYA13 and
CTES3, and we obtain the largest data set, ES226, with 226
excited states. PBE0 and B98 remain the best performers,
with MAD ) 0.33-0.34 eV; the best performers in the M06
family are M06-2X and M06, with MADs of 0.40 ad 0.42
eV. The 190:20:13 relative weighting of valence/Rydberg/
charge-transfer excitations in ES226 (equivalent to 84:9:7)
is very arbitrary. An alternative method of gaining an overall
perspective would be, for example, to use a 50:25:25
weighting. We do this by first combining CYA13 and CTES3
into CTES16 and then compute a MAD for “balanced
ES226” as follows:

Such an assessment is shown in the last column of Table
7. Although it is equally as arbitrary as the raw average over
the 226 molecules in ES226, it might be a more useful test
when one considers a set of states having all three kinds of
character. The table shows that the high-X functionals are
now the best, followed by the mid-X functionals. Therefore,
each potential user of the methodology must first determine
whether Rydberg and/or charge transfer excitations are an
important component of the transition set being studied, and
the decisions on the usefulness of TD-DFT and the optimal
functional depend strongly on that consideration. The bottom
line is that the current situation is an unsatisfactory state of
affairs because no single local or global hybrid functional is
reasonably accurate for all three classes of excitation.

This is illustrated in Figure 5 where the MADs computed
using the functionals belonging to the M06 family and four
different combined data sets (VES190, VRES210, ES226,
and BES226) are compared to the performances of other local
and global hybrids functionals.

VI. Conclusions

It is important to validate practical density functional
approximations in order to ascertain the reliability of their
predicted electronic excitation energies. Here, we have
performed benchmark calculations aimed at assaying the
M06-L, M06, M06-2X, and M06-HF functionals for TD-

Table 7. Mean Absolute Deviations (eV) from Best Estimates for Combined Data Sets

functional Xa VT103 ππ*D49 NO18 VES20 VES190 RES20 VRES210 CYA13 CTES3 ES226 BES226

M06-HF 100 0.55 0.75 1.08 0.71 0.67 0.39 0.64 0.50 0.09 0.63 0.54
M05-2X 56 0.39 0.43 0.51 0.37 0.41 0.31 0.40 0.66 2.42 0.44 0.53
M06-2X 54 0.34 0.39 0.39 0.34 0.36 0.35 0.36 0.57 2.46 0.40 0.50
HFb 100 1.05 1.13 0.15 1.08 0.99 1.18 1.01 1.08 0.99 1.01 1.05
BMK 42 0.34 0.30 0.19 0.30 0.31 0.35 0.32 0.68 3.10 0.37 0.53
PBE0 25 0.24 0.09 0.08 0.29 0.19 0.86 0.26 0.63 4.08 0.33 0.63
B98 21.98 0.25 0.11 0.07 0.24 0.20 0.92 0.26 0.61 4.25 0.34 0.65
M05 28 0.30 0.11 0.33 0.29 0.25 1.16 0.34 0.61 4.12 0.40 0.73
B3LYP 20 0.27 0.14 0.06 0.28 0.22 1.07 0.30 0.59 4.44 0.37 0.70
M06 27 0.28 0.11 0.21 0.24 0.23 1.67 0.36 0.55 4.11 0.42 0.83
TPSSh 10 0.30 0.23 0.12 0.24 0.26 1.33 0.36 0.62 4.93 0.44 0.82
M06-L 0 0.35 0.31 0.23 0.32 0.33 1.62 0.45 0.67 5.44 0.53 0.96
VSXC 0 0.39 0.36 0.17 0.27 0.35 1.64 0.47 0.65 5.63 0.55 0.98
PBE 0 0.53 0.48 0.15 0.32 0.46 1.95 0.60 0.51 5.86 0.67 1.10
BLYP 0 0.54 0.50 0.14 0.35 0.47 2.00 0.62 0.50 5.85 0.68 1.11

a X denotes percentage of Hartree-Fock exchange. b This row (Hartree-Fock) is wave function theory; other rows are density functional
theory.

MAD(BES226) ) 0.50 × MAD(VES190) +
0.25 × MAD(RES20) + 0.25 × MAD(CTES16)
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DFT calculations. No functional, either one in the M06
family or any other considered functional, shows acceptable
accuracy for all three of valence, Rydberg, and charge
transfer excitations. Thus, we focus on valence excitations,
for which the accuracy is most useful. The conclusions
obtained through comparisons with theoretical benchmarks
for isolated molecules and reference values inferred from
experimental measurements in liquid solvents appear con-
sistent and are as follows:

1. The M06 functional yields average deviations for
valence excitations similar to those obtained with other
popular hybrid functionals, namely, B3LYP and PBE0. The
mean unsigned deviation (MAD) from the best estimates for
the set of 190 valence excitations for which we have the
most comprehensive group of comparisons set is 0.23 eV,
but the deviations are significantly system-dependent. For
example, the MAD is 0.39 eV for 18 n f π* transitions of
neutral nitroso dyes, but only 0.11 eV for a set of 49 π f
π* transitions of a variety of neutral dyes (see Tables 3-5).
(In contrast, the MAD for excitations of charged cyanine
dyes, which are not grouped with the valence excitations, is
0.55 eV.)

2. M06-L outperforms BP86 for the set of 103 valence-
excitation benchmarks based on high-level wave function
theory, and it leads to smaller errors than other meta-GGA
functionals (VSXC, TPSS, and τ-HCTH) in the majority of
cases. Although it tends, as do all local functionals, to
underestimate the transition energies for many classes of
excitation, this functional represents an improvement as
compared to other local functionals.

3. Overall, M06-2X appears slightly less accurate than
M06 for evaluating valence transition energies, although such
a conclusion must be considered as tentative because of the
lack of vibronic modeling in the majority of our VE
calculations. For the VT set, the use of M06-2X improves
significantly over the BHHLYP estimates.

4. M06-HF is the least accurate among the four functionals
of the M06 family for valence transitions. It significantly
overestimates the transition energies for most πf π* states,
although the deviations are smaller than with the TD-HF
approach.

In general, the trends and average errors found here for
the four functionals of the M06 family are not inconsistent
with expectations based on previous work.10,14,23
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(126) Perpète, E. A.; Wathelet, V.; Preat, J.; Lambert, C.; Jac-
quemin, D. J. Chem. Theory Comput. 2006, 2, 434.

(127) Jacquemin, D.; Assfeld, X.; Preat, J.; Perpète, E. A. Mol.
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Abstract: The spectral properties of Tookad (Pd-bacteriopheophorbide, Pd-BPheid), an effective
photosensitizer that targets mainly prostate tumors, and metal-free BPheid have been studied
using time-dependent density functional theory (TD-DFT). The well-established B3LYP functional,
which is known to overestimate excitation energies, was included in the study along with recently
introduced range-separated and meta hybrid DFT functionals CAM-B3LYP, M06, M06-2X,
M06HF, ωB97XD, ωB97X, ωB97, LC-ωPBE, and PBE0 (PBE1PBE). The main focus is the
performance of the new functionals in predicting low-lying excitations (>600 nm), to explore
their potential roles in drug development for photodynamic therapy. The data suggests that
ωB97XD overall performs best for the Qy transition band (the red-most absorption), followed by
CAM-B3LYP. LC-ωPBE, ωB97, B3LYP, and PBE1PBE all generated the Qy band far from the
experimental position. The error in absorption energy for the Qy band was found to be at most
0.05 eV for ωB97XD, compared to 0.15-0.19 eV for B3LYP. The use of different basis sets
used in excited-state calculations was shown to be of less importance as was the use of either
B3LYP or M06 in geometry optimizations.

1. Introduction

Photodynamic therapy (PDT), in which a photosensitizer,
light, and oxygen are the major components, has been shown
to be a promising method for treatment of various cancers
as well as other diseases. In the reaction between the excited
photosensitizer and oxygen in the tissue, reactive oxygen
species (ROS), such as singlet oxygen, are formed and can
readily react with the target tissue. Photosensitizers are light-
absorbing molecules often made up by conjugated systems,
such as porphyrins, chlorins (17,18-dihydroporphyrin), and
bacteriochlorins (7,8,17,18-tetrahydroporphyrin). The first
approved and most widely used photosensitizer is Photofrin
that has been successfully used in PDT. However, Photofrin
suffers from drawbacks, such as light absorption at wave-
lengths below the optimal tissue penetration as well as long-
lasting photosensitization, due to accumulation in the skin

tissue (low-clearance rate). Additional photosensitizers are
now available on the market, and new photosensitizers are
continuously being developed with the aim to reduce the side
effects and increase the efficiency of the treatment.

One of the most important aspects in the development of
photosensitizers is the absorption properties. The red-most
absorption peak of porphyrin- and chlorin-based photosen-
sitizers is in general positioned between 600 and 700 nm
and is the one used in PDT to excite the photosensitizer.
Although this is usually significantly weaker than absorptions
occurring around 400 nm, it is used in PDT due to the
increased tissue penetration of the light at these wavelengths.
Bacteriochlorophylls (BChl) display relatively speaking very
large extinction coefficients for the low-lying Qy band, and
thus some BChls and their derivatives have been suggested
to be utilized as photosensitizers in PDT.1,2 Substitution of
the central Mg2+ in native BChl with other divalent tran-
sition-metal ions, such as Pd2+, Co2+, Ni2+, Cu2+, Zn2+,
and Mn2+ has been carried out successfully,3 and the
spectroscopic properties of these synthesized compounds
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have been extensively studied. BChl with the central metal
removed and replaced by two hydrogen atoms (bacteriopheo-
phytin, BPhe) displays its two red-most absorption peaks at
749-758 and at 524-531 nm in diethyl ether (DE),3-5

toluene, and tetrahydrofuran (THF),4 corresponding to the
Qy and Qx transition bands, respectively. Metal-containing
BChls absorb strongly at wavelengths in the range of
753-782 nm, and the second absorption peak is observed
at 529-594 nm in DE and THF.3,6 From these data, it is
clear that the change of metal in the molecular center
significantly affects the position of the Qx band, whereas the
position of the low-lying Qy band is less dependent on the
metal.

Pd-containing BChl derivatives have achieved particular
attention due to enhanced stability and promising photody-
namic properties. Tookad (WST09), displayed in Figure 1,
is a Pd-containing BChl derivative in which the phytyl group
(C20H39) at the propionyl residue has been replaced by a
hydrogen atom, giving Pd-bacteriopheophorbide (Pd-BP-
heid). However, the presence or absence of the phytyl group
does not affect the position of the absorption bands as the
phytyl group does not contribute to the conjugation,7,8 and
spectroscopic data reported for Pd-BChl and Tookad are
therefore almost identical. Pd-BChl displays the Qy and Qx

absorption bands at 753-762 nm and 527-535 nm in DE,3,5

toluene,9 and THF.6 For Pd-BChl and Tookad, the quantum
yield for intersystem crossing from the first-excited singlet
state to the triplet state is nearly 100%, which results in a
large number of triplet-state molecules available to react with
molecular oxygen, with the main product being singlet
oxygen.9,10

In vitro and in vivo studies on the effect of Tookad-PDT
have showed significant phototoxicity on several different
carcinoma cells and tumors as a result of tumor vascular
damage.11-17 The promising results from these studies have
led to phase I18-20 and II21 clinical trials performed on
patients with prostate cancer. Tookad has, as opposed to
several other photosensitizers, a fast clearance rate from the

body.22 It does not seem to accumulate in skin, muscle, and
tumor tissue but mainly in the plasma, kidney, and liver,
from which it is cleared relatively rapidly.22 The low
accumulation in skin tissue would reduce the long-lasting
photosensitization side effects common for photosensitizers,
such as Photofrin.

Computational modeling holds good promise for drug
development and refinement, in that we are able to process
large quantities of data in a short period of time and thus
point to modifications (or entirely new molecules) that would
be of interest to synthesize and assess experimentally. In the
current context, if we are to find improved chromophores
for PDT, then the capability to compute accurate absorption
spectra would be essential for the methodology chosen. As
the molecules discussed herein are rather large, and it would
be desirable to explore changes in spectra for a significant
number of possible substitutions, excited-state calculations
within the time-dependent density functional theory (TD-
DFT) formalism is an attractive option.

TD-DFT has been employed successfully over the past
decade to explore both spectra and photochemical properties
on a wide range of systems. However, an early comparative
study of the performance of TD-DFT versus CASSCF/
CASPT2 (multiconfigurational SCF and second-order per-
turbation theory) on excited-state calculations of a number
of organic compounds showed that the methodology suffers
from defects that makes it less accurate compared with pure
ab initio methods.23 Several benchmarking studies of excited-
state calculations using more recent DFT functionals have
since been reported. Perpète et al used B3LYP and PBE0 to
explore absorptions of 66 different substituted anthraquino-
nes, showing that PBE0 was able to provide data to within
a mean average deviation (MAD) of 0.05 eV after the
application of a fitting procedure for this particular set of
systems.24 Andzelm et al used eight different functionals
(including HF and local density functionals) for a set of
tricyanofuran based push-pull (donor-acceptor) chro-
mophores.25 Again the PBE0 functional, along with CAM-

Figure 1. (a) Schematic figure of the Tookad molecule. R ) H: Tookad (Pd-BPheid); R ) C20H39: Pd-BChl. (b) Optimized
structure of the Tookad molecule.
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B3LYP and BNL, were found to perform the best after
adjustment of the attenuation factor γ. However, the data
showed large spread, and issues, such as transferrability and
uneven performance for charge-transfer versus π-π* excita-
tions, remain to be resolved. Two larger functional bench-
mark studies have been reported by Jacquemin et al, dealing
with singlet excited states and singlet-triplet gaps, respec-
tively.26,27 In their extensive study of singlet excitations, 29
functionals were tested, computing 700 excitations for 500
organic molecules of varying sizes.26 The data show a very
large system dependence, with the best MAD of about 0.25
eV. Functionals containing a large fraction of exchange
significantly underestimated the excitation energies, and
overall the functionals of ‘standard hybrid’ type, such as
X3LYP, B3LYP and PBE0, performed the best. In the study
of singlet-triplet gaps, finally, 34 functionals were included
to study a total of 63 excited states in 20 medium-sized
molecules.27 Again, the functionals displayed a large spread,
with functionals both over- and under-shooting; the MAD
varying between 0.2-0.7 eV. The BMK and M06-2X
functionals were in this case found to perform the best, albeit
M06-2X is unpredictable in that it sometimes gives too high
and sometimes too low values; PBE0 and CAM-B3LYP were
also among the better-performing functionals but consistently
overshot the experimental excitation energies.

A large number of computational studies on photosensi-
tizing compounds based on porphyrin, chlorin, and bacte-
riochlorin structures have also been reported. As in the
benchmarking examples outlined above, excited-state cal-
culations have been performed using different methods,
generating deviating results. Palma et al. recently summarized
the present computational results on free-base porphyrin and
chlorin obtained by different methods and functionals.28 It
is clear from these data that TD-DFT in combination with
any functional used in those studies overestimates the
excitation energy of the Qy band by 0.11-0.34 eV. Excited-
state calculations of metal-coordinated porphyrins, e.g.
Zn-porphyrin,29,30 performed at the TD-DFT/B3LYP level
of theory, also overestimated the excitation energies.

A four-orbital model has been suggested in order to explain
the four transitions (two Q and two B bands) seen in the
absorption spectra of porphyrins.31 This model only considers
the two highest occupied molecular orbitals (HOMO-1 and
HOMO) and the two lowest unoccupied molecular orbitals
(LUMO and LUMO+1) and the four possible excitations
between those. However, the four-orbital model has been
questioned as both experimentally and theoretically more
than four transition bands have been found. Still the question
is being discussed as diverging results are being generated,
and different conclusions are drawn. In the case of more than
four transition bands found the result can be interpreted either
as if the additional bands found represent vibrational
overtones of the electronic transition bands,32 hence the four-
orbital theory would hold, or as if all observed bands are
electronic transitions,33 meaning that the four-orbital model
would be inappropriate. Recent theoretical studies performed
on chlorophyll a and pheophytin a have not thrown further
light on the issue. Symmetry-adapted cluster configuration
interaction (SAC-CI) calculations34 support the four-orbital

model by generating only four transition bands, in agreement
with the ones found by Houssier et al.32 At the TD-DFT/
Becke-Perdew (TD-DFT/B-P)7,8 and DFT with multirefer-
ence configuration interaction (DFT/MRCI)35 level of theory
however, apart from the four transition bands, additional
bands are found in-between the Q bands as well as at higher
energies, results that support the assumption that the four-
orbital model is too simple to correctly describe the absorp-
tion spectra.33 From these studies it is also concluded that
TD-DFT overestimates the excitation energy of the Qy band.

In order to try to establish a suitable methodology for the
study of these types of systems, we have in the present study
investigated Tookad and metal-free BPheid with the aim to
assess the performance of nine recent functionals in predict-
ing low-lying excited-state energies, i.e., evaluating their
predictive power and hence potential to use in computer-
assisted drug design for PDT. The main question to be
answered is if either of these functionals can reproduce the
long wavelength peak of the absorption spectrum, a task in
which several commonly applied functionals today fail. We
used B3LYP,36 PBE037 (PBE1PBE), LC-ωPBE,38-41 CAM-
B3LYP,42 ωB97,43 ωB97X,43 ωB97XD44, M06,45 M06-
2X,45 and M06HF46,47 for excited-state calculations and
B3LYP and M06 for geometry optimizations. In order to
explore if the presence or absence of a metal in the compound
affects the performance of the functionals, both Tookad (Pd-
BPheid) and metal-free BPheid were included.

LC-ωPBE, CAM-B3LYP, and ωB97XD are so-called
long-range corrected (LC) functionals in which the Coulomb
r12
-1 term is split into a long-range part that includes the

Hartree-Fock (HF) exchange integral and a short-range part
that includes the DFT exchange interaction. The ω parameter
is introduced to control the range of the interelectronic
separation between the two terms. LC-ωPBE is the long-
range corrected version of the nonempirical generalized
gradient approximation (GGA) functional ωPBE (Perdew-
Burke-Ernzerhof). CAM-B3LYP uses a Coulomb attenuat-
ing method to combine the hybrid B3LYP method with a
long-range correction by introducing two extra parameters,
instead of the single parameter used by Becke. ωB97XD is
an extended version of the long-range corrected ωB97 and
ωB97X functionals with empirical dispersion correction.
M06HF is a full-HF exchange functional with satisfying
long-range properties, primarily designed for Rydberg and
charge-transfer excitations. M06 and M06-2X, finally, are a
extensions of M06HF, with focus on valence excitations.

2. Computational Methodology

All calculations were carried out using the Gaussian09
program.48 Neutral Tookad and the corresponding metal-
free BPheid were studied. The geometries of the ground
singlet state of the molecules were initially optimized in
vacuum, toluene, and THF using B3LYP and M06. The
LanL2DZ49 basis set, an effective core potential (ECP) and
valence electron (double-�) basis set combination, was used
for Pd, and the 6-31+G(d,p) all-electron basis set was used
for all other atoms in the geometry optimizations. The bulk
solvation was modeled through the integral equation formal-
ism of the polarized continuum model (IEF-PCM).50,51
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Vertical singlet excitation energies were calculated in
vacuum, toluene, and THF for Tookad and BPheid using
both structures optimized with B3LYP and M06, employing
the time-dependent (TD) formalism52-54 and the B3LYP,
M06HF, and ωB97XD functionals. For the Tookad and
BPheid geometries optimized using B3LYP, vertical singlet
excitation energies in toluene were also calculated using
CAM-B3LYP, M06, M06-2X, ωB97X, ωB97, LC-ωPBE,
and PBE0. The LanL2DZ and 6-311+G(2d,2p) basis sets
were used in the excited-state calculations. The basis sets
6-31G(d,p) and 6-31+G(d,p) (for all atoms but Pd) were also
included in a test set of excited-state calculations with
ωB97XD on the Tookad B3LYP geometry in toluene. The
calculated wavelengths (in nm) are plotted against the
oscillator strengths using a Gaussian line shape.

3. Results

3.1. Geometry. First the effect on the optimized geom-
etries by the two different functionals was investigated. This
is an important aspect to consider as geometrical changes
can greatly influence the excitation properties of the mol-
ecule. Selected geometrical parameters for Tookad optimized
in toluene using B3LYP and M06 are shown in Table 1,
and Cartesian coordinates are provided in the Supporting
Information. The data show that M06 generates a structure
with an overall more ‘compact’ conjugated core.

The tail parts of the molecule (represented by the O1 · · ·O2
distance in Table 1 and Figure 1) are most affected by the
choice of functional and can, without explicitly taking part
in the conjugation, influence the conjugated system by
affecting the geometry of the ring system. However, the small
differences in lengths for the bonds participating in the

conjugated system have only a minor effect on the calculated
spectra, as shown below.

The effect of the environment (gas phase, toluene, and
THF) on the geometries is also mainly seen in the two tails
of the molecule (data shown for toluene only, Table 1). The
metal has a small effect on the geometry of the molecule.
The presence of Pd in the structure attracts the nitrogen atoms
in a way that the inner core of the ring system becomes more
compact (atom distances N1 · · ·N3 and N2 · · ·N4 are reduced)
compared to the metal-free system (data not shown).

3.2. Spectroscopic Properties. Table 2 shows the calcu-
lated lowest-lying absorption bands for Tookad and BPheid
in toluene and THF, along with the experimental data for
Pd-BChl and BPhe. As previously mentioned, the spectral
properties should not be affected to any significant degree
by the presence or absence of the phytyl group. The
functionals B3LYP and M06 were used together with the
LanL2DZ and 6-31+G(d,p) basis sets in the geometry
optimizations, and B3LYP, M06HF, and ωB97XD in
conjunction with the LanL2DZ and 6-311+G(2d,2p) basis
sets were used in the excited-state calculations. Only the two
red-most absorption bands (Qx and Qy) are discussed here,
as the complete experimental spectra are not available for
the compounds in both solutions. In addition, the Qx and Qy

bands correspond to the absorption wavelengths of interest
when studying properties related to PDT.

Excited-state calculations using the same functional (B3LYP,
M06HF, or ωB97XD) on the B3LYP or M06 geometries
generate absorption bands in the same range, within 2-6
and 1-19 nm for Tookad and BPheid, respectively. The M06
geometry results overall in slightly shorter wavelengths
compared with the B3LYP geometry, however the difference
is not significant.

The choice of functional used for excited-state calculations
is more crucial, and the different functionals generate quite

Table 1. Selected Geometrical Parameters for Tookad
Optimized in Toluene with B3LYP and M06 in Conjunction
with LanL2DZ Basis Set for Pd and 6-31+G(d,p) for All
Other Atomsa

distance (Å)

atoms B3LYP M06

Pd-N1 2.054 2.048
Pd-N2 2.062 2.050
Pd-N3 2.015 2.010
Pd-N4 2.114 2.100
(N1 · · ·N3) 4.069 4.058
(N2 · · ·N4) 4.175 4.149
N1-C1 1.367 1.362
C1-C2 1.400 1.396
C2-C3 1.395 1.381
C3-N2 1.357 1.351
N2-C4 1.379 1.376
C4-C5 1.377 1.373
C5-C6 1.406 1.403
C6-N3 1.384 1.378
N3-C7 1.337 1.332
C7-C8 1.399 1.395
C8-C9 1.377 1.372
C9-N4 1.381 1.375
N4-C10 1.359 1.353
C10-C11 1.384 1.381
C11-C12 1.398 1.393
C12-N1 1.371 1.366
(O1 · · ·O2) 3.499 3.142

a Atom names correspond to the labels in Figure 1b.

Table 2. Calculated Low-Lying Absorption Bands (Qy and
Qx) for Tookad (Pd-BPheid) and BPheid in Toluene and
THFa

solvent ) toluene solvent ) THF

geometry TD-DFT Qy Qx Qy Qx

Tookad
Exptl9 762 535 Exptl6 755 529

B3LYP
B3LYP 695 528 693 530
M06HF 810 523 743 521
ωB97XD 769 528 750 527

M06
B3LYP 690 524 688 526
M06HF 805 519 745 517
ωB97XD 763 523 746 522

BPheid
Exptl4 758 531 Exptl4 751 527

B3LYP
B3LYP 681 554 679 554
M06HF 777 530 708 524
ωB97XD 759 553 738 550

M06
B3LYP 679 549 678 549
M06HF 760 524 689 517
ωB97XD 753 547 729 544

a Compared with experimental data for Pd-BChl and BPhe.
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widespread results. Excited-state calculations using B3LYP
overall generates the Qy band at shorter wavelengths than
ωB97XD, whereas M06HF generates the Qy band at longer
or shorter wavelengths, depending on solvent. The choice
of functional thus significantly affects the position of Qy band,
whereas the Qx band is almost independent of the functional
used. It is well-known that B3LYP in general overestimates
excitation energies by ∼0.1-0.2 eV, however when there
is charge transfer involved the error should be larger. It is
clear also from the results presented herein that the energies
of the first excitation are overestimated using B3LYP. For
Tookad, the excitation energy of the Qy band is overestimated
by 0.15-0.17 eV, whereas for BPheid the energy difference
is slightly larger, 0.18-0.19 eV. For M06HF and ωB97XD,
the results are inconsistent; in some cases, the excitation
energies are either underestimated or overestimated, but
overall, the results are closer to the experimental data than
B3LYP. For M06HF, the error is in the range of 0.02-0.10
and 0-0.15 eV for Tookad and BPheid, respectively, and
for ωB97XD, the error range is 0-0.02 and 0-0.05 eV for
Tookad and BPheid, respectively. The error of the Qx band
is overall significantly smaller than for the Qy band. It cannot
be concluded from the generated results if the presence of
the metal significantly influences the performance of the
functionals. The solvent only affects the absorption peaks a
few nm for B3LYP and ωB97XD, which is consistent with
experimental data, whereas for M06HF the difference
between the two solvents is significant for the Qy band.

For Tookad, it is obvious that ωB97XD used in excited-
state calculations generates absorption wavelengths closest
to the experimental ones for the Qy band. For the Qx band,
the performance of the functionals is more inconsistent;
however, the difference between the functionals is small.
ωB97XD and B3LYP generate results closest to experimental
data in this case. For BPheid, ωB97XD again generates the
best result for the Qy band in three cases out of four. For the
Qx band, however, the functionals do not perform as equally
as for Tookad, and the results show that M06HF generates
the best result. However, for the Qy band of both Tookad
and BPheid, M06HF generates results far from experimental
data in several cases. Gas-phase data are included in the
Supporting Information. The absorption bands generated with
B3LYP and ωB97XD in the gas phase are all blue-shifted
compared with in bulk solvation. For M06HF, however, the
Qy band is in some cases not affected at all by the inclusion
of bulk solvation, and the gas-phase data is also sometimes
red-shifted compared with the data in bulk solvation. The
Qy band is most affected by the inclusion of bulk solvation,
whereas the Qx band is only red-shifted a few nm. These
results confirm that including implicit solvent is in general
necessary in order to obtain reasonable data.

In order to display the effect of the Pd atom on the
absorption spectra, a comparison between Tookad and metal-
free BPheid is displayed in Figure 2. Here we display the
case in which ωB97XD was used for excited-state calcula-
tions in toluene on the B3LYP geometries. BPheid displays
a more compressed spectrum, with the Qy band blue-shifted,
i.e., more energy is needed to excite BPheid to its first excited
singlet state, compared with Tookad. The high-energy region

of the spectra is similar for the two molecules, however the
oscillator strength for Tookad is much lower compared with
that of BPheid. Also for the low-lying excitations, Tookad
provides lower oscillator strengths. This finding is partly
supported by experiments as Pd-BChl displays a lower
extinction coefficient for the higher energy bands compared
to BPhe, albeit a higher extinction coefficient for the Qy

band.3

For comparison purposes, seven additional functionals,
CAM-B3LYP, M06, M062X, ωB97X, ωB97, LC-ωPBE,
and PBE0 (PBE1PBE) were included in the calculation of
the excited states of Tookad and BPheid in toluene using
the B3LYP geometry. The resulting spectra are shown in
Figures 3 and 4, together with the previously obtained data
for B3LYP, M06HF, and ωB97XD. The spectra display a
significant difference between the funtionals, especially for
the low-lying excitations. The Qy band is clearly the strongest
one, a feature common for all BChl’s and an advantage when
the compound is being used in PDT. The experimental
absorption maxima of Tookad in toluene are positioned at
762, 535, 388, and 334 nm,9 as also indicated in Figure 3.
For BPheid there are, to our knowledge, no experimental
spectroscopic data for the higher energy excitations in
toluene, and only the two lowest-energy absorption maxima,
at 758 and 531 nm,4 are therefore indicated in Figure 4. From
the spectra it can be concluded that ωB97XD displays the
best positioned peak for the Qy band for both Tookad and
BPheid. The functional performance for the Tookad Qy band
is as follows: ωB97XD > CAM-B3LYP > M06-2X > M06
> M06HF > ωB97X > B3LYP > PBE1PBE > LC-ωPBE >
ωB97. For BPheid the order is ωB97XD > M06HF > CAM-
B3LYP > ωB97X > M06-2X > M06 > LC-ωPBE > ωB97
> B3LYP > PBE1PBE. For Bpheid, CAM-B3LYP and
M06HF were equally close to the experimental value (∆λ
) 19 and 20 nm, respectively) but on opposite sides. The
finding that CAM-B3LYP performs better than B3LYP on
the lowest-lying excitation is supported by studies on
Zn-bacteriochlorin and bacteriochlorin55 as well as Zn-
porphyrin in explicit aqueous solution,56 in which the
excitation energies are reduced when using CAM-B3LYP.

Figure 2. Absorption spectra of Tookad and BPheid gener-
ated using ωB97XD.
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LC-ωPBE and ωB97 generate absorptions at far too long
wavelengths in both the case of Tookad and BPheid, meaning
that the excitation energy is significantly underestimated. The
opposite was observed for B3LYP and PBE1PBE that
overestimated the excitation energy considerably (i.e., gen-
erating the absorption peak at far too short wavelength).
B3LYP performs the best for the higher energy excitations
of Tookad; however, this functional displays three peaks in
the 300-400 nm region (also found when using THF as
solvent), instead of two that are seen experimentally. The
first and third peaks correspond very well to the experimental
peaks found at 334 and 388 nm, whereas the second peak
has no experimental match. The other functionals display
two peaks each, albeit blue-shifted compared with B3LYP
and experimental data. All functionals reproduce the small
peak at 535 nm very well for Tookad, whereas for BPheid
the functionals do not perform equally well in this case.
Excitations with very small oscillator strengths, too small
to be detected in the spectra, are generated by all functionals
between the B and Q bands.

The effect of the basis sets (applied on all atoms but Pd)
was investigated in the case of Tookad, and the resulting
spectra obtained using the 6-31G(d,p), 6-31+G(d,p), and
6-311+G(2d,2p) basis sets are shown in Figure 5. The
excited-state calculations were performed in toluene using

ωB97XD on the geometry generated at the B3LYP/6-
31+G(d,p) level of theory. It can be seen that the larger basis
sets with diffuse functions generate slightly better results, a
difference that is seen mainly in the red-most region of the
spectra. The basis set used in excited-state calculations has
obviously a significantly smaller effect on the resulting

Figure 3. Absorption spectra of Tookad generated by (a) the
B3LYP and M06 functional series and (b) the PBE and ωB97
functional series. Experimental values are displayed along the
x axis.

Figure 4. Absorption spectra of BPheid generated by (a) the
B3LYP and M06 functional series and (b) the PBE and ωB97
functional series. Experimental values are displayed along the
x axis.

Figure 5. Absorption spectra for Tookad generated using
ωB97XD in combination with three different basis sets.
Experimental values are displayed along the x axis. Basis set
for Pd is LanL2DZ throughout.
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spectra than the functional, a conclusion that has also been
found previously in the case of Zn-porphyrin.29,30

3.3. Electron Density Differences and Orbitals. As
ωB97XD overall generated the most satisfying spectral
results in this study, the computed electron density differ-
ences and orbitals of Tookad generated by this functional
were investigated. For comparison the electron density
differences and orbitals generated by B3LYP were also
included. The 6-311+G(2d,2p) basis set was used together
with toluene as the bulk solvent. The B3LYP geometry was
used throughout. Electron density differences were calculated
between the ground state and the excited states corresponding
to the peaks displayed in the spectra. This means that four
excited states were included for ωB97XD and five for
B3LYP, as this functional generated an additional peak in
the high-energy region of the spectra. The electron density
differences for ωB97XD and B3LYP are displayed in Tables
3 and 4, respectively. Blue color represents a decrease in
electron density and purple an increase in electron density
of the excited state compared to the ground state. The density
difference plots reveal that no dramatic restructuring of the
electron distributions occur during the excitations; they are
all essentially pure π-π* excitations within the aromatic
cores. Albeit a minor shift in electron density can be noted
between the different metal d-orbitals, only the fourth
excitation displayed involves any considerable interaction
between the aromatic core and the metal.

The HOMO-4 to LUMO+4 orbitals are displayed in the
Supporting Information. In agreement with the electron
density difference plots, the shapes of the orbitals generated
by the two functionals are almost identical. The only minor
differences in the shapes are seen for LUMO+2 and
LUMO+1. In LUMO+2 the dz2 orbital of Pd in B3LYP is

replaced by a dx2-y2 orbital in ωB97XD. In LUMO+1 the
conjugated π orbital of the ring system using B3LYP has a
considerably smaller extension than when using the ωB97XD
functional. The two lowest excitations (corresponding to the
Qy and Qx bands) occur between HOMO and LUMO and
between HOMO-1 and LUMO, respectively, for all func-
tionals and for both Tookad and BPheid. However, as clearly
seen in the absorption spectra, the excitation energies are
obviously different. The energy gap between HOMO and
LUMO is smaller when using ωB97XD compared with the
same energy gap for B3LYP, which is also reflected in that
ωB97XD overall generates the Qy band at longer wave-
lengths than B3LYP. The higher energy excitations (the B
bands) do not occur between the same orbitals for the
different functionals, and those excitations involve more than
only the two highest occupied and the two lowest unoccupied
molecular orbitals, indicating that the four-orbital model does
not correctly describe these transitions.

4. Conclusions

Tookad is a Pd-coordinated bacteriopheophorbide (Pd-
BPheid) that has shown promising photodynamic properties,
especially on prostate tumors. The low-lying excitations of
Tookad and metal-free BPheid were studied computationally
with the aim to reproduce the long-wavelength region of the
absorption spectra through the use of time-dependent density
functional theory (TD-DFT) in combination with new range-
separated and meta hybrid density functional theory (DFT)

Table 3. Electron Density Differences between the Ground
and Excited States of Tookad Generated Using the
ωB97XD Functional

Table 4. Electron Density Differences between the Ground
and Excited States of Tookad Generated Using the B3LYP
Functional
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functionals. The commonly employed B3LYP functional was
also included in the study, as it is well-known that this
functional overestimates excitation energies.

B3LYP, M06HF, and ωB97XD were used for excited-
state calculations on Tookad and BPheid geometries gener-
ated at the B3LYP and M06 level of theory, respectively, in
toluene and tetrahydrofuran (THF). No significant difference
was found in the calculated absorption spectra by the use of
either B3LYP or M06 in geometry optimizations. For the
excited-state calculations, ωB97XD was found to generate
the Qy transition band (the red-most absorption) closest to
the experimental position, for both Tookad and BPheid.
However, for the Qx band (the second red-most absorption)
the results are more inconsistent, with either B3LYP or
ωB97XD generating the best results for Tookad and M06HF
generating the best results for BPheid. In the case of Tookad,
the three functionals do however perform highly equal for
the Qx band. When the CAM-B3LYP, M06, M06-2X,
ωB97X, ωB97, LC-ωPBE, and PBE0 (PBE1PBE) function-
als are included in the excited-state calculations of Tookad
and BPheid in toluene, ωB97XD still performs the best for
the Qy band, followed by CAM-B3LYP. LC-ωPBE and
ωB97 underestimate and B3LYP and PBE0 overestimate the
Qy band excitation energy considerably. These data hence
differ from earlier benchmarking work, in which PBE0 was
of consistently reasonable quality. A set of calculations with
three different basis sets, with and without diffuse func-
tions, indicated that the basis set has a minor effect on the
calculated spectra. The overall accuracy for the Qy band was
0-0.02 and 0-0.05 eV for Tookad and BPheid, respectively,
for the ωB97XD functional.

We emphasize that the study is conducted on a limited
system and that further work is needed in order to find the
optimal combination of functionals and basis sets for
optimizations and excitations. Clear from the current study
is, however, that the evaluation of low-lying excitations is
less straightforward to obtain at high accuracy than those in
the UV region of the spectrum and that functionals that from
a rational perspective cannot be justified for the current
property seem to perform surprisingly well whereas others
developed particularly with valence excitations in mind do
not. It is also concluded that, whereas statistical treatment
on a very large set of structurally divergent molecules may
favor certain functionals, when focusing in on a particular
class of compounds or a specific wavelength range, the
results may be entirely different.
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ogy at Örebro University and the National University of Ireland
- Galway are gratefully acknowledged for financial support.

Supporting Information Available: Cartesian coor-
dinates for geometries of Tookad optimized in gas phase,
THF and toluene using B3LYP and M06 functionals. This
material is available free of charge via the Internet at http://
pubs.acs.org.

References
(1) Henderson, B. W.; Sumlin, A. B.; Owczarczak, B. L.;

Dougherty, T. J. J. Photochem. Photobiol., B 1991, 10, 303–
313.

(2) Dougherty, T. J. Bacteriochlorophyll-A derivatives useful in
photodynamic therapy. U.S. Patent 5,171,741, Dec 15, 1992.

(3) Hartwich, G.; Fiedor, L.; Simonin, I.; Cmiel, E.; Schafer, W.;
Noy, D.; Scherz, A.; Scheer, H. J. Am. Chem. Soc. 1998,
120, 3675–3683.

(4) Limantara, L.; Sakamoto, S.; Koyama, Y.; Nagae, H. Pho-
tochem. Photobiol. 1997, 65, 330–337.

(5) Noy, D.; Fiedor, L.; Hartwich, G.; Scheer, H.; Scherz, A.
J. Am. Chem. Soc. 1998, 120, 3684–3693.

(6) Geskes, C.; Hartwich, G.; Scheer, H.; Mantele, W.; Heinze,
J. J. Am. Chem. Soc. 1995, 117, 7776–7783.

(7) Sundholm, D. Chem. Phys. Lett. 1999, 302, 480–484.

(8) Sundholm, D. Chem. Phys. Lett. 2000, 317, 545–552.

(9) Musewald, C.; Hartwich, G.; Pollinger-Dammer, F.; Lossau,
H.; Scheer, H.; Michel-Beyerle, M. E. J. Phys. Chem. 1998,
102, 8336–8342.

(10) Vakrat-Haglili, Y.; Weiner, L.; Brumfeld, V.; Brandis, A.;
Salomon, Y.; McIlroy, B.; Wilson, B. C.; Pawlak, A.;
Rozanowska, M.; Sarna, T.; Scherz, A. J. Am. Chem. Soc.
2005, 127, 6487–6497.

(11) Scherz, A.; Salomon, Y.; Brandis, A.; Scheer, H.; Palladium-
substituted bacteriochlorophyll derivatives and use thereof.
U.S. Patent 6,569,846, May 27, 2003.

(12) Chen, Q.; Huang, Z.; Luck, D.; Beckers, J.; Brun, P. H.;
Wilson, B. C.; Scherz, A.; Salomon, Y.; Hetzel, F. W.
Photochem. Photobiol. 2002, 76, 438–445.

(13) Schreiber, S.; Gross, S.; Brandis, A.; Harmelin, A.; Rosenbach-
Belkin, V.; Scherz, A.; Salomon, Y. Int. J. Cancer 2002, 99,
279–285.

(14) Koudinova, N. V.; Pinthus, J. H.; Brandis, A.; Brenner, O.;
Bendel, P.; Ramon, J.; Eshhar, Z.; Scherz, A.; Salomon, Y.
Int. J. Cancer 2003, 104, 782–789.

(15) Borle, F.; Radu, A.; Fontolliet, C.; van den Bergh, H.;
Monnier, P.; Wagnieres, G. Br. J. Cancer 2003, 89, 2320–
2326.

(16) Borle, F.; Radu, A.; Monnier, P.; van den Bergh, H.;
Wagnieres, G. Photochem. Photobiol. 2003, 78, 377–383.

(17) Preise, D.; Mazor, O.; Koudinova, N.; Liscovitch, M.; Scherz,
A.; Salomon, Y. Neoplasia 2003, 5, 475–480.

(18) Trachtenberg, J.; Bogaards, A.; Weersink, R. A.; Haider,
M. A.; Evans, A.; McCluskey, S. A.; Scherz, A.; Gertner,
M. R.; Yue, C.; Appu, S.; Aprikian, A.; Savard, J.; Wilson,
B. C.; Elhilali, M. J. Urol. 2007, 178, 1974–1979.

(19) Haider, M. A.; Davidson, S. R. H.; Kale, A. V.; Weersink,
R. A.; Evans, A. J.; Toi, A.; Gertner, M. R.; Bogaards, A.;
Wilson, B. C.; Chin, J. L.; Elhilali, M.; Trachtenberg, J.
Radiology 2007, 244, 196–204.

(20) Weersink, R. A.; Forbes, J.; Bisland, S.; Trachtenberg, J.;
Elhilali, M.; Brun, P. H.; Wilson, B. C. Photochem. Photo-
biol. 2005, 81, 106–113.

(21) Trachtenberg, J.; Weersink, R. A.; Davidson, S. R. H.; Haider,
M. A.; Bogaards, A.; Gertner, M. R.; Evans, A.; Scherz, A.;
Savard, J.; Chin, J. L.; Wilson, B. C.; Elhilali, M. BJU Int.
2008, 102, 556–562.

A Tookad Case Study J. Chem. Theory Comput., Vol. 6, No. 7, 2010 2093



(22) Brun, P. H.; DeGroot, J. L.; Dickson, E. F. G.; Farahani, M.;
Pottier, R. H. Photochem. Photobiol. Sci. 2004, 3, 1006–
1010.

(23) Tozer, D. J.; Amos, R. D.; Handy, N. C.; Roos, B. O.; Serrano-
Andres, L. Mol. Phys. 1999, 97, 859–868.
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Institute of Organic Chemistry and Biochemistry, Academy of Sciences, 166 10
Prague, Czech Republic, and Charles UniVersity, Faculty of Mathematics and Physics,

Institute of Physics, Ke KarloVu 5, 12116, Prague, Czech Republic

Received March 18, 2010

Abstract: Accurate computations of vibrational energies and vibrational spectra of molecules
require inclusion of the anharmonic forces. In standard computational protocols, this leads to a
large vibrational Hamiltonian matrix that needs to be diagonalized. Spectral intensities are
calculated for individual transitions separately. In this work, an alternate direct generation of the
spectral curves is proposed, based on a temporal propagation of a trial vibrational wave function
followed by the Fourier transformation (FT). The method was applied to model water dimer and
fenchone molecules. Arbitrary resolutions could be achieved by longer-time propagations,
although a smaller integration time step (∼0.02 fs) was needed for accurate peak frequencies
than previously found for similar time-dependent applications within the harmonic approximation.
Acceptably accurate relative vibrational spectra intensities were obtained when many random
vectors used in the propagations were averaged. For a model fenchone Hamiltonian, simulated
Raman and Raman optical activity (ROA) spectral shapes compared well with those obtained
by the classical approach. The algorithm is amendable to parallelization. The lack of the lengthy
and computer-memory-demanding diagonalization thus makes the FT procedure especially
convenient for spectral simulations of larger molecules.

I. Introduction

Simulations of vibrational spectra are necessary to understand
experimental data, and to obtain extensive information about
molecular structures and force fields. Particularly for pep-
tides, nucleic acids, and other biologically relevant systems,
the vibrational spectroscopy provides a valuable means for
the monitoring of specific structural and conformational
features.1 Historically, first spectral analyses were carried
out by empirical correlations of IR or Raman band frequen-
cies with the geometry.2 Later theoretical approaches were
based on simplified vibrational calculations, e.g., through
parametrized force fields (FFs).3 Today, precise and fast
quantum mechanical computations4 provide the most flexible
way for theoretical spectral analyses. In particular, the density
functional theory approximations can be applied for larger

molecules, including intensity simulations for experiments
with unpolarized as well as, for example, circularly polarized
radiation.5

The harmonic approximation based on the second derivatives
of the nuclear potential6 is sufficient for many applications. Any
molecule behaves like a system of independent harmonic
oscillators at the harmonic limit. Typically, spectra of large
biopolymers (nucleic acids, peptides) are simulated with this
assumption because of the low resolution, limited spectral range,
inhomogeneous band broadening caused by the solvent and
molecular dynamics, and limited precision of available force
fields.1 For better accuracy or more advanced applications,
anharmonic potential parts need to be included.7-10 Beyond
the harmonic model, computation of molecular vibrational
energies is no more a black box method, but advanced
computational schemes are needed, including vibrational con-
figuration interaction (VCI),11-13 vibrational self-consistent field
(VSCF),9,14-16 many-body perturbation theory (PT),17,18 vi-
brational coupled clusters,19 etc.
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The VCI scheme, where the wave function is expressed
as a linear combination of harmonic oscillator functions, is
probably the most universal and most straightforward
procedure. Unlike for the VSCF and PT approaches,
fundamental and combination energy levels and spectral
transitions can be obtained at the same time. Although VCI
may become impractical for large systems,18,20 it represents
an important benchmark as it is, in principle, equivalent to
the exact Schrödinger solution. Unfortunately, similarly as
for the electronic configuration interaction (CI),21 the dimen-
sion of the Hamiltonian required for a reasonable result
quickly grows with the size of the molecule. Unlike for the
electronic problem, however, where only few lowest-energy
states are usually needed, a large portion of the vibrational
energy levels covering the spectrum is required for vibrations.

Thus, a complete diagonalization of the vibrational Hamil-
tonian is typically needed to provide the transition energies,
corresponding peak positions, and wave functions (eigen-
vectors) bearing spectral intensities. The classical in-memory
iteration diagonalization routines are most convenient for
small and medium dimensions (N < ∼104).22,23 These direct
algorithms occupy computer memory that is approximately
proportional to N2 and require times that scale as N3. Larger
matrices can be more conveniently diagonalized, at least
partially, by so-called power iteration methods, often referred
to as (Jacobi-)Davidson algorithms, which perform the actual
diagonalization in an intermediate (Krylov) vector space.24-28

The actual eigenspace can be built from the largest or from
the smallest eigenvalue. The matrix does not need to be
stored in memory, and the algorithm is simple, requiring
essentially many matrix-vector multiplications only. When
the matrix is sparse (which is often the case with the
harmonic oscillator basis and a polynomial anharmonic
potential), multiplications by the zeros can easily be avoided.

As each vector has to be orthonormalized against the
previous ones, however, complete Davidson diagonalizations
become difficult for larger matrices. It is also important to
point out that for many applications detailed eigenvalue
information is not needed. In particular for condensed phase
spectroscopy, calculated line intensities are often convoluted
with Gaussian or Lorentzian bands of finite widths, to
simulate the inhomogeneous line broadening present in the
experiment. Already for medium-sized molecules, observable
peaks are usually composed from many unresolved vibra-
tional transitions. Line spectrum simulations thus appear
superfluous, whereas it is the spectral envelope that is
desirable for comparison with the experiment to relate the
structure and spectral response.

Therefore, the Fourier methods (Figure 1) may be a better
option for unresolved spectral shapes. Within the harmonic
limit, for example, it can be shown that classical molecular
dynamic trajectories provided exact quantum results.29

Propagation of a fictitious wave function in an arbitrary time
was previously proposed to diagonalize giant Hessians and
to generate corresponding vibrational spectra instead.30 For
large molecules, the Fourier transformation was much faster
than the conventional diagonalizations. The spectral profiles
were obtained by propagation and averaging of many trial
vectors. However, the methods required the harmonic shape

of the nuclear potential. In this work, we propose and test a
different scheme suitable for a general anharmonic problem.

Time-dependent methods have always been popular in
computational chemistry and were applied, for example, to
simulations of the nuclear magnetic resonance,31 Raman scat-
tering, infrared absorption, and vibrational circular dichroism.32,33

Anharmonic vibrational systems were also investigated; how-
ever, it should be noted that previous methods based on
integration of classical trajectories do not provide all anharmonic
corrections, such as the intermode coupling.32,34,35

Modern mechanics-molecular mechanics (QM/MM) meth-
ods also facilitate computation of the spectra via time-
dependent properties.36,37 In particular, more advanced
spectroscopic experiments, such as the vibrational circular
dichroism (VCD) or the two-dimensional (2D) spectroscopy,
profit from various Fourier techniques.38-42 As a special
class, the time-dependent filter-diagonalization methods22

make the spectral generation more efficient for a preselected
frequency interval.43 The methods are based on both
classical44-46andabinitiomoleculardynamics trajectories47-49

but are mostly restricted to the harmonic potential.29

Similarly, in the electronic spectroscopy and reactions,
schemes like the multiconfigurational time-dependent Hartree
approach50 facilitate dynamic calculations for polyatomic
molecules, a topic which goes beyond the scope of the present
study. Rather than model real time-dependent processes, we
introduce the time-dependent wave function and a spectral (e.g.,
dipole) function with the sole purpose of obtaining exact
anharmonic energies and relative spectral intensities (including
special polarized spectroscopies) for a general vibrational
Hamiltonian. As the transition energies are needed rather than
vibrational state energies, the exact ground state is obtained
before the temporal propagation by the Davidson method. This,
however, does not significantly increase the computational
effort, unlike a complete Davidson diagonalization.

II. Theory

Consider a Hamiltonian H, wave functions |K〉, and energies
EK obliging the Schrödinger equation, H|K〉 ) EK|K〉. A

Figure 1. Schematic representation of the two processes of
simulating vibrational spectra: (Top) By the usual way, discrete
energies are found by a Hamiltonian (H) diagonalization; the
intensities (I) are calculated from the eigenfunctions ψ and,
for example, dipole moment µ, and the spectrum s(E) is
created by a convolution with an arbitrary peak shape f.
(Bottom) Within the Fourier method, spectral function (S)
develops in time, and the transformation provides the spec-
trum directly.
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general time-dependent wave function can be written as a
sum, ψ(t) ) ∑K)1,N dK|K〉 exp(-iEKt/p), and propagated
according to the time-dependent Schrödinger equation, ipψ̇(t)
) Hψ(t), where p is the Planck constant, dK represents
expansion coefficients, and N is the number of the basis
functions. In the discrete time integration scheme detailed
below, we calculated the wave function at time t + dt as

with ψ̇(t) ) H/(ip) ψ(t), and ψ̈(t) dt2 ) ψ(t) + ψ(t - 2dt) -
2ψ(t - dt); the wave function was renormalized at each time
step.

The vibrational ground state |G〉 can easily be obtained
by the Davidson diagonalization,25,51 as the first eigenvector.
As pointed out in the Introduction, because the diagonaliza-
tion becomes very inefficient for a large amount of required
vectors,30,51 temporal propagations will be used to obtain
spectral intensities coming from the remaining states instead.

The ground state wave function, besides the numerical
propagation (eq 1), can also be propagated analytically as
ψG(t) ) |G〉 exp(-iEGt/p), where EG is the ground state
energy. Additionally, we propagate a random function R and,
for example, a dipole integral for the absorption spectrum

where µ̂ is the dipole moment operator. Adaptations for other
spectral types are described below. The vector can always
be thought of as decomposed to the exact solutions, R(0) )
∑KdK

RψK(0), where dK
R represents unknown coefficients, so

that

ωKG ) (EK - EG)/p, which can be Fourier-transformed to

Next, we define the absorption spectrum as

In the derivation of eq 5 from 4, we used δ(ωKG′ -
ω)δ(ωK′G′ - ω) ≈ 1/(d�2π)δKK′δ(ωK′G′ - ω), which is valid
for approximate “δ functions” in a form of Gaussian bands,
with a bandwidth d, δd(ω) ≈ exp(-ω2/d2)/(d�π).

In order to remove the dependence on the choice of the
initial vector R, the unknown state weights were replaced
by the average, |dK

R|2 ≈ 1/N. Note, that although the averaging
was realized for expanding the vector to the harmonic
oscillator basis, R(0) ) ∑iri�i, average expansion coefficients
for any other orthogonal basis (in this case, the states ψK)
are the same: Indeed, as the two {�i} and {ψi} sets are
complete, we can always write ri ) ∑JdJ

RUiJ, where U is a

unitary transformation (rotation) matrix. For uncorrelated
random numbers dJ

R within the interval (-1,1), we obtain
〈dJ

RdI
R〉 ) 〈dJ

R2〉δIJ, so that 〈ri
2〉 ) 〈dJ

R2〉. In other words, the
averaging in any basis set provides the same final distribution.

Many random functions Rm (m ) 1-M) were propagated
to average the resultant intensities. Then, if the absorption
index is defined as

the dipole strength of each resolved transition Gf K is equal
to the usual relation52 DKG ) 9.184 × 10-3 ∫ ε dω/ω, where
DKG ) 〈K|µ̂|G〉 · 〈G|µ̂|K〉 is in debye2 and ε is in L mol-1

cm-1. In practical simulations, however, we used scaling of
the calculated intensities by an empirical factor, based on a
comparison of integrated IR and Raman intensities (calibrated
for the water dimer). This procedure would eliminate the
deviation of the simulated bands from ideal Gaussian
functions. It should also be noted that exact absolute intensity
simulations are not needed in most applications, as the
relative band intensities bear most of the structural information.

The model vibrational Hamiltonian was chosen as

where Pi ) -ip∂/Qi, Qi is normal mode coordinate, ωi is
the fundamental frequency, and n is the number of atoms.
All cubic (cijk) and semidiagonal quartic (djjkl etc.; at least
two indices were the same) constants were included. The
size of the Hamiltonian was controlled by skipping the
lowest-frequency modes and by considering harmonic states
�i that significantly interact with the ground or fundamental
(F) vibrations (|〈�i|V|F〉/(Ei - EF)| g threshold, where V
represents the two last sums in eq 7). The threshold was set
to 0 for the water dimer (all 0-5× excited states included),
and to 0.01 by default for the fenchone molecule. For the
dimer, all modes were included, while for fenchone the six
lowest modes were ignored. Only nonzero elements of H
were stored in memory.

III. Implementation

The algorithm derived above was implemented within the
S453 Fortran code as follows:

(1) Calculate the Cartesian dipole derivatives µR ) ∂µ/
∂R; if required, calculate also the second dipole derivatives
µRR ) ∂2µ/(∂R∂R), by a numerical differentiation. The
Gaussian54 program was used for the ab initio computations.

(2) Transform the first (second) derivatives into the normal
mode coordinates, using the Cartesian-normal mode trans-
formation (3n × 3n) matrix S, µQ ) S ·µR (µQQ ) St ·µRR ·S).

(3) Construct the vibrational Hamiltonian matrix H in the
N × N harmonic oscillator basis {�i}, i ) 1-N.

(4) Calculate the ground eigenvector g (|G〉 ) ∑igi|�i〉)
fulfilling H ·g ) EGg, by the Davidson iteration.

(5) Precalculate the dipole matrix u, ui(0) ) ∑jgj 〈�j|µ̂|�i〉,

ψ(t + dt) = ψ(t) + ψ̇(t)dt + 1
2

ψ̈(t)dt2 (1)

µR(t) ) 〈R*(t)|µ̂|ψG(t)〉 (2)

µR(t) ) ∑
K

dK
R*〈K|µ̂|G〉 eiωKGt (3)

µR(ω) ) ∫µR(t) e-iωt dt ) 2π ∑
K

dK
R*〈K|µ̂|G〉δ(ωKG - ω)

(4)

IR(ω) )
√2πdNω

4π2 |µR(ω)|2 )

∑
K

〈K|µ̂|G〉 · 〈G|µ̂|K〉ωδ(ωKG - ω) (5)

ε(ω) ) (9.184 × 10-3M)-1 ∑
R)1,M

IR(ω) (6)

H ) 1
2 ∑

i)1

3n

(Pi
2 + ωi

2Qi
2) + 1

6 ∑
i)1

3n

∑
j)1

3n

∑
k)1

3n

cijkQiQjQk +

1
24 ∑

i)1

3n

∑
j)1

3n

∑
k)1

3n

∑
l)1

3n

dijklQiQjQkQl (7)
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where µ̂ ) ∑i)1
3n µQiQi + 1/2∑i)1

3n ∑j)1
3n µQiQjQiQj is the vibra-

tional dipole.
(6) Initialize the complex dipole function in the frequency

domain (on a grid, typically 2000 points within 0-4000
cm-1), µ(ω) ) 0, set time t ) 0, and iteration step k ) 0.
In a set of complex random vectors rm (m ) 1-M), set each
component rm,i (i ) 1-N) to a random number within (-1
to +1) and normalize, so that |rm| ) 1.

(7) Increment time t by dt and obtain:
New vectors rm

(k+1) ) rm
(k) - (i/p)H · rm

(k) + 1/2d2m
(k).

Updated second derivatives d2m
(k+1) ) (rm

(k) + rm
(k-2) -

2rm
(k-1))/dt.

Dipoles µm(t) ) rm ·u exp(-iEGt/p). The scalar products
in step 7 are related to the HO index, spanning 1-N.

(8) Accumulate the dipole spectrum µ(ω) ) µ(ω) + e-iωt

µm(t)dt, for each m.
(9) If k < kmax, goto 7.
(10) From µ(ω), calculate the intensity according to eqs

5 and 6.

Modifications for Other Spectral Types. The algorithm
above was derived for infrared absorption intensities. For
vibrational circular dichroism (VCD), in steps 1 and 2, we
additionally need to calculate Cartesian (mC ) ∂m/∂p, atomic
axial tensor, AAT) and, consequently, normal mode (mQ )
∂m/∂P) derivatives of the magnetic dipole moment m,55

where p and P are the respective nuclear and normal mode
momenta. The second-order anharmonic contribution was
neglected for VCD and other spectral types. In step 5, besides
matrix u, we calculate mi(0) ) ∑jgj〈�j|m|�i〉, where m )
mQ ·P is the vibrational magnetic dipole. The dipoles mm(t)
) rm ·m exp(-iEGt/p) are propagated in steps 6-9 for each
random vector, and a frequency function mm(ω) is obtained
in analogy to the electric dipole. The VCD spectrum
corresponding to each m vector is Im(ω) ) [�(2π)dNω]/
[4π2] Im(µm*(ω) ·mm(ω)).

Raman spectra for various experimental setups can be
obtained in a similar way, by replacing the dipole operator µ̂
) ∑i)1

3n µQiQi + 1/2∑i)1
3n ∑j)1

3n µQiQjQiQj by electric polarizability,
r̂ ) rQ ·Q + 1/2Q · rQQ ·Q. For backscattering Raman
intensity,55,56 for example, we get IR,180(ω) ) K/(1 - exp(-ω/
kT)) ∑R)1-3∑�)1-3Re(7rR,R�*(ω)rR,R�(ω) +rR,RR(ω)*rR,��(ω)).
The constant K was chosen to be 1 (note that absolute
intensities are rarely measured); k is the Boltzmann constant
and T the temperature. The exponential factor accounts for
scattering from excited vibrational levels as derived in the
harmonic limit.56 An alternative more exact path, based on
individual low-energy states, used instead of the ground state
and transitions weighed by the Boltzmann population, was
not attempted. In that case, the temperature factor would have
been omitted. However, anharmonic spectral correction in
the lowest-wavenumber region, most affected by the tem-
perature, is for most molecules rather small, and the
harmonic-like temperature correction is thus sufficient.

By replacing the dipole operator by the electric dipole-
magnetic dipole polarizability, Ĝ′ ) G′Q ·Q + 1/2Q ·G′QQ ·Q
(also referred to as the optical rotation tensor), and the electric
dipole-electric quadrupole polarizability, Â ) AQ ·Q +
1/2Q ·AQQ ·Q, we can calculate Raman optical activity. The

backscattering incident circular polarized light intensity55 was
obtained as

The B3LYP57/6311++G** method was used to compute
the energy derivatives and the intensity tensors, as imple-
mented in the Gaussian program.54 Water dimer and the
fenchone molecule (Figure 2) in equilibrium geometries were
used for the modeling. Model VCI Hamiltonians with
dimensions of 1325 (water) and 49 584 (fenchone) were used
by default for most calculations; for fenchone, dimensions
of 180, 509, 1456, 3560, 5689, and 119 817 were additionally
used for the timing tests.

IV. Results

For exact Fourier transformation, the peak positions23,58 in
the ω spectrum are constant. As was shown before already
for the harmonic case,29 in practical numerical integrations,
larger time steps lead to overestimation of the peak frequen-
cies. Indeed, as shown in Figure 3, where the water dimer
bending vibration frequency is plotted as a function of the
integration time step, larger steps (>0.06 fs) introduce errors
of over 100 cm-1. Only for steps below ∼0.02 fs does the
frequency stabilize. This is a relatively small fraction of the
period of the corresponding harmonic motion, T ) 2π/ω ≈
21 fs. For harmonic wave function propagations, longer
integration steps of ∼0.1 fs could be used.29 For some
computations, however, steps as large as 2.4 fs were

Figure 2. Water dimer and the fenchone molecule B3LYP/
6-311++G** geometries.

Figure 3. Dependence of the water HOH bending band
frequency on the integration step, for water dimer.

∆IR,180(ω) )
8K

1 - exp(-ω/kT) ∑
R)1-3

∑
�)1-3

Re(3rR,R�* (ω)G′R,R�(ω) -

rR,RR* (ω)G′R,��(ω) + ∑
δ)1-3

∑
γ)1-3

εRγδrR,R�(ω)*AR,γδ�(ω))
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proposed.43 We explain the need to use shorter integration
steps for the anharmonic case even for lower-frequency states
by a coupling to the higher-frequency states included in the
Hamiltonian.

As follows from the general theory of Fourier transforma-
tion, the bandwidth is inversely proportional to the integration
time, ∆ω∼t-1.23,58 This is also observed in the calculated
dependence for the water dimer in Figure 4. As the width
converges relatively slowly, the method does not seem to
be usable for high-resolution spectra; in that case, many
spectral points are additionally needed per frequency interval,
which would further slow down the computations. On the
other hand, the inhomogeneous band broadening is quite
large for typical biomolecular spectra, on the order of ∼20

cm-1,59,60 so that the propagation times can be limited. That
means that for a 0.02 fs time step (used to achieve a high
precision of central frequencies, cf. Figure 3), about 4000/
0.2 ) 200 000 propagation points are needed.

Although the spectral intensities that can be obtained with
the FT method are only approximate, for a large number of
the random vectors, relative band ratios are reasonably close
to the exact result. This is documented in Figure 5, where
backscattering Raman and ROA spectra of fenchone are
simulated for M (number of the vectors) ) 5, 10, and 50
and compared to exact intensities calculated by the direct
diagonalization of the model 49 584 × 49 584 VCI Hamil-
tonian. Already for M ) 5, the raw Raman spectral profile
is similar to the direct calculation; the relative peak ratios
are further improved for M ) 50. The ROA signal converges
more slowly, especially within the 1400-1600 cm-1 region,
where many overlapped transitions (mostly C-H bending
vibrations) are present. However, the simulation M ) 50
provides the correct relative intensity and sign pattern for
ROA, too. Both the Raman and ROA CH stretching higher-
frequency signal seems to converge faster than that for
vibrations below 2000 cm-1. The calculated vibrational
frequencies correspond reasonably well to the observed
values;61 however, we leave a detailed comparison to the
experimental spectral profiles for a future study because of
the complexity of the problem.

As a more exact means to document the convergence, in
Figure 6, part A, we plot an example of an actual rmi

Figure 4. Dependence of the water dimer bending bandwidth
on the integration time, for dt ) 0.02 fs.

Figure 5. Dependence of the Raman (top) and Raman optical activity (bottom) spectra of fenchone on the number of random
vectors used in the propagation.
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coefficient averaging and the root-mean-square deviation that
converges as ∼1/�M.62 Although, as discussed above, we
cannot get the actual state probabilities (di), from eqs 3-5,
it is clear that the intensity will converge in the same manner
that this factor does. The possible error proportional to the
square root of M converges rather slowly; thus benchmark
simulations with large values of M are clearly inefficient.
On the other hand, in accord with the observation of the
spectral convergence in Figure 5, a reasonable intensity error
of ∼10% can be obtained with a limited amount (<100) of
the vectors, which is sufficient in many applications of the
vibrational spectroscopy.

Actual convergence of the Raman and ROA band ratios
(Figure 6, parts B and C) is more complicated due to the
band overlaps; however, the trends are clearly given by the
basic 1/�M dependence for the coefficients. From the figure,
we also see that simulations with M < 20 should be avoided
for ROA, as they may even lead to the wrong signs for some
peaks. For the selected examples of three peak pairs in Figure

6, the lowest-energy lone-standing transitions (656/721 cm-1)
converge most smoothly.

The number of vibrational degrees of freedom associated
with the number of atoms does not seem to be important for
the convergence properties; the water dimer spectra (not
shown) behaved similarly to that of fenchone. However, as
the density of vibrational states increases and the peaks
became more overlapped in more complex molecules, higher
accuracy, and thus presumably a larger number of the starting
vectors, will be required for simulations on larger systems.

As observed also for other time-dependent approaches,29,43

it is difficult to extract information about the individual
normal mode contribution to the spectrum. For harmonic
potential, this is partially solvable by a specially designed
propagation scheme.63 In anharmonic computations, the
concept of normal modes vanishes completely. However, in
a majority of practical computations, the harmonic ap-
proximation is realistic enough to provide reliable informa-
tion about the origin of observable transitions.

As the vectors can be propagated independently, the
algorithm is amendable to parallelization. Our OMP shared
memory implementation (http://openmp.org) did not lead to
a perfect scaling (cf. Figure 7); nevertheless, it documents
the significant speedups that can easily be achieved on
common shared-memory multiprocessor computers. More
importantly, the FT algorithm becomes very convenient for
larger Hamiltonian dimensions. This is documented in Figure
8, where the diagonalization times needed for the direct and
Davidson computations are compared to the FT simulations
for variously sized fenchone VCI Hamiltonians. The David-
son method is apparently quite inefficient, and the CPU time
rises steeply. The direct diagonalization is very fast for
smaller matrices, but the N3 time and N2 memory scaling
make it inconvenient for larger ones; for N ∼ 6000, the FT
methodology becomes the fastest scheme for the vibrational
spectra generation. As pointed out above, slightly longer
times are required for more resolved spectra (longer propa-
gation needed) and more accurate spectral intensities (requir-
ing many random vector averaging). Still, the FT method
would be the most convenient when the Hamiltonian reaches
a certain limit. Additionally, only nonzero Hamiltonian
elements need to be stored for FT, unlike for the direct
methods.

Figure 6. Convergence properties of spectral intensities on
the number of random vectors: (A) average, RMS deviation
interval62 (N-1 ( N-1M-1/2), and actual values for a random
coefficient (i ) 10) for the fenchone simulation in Figure 5
with N ) 6475 and ratios of selected (B) ROA and (C) Raman
peak intensities. Central peak frequencies are indicated in
cm-1; the arrows mark exact values.

Figure 7. Dependence of the acceleration on the number of
processors (fenchone IR spectrum calculation, pgf77-OMP-
linux software environment, 4 Intel E7330/2.40 GHz CPUs
on Supermicro X7QCE motherboard).
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V. Conclusions

The proposed computational scheme enabled us to estimate
conveniently vibrational spectral profiles based on the VCI
Hamiltonian and intensity tensor derivatives. Because the
ground state could be calculated by the classical Davidson
method, the Fourier transformation with suitably chosen
integration steps provided exact transition frequencies.
Besides the wave function, electromagnetic tensors (e.g., the
electric dipole for infrared absorption) were propagated,
which enabled a simultaneous computation of spectral
intensities. Only approximate absolute intensities could be
simulated; however, propagation of many random vectors
and the averaging led to faithful relative band intensities and
correct ROA sign patterns, with accuracy sufficient for most
molecular structural studies based on the vibrational spectra.
For large molecules (large VCI Hamiltonians), the algorithm
provided the spectra faster than the classical methods based
on the explicit matrix diagonalization.
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Abstract: The present study provides new insight into the intrinsic mechanisms for the population
of the triplet manifold in DNA nucleobases by determining, at the multiconfigurational CASSCF/
CASPT2 level, the singlet-triplet states crossing regions and the main decay paths for their
lowest singlet and triplet states after near-UV irradiation. The studied singlet-triplet interacting
regions are accessible along the minimum energy path of the initially populated singlet bright
1ππ* state. In particular, all five natural DNA/RNA nucleobases have, at the end of the main
minimum energy path and near a conical intersection of the ground and 1ππ* states, a low-
energy, easily accessible, singlet-triplet crossing region directly connecting the lowest singlet
and triplet ππ* excited states. Adenine, thymine, and uracil display additional higher-energy
crossing regions related to the presence of low-lying singlet and a triplet nπ* state. These funnels
are absent in guanine and cytosine, which have the bright 1ππ* state lower in energy and less
accessible nπ* states. Knowledge of the location and accessibility of these regions, in which
the singlet-triplet interaction is related to large spin-orbit coupling elements, may help to
understand experimental evidence such as the wavelength dependence measured for the triplet
formation quantum yield in nucleobases and the prevalence of adenine and thymine components
in the phosphorescence spectra of DNA.

1. Introduction

Phosphorescence spectra of DNA at low temperatures have
been established as consisting of two basic components
which originate mainly from thymine and, to a lesser extent,
from adenine.1-3 Although triplet state formation and
phosphorescence data of individual nucleobases and different
derivatives in several media and conditions have been
reported and reviewed,4-7 including recent studies employing
external photosensitizers,8-10 the specifics of the intrinsic
population mechanism of the triplet manifold in each of the
nucleobases has not been understood so far. The different
fates of their triplet states, explaining, for instance, the
prevalence of two of the bases in the phosphorescence spectra
of DNA, the absence of triplet guanine signals, or the triplet
state involvement in the fast relaxation processes of nucleo-

bases, in particular for thymine,11 have still to be elucidated.
Triplet states of molecular systems are frequent intermediates
in important photoinduced reactions. Both their usual bi-
radical character and relatively long lifetimes make them
reactive species prone to interacting with other compounds.12

Triplet states of DNA/RNA purine and pyrimidine nucleo-
bases are not an exception, and they have been determined
to participate in UV-promoted photoreactions as the forma-
tion of phototherapeutic nucleobase-pharmacon adducts13 or
the photodimerization of pyrimidine nucleobases, considered
to be the most frequent genetic lesion taking place after UV-
light irradiation.7,14-16 Since most of the recent attention has
been focused on the rapid dynamics of the initially populated
singlet states of DNA/RNA nucleobases,17-22 their inter-
system crossing (ISC) mechanisms and triplet states’ decay
processes are only now starting to be analyzed.23-26 The
present study aims to present a unified scheme, based on
quantum chemical grounds, for the description of the main
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decay pathways for the singlet and triplet states of the five
natural DNA/RNA nucleobases, thymine (T), uracil (U),
cytosine (C), adenine (A), and guanine (G) (see Figure 1),
locating the singlet-triplet crossing regions and computing
the related spin-orbit coupling terms in order to provide
insight into the intrinsic mechanisms of triplet state popula-
tion in these molecules and to help rationalize the observed
experimental data.

The triplet state population may proceed via endogenous
or exogenous photosensitization from other triplet species
or by efficient intersystem crossing (ISC) from the initially
excited singlet state. There is an essential consensus that
efficient radiationless transitions among states of the same
multiplicity leading to internal conversion (IC) take place
in the close vicinity of conical intersection (CI) regions and
that the probability for the decay and the IC rates relate to
the size of the nonadiabatic coupling matrix elements
between the states.27-29 The situation is more complex for
the computation of ISC rates. In this case, the efficiency of
the interaction between states of different multiplicities, for
instance, singlet-triplet, seems to be reasonably well de-
scribed by the Fermi Golden Rule, which relates the strength
of the interaction to the extent of the vibronic spin-orbit
coupling (SOC) factors and the Franck-Condon (FC)
weighted density of states.27 Recent studies of Marian and
co-workers26,30,31 have proved that the efficiency of an ISC
process relies on a subtle balance of effects, including an
enlarged density of vibrational states and a proper overlap
of vibrational wave functions which, in turn, enhance the
vibronic SOC effects. The decrease of the energy gap
between singlet and triplet states, and in particular the
presence of singlet-triplet degeneracies, crossing regions,
especially when related to the existence of low-energy out
of plane vibrational modes, is a good indication of a high
density of states, and it is therefore conceivable that
singlet-triplet crossings play an important role for increased
ISC population transfer rates.12 This relevance is well-known
in the emerging field of multistate reactivity,27,32,33 in which
the presence of singlet-triplet crossings and the occurrence

of corresponding ISC processes in the vicinity of the ground-
state transition state regions become crucial for the enhance-
ment of the reaction rates.34 As they compete with generally
faster internal conversion processes, intersystem crossings
or spin crossovers can also be expected to be more efficient
in energy trapping regions, for instance, near singlet states
minima or sloped singlet-singlet conical intersections.35,36

Full reaction dynamics calculations including in a balanced
and accurate way nonadiabatic and spin-orbit coupling
effects for polyatomic systems like those considered here
have not been performed yet. Until those studies are
available, calculations of ISC rates in which the vibronic
spin-orbit and overlap coupling effects are considered give
the best information about the efficiency of the ISC
process.26,30 Our goal in the present research is to determine
the presence and accessibility of the singlet-triplet degen-
eracy regions in natural nucleobases along the main singlet
decay pathways and provide hints of their relevance for ISC
by computing also electronic SOC terms.

The strategy employed here starts by obtaining the
minimum energy paths (MEPs) leading from the primary
step of the photochemical process after UV light absorption
in DNA nucleobases, being basically the population of the
spectroscopically bright singlet excited state, here always the
so-called 1(ππ* La) state, toward the singlet-triplet degen-
eracy regions and finally the lowest-energy and reactive
triplet excited state 3(ππ* La), and calculating electronic SOC
terms between relevant states.

Recent quantum-chemical ab initio CASPT2 studies have
provided a unified model for the rapid internal conversion
(IC) of the singlet excited DNA/RNA nucleobases mani-
fold18,20,29,37-46 that allowed a proper rationalization of the
experimental findings.17,47 The observed ultrafast decay
component in all natural nucleobases, both in the gas phase
and in solution, can be interpreted in terms of the barrierless
character of the minimum energy path (MEP) associated with
the lowest singlet state of the ππ* type, 1(ππ* La), toward
a conical intersection (CI) with the ground state, (gs/ππ*)CI.
Secondary decay paths involving the lowest 1nπ* state and

Figure 1. Structure, labeling, common name, IUPAC name, and acronym used for the five natural DNA/RNA nucleobases.

2104 J. Chem. Theory Comput., Vol. 6, No. 7, 2010 González-Luque et al.



even a higher 1ππ* state have been also identified.20,23,29,38-41

Within the context of the photochemical reaction path
approach48 and the current theoretical paradigm for nona-
diabatic photochemistry,28,29 it is possible to analyze how
the lowest triplet state can be reached efficiently by finding
the singlet-triplet crossing (STC) regions more easily
accessed from the FC MEP on the 1(ππ* La) state, which
represents the major deactivation path responsible of the rapid
IC process detected in the molecule. Further studies com-
bining the calculation of ISC rates and wave packet evolution
will have to determine how efficient actually are our proposed
channels. The obtained results suggest that enhancements
in the population yield of the lowest triplet state of the natural
DNA/RNA nucleobases can be related to the presence in
three of them, T, U, and A, of more ISC channels along the
singlet state MEP, in particular those related with low-lying
singlet and triplet nπ* states that act as intermediate
population switchers, unlike what occurs in C and G. The
obtained scheme may help to understand how the intrinsic
population of the lowest triplet state can take place in vacuo
for all the nucleobases, why T and A triplet states seem to
prevail on the DNA phosphorescence spectrum and can be
expected to have a larger quantum yield of formation (φISC)
than the other nucleobases, and what the molecular basis is
for the detected wavelength dependence of φISC.

7 Since the
calculations have been performed in vacuo, without the
explicit consideration of solvent effects, the answer provided
here can be regarded as a characteristic molecular property
of the nucleobases, which might be expected to be somewhat
disturbed by the specific environment in solution, in a solid,
in vitro, or in vivo. The presence of the same ultrafast decays
has been, however, identified in strands of oligonucleotides
in solution,49 probably related with the channels of the
monomers in relatively unstacked nucleobases.50

II. Methods and Computational Details

The present calculations include CASSCF geometry opti-
mizations, MEPs, CIs, and STC searches, followed by
multiconfigurational perturbation theory, CASPT2, calcula-
tions at the optimized geometries. SOC terms and transition
dipole moments (TDM) have also been computed. Radiative
lifetimes have been estimated by using the Strickler-Berg
relationship,51 as explained elsewhere,52 although their
applicability is restricted to cases where radiative deactivation
predominates. Their magnitude, otherwise, is only indicative
of the prospective emissive characteristics of the state related
with the TDM values. For the sake of consistency with
previous calculations on the singlet states of the systems,
the same one-electron basis sets and active spaces were
employed. For the pyrimidine T, U, and C and purine A
and G nucleobases, basis sets of the ANO-S type contracted
to C,N,O[3s2p1d]/H[2s1p] and 6-31G(d,p) were used, re-
spectively. The final results can be described as CASPT2-
(14,10) for T, U, and C, involving an active space of 14
electrons distributed in 10 orbitals, with all valence ππ* and
lone-pair orbitals, and CASPT2(14,12) for A and G, which
include all ππ* orbitals except those related to the deepest
canonical orbital plus two lone-pair orbitals. Other active
spaces were employed in the optimization procedures,

following a strategy which was proved successful previously.
More detailed technical aspects of the calculations can be
found in our previous papers23-25,37-39 and in the Supporting
Information (SI). All the reported calculations used the
quantum-chemical methods implemented in the MOLCAS
7 package.53,54

III. Results and Discussion

The research effort in our group has been focused in recent
years on the main singlet decay channels involving DNA/
RNA nucleobases as well as several derivatives.18,20,37-39

In addition, studies were reported on the lowest triplet
population mechanisms of the pyrimidine nucleobases
thymine,24,26 uracil,25,26 and cytosine.23 Other recent theo-
retical studies on the vertical and adiabatic energies of the
nucleobases’ triplet states have also been reported.55,56 In
the present paper, we outline a unified scheme describing
prospective population paths of the triplet manifold in all
five natural DNA/RNA nucleobases T, U, C, A, and G, in
order to obtain an overall model able to explain the common
and the distinct behavior of the systems. Fully new results
on the triplet states of the purine nucleobases A and G shall
be presented, whereas our previous studies on T and U and
new complementary calculations on C will be used and
commented upon. The following subsections describe the
results for each of the nucleobases. The most relevant
conclusions are summarized in the last section.

A. Population of the Triplet Manifold in Adenine.
Table 1 compiles vertical transitions, band origins, oscillator
strengths, and radiative lifetimes computed for the transitions
to the singlet and triplet states of adenine at the CASSCF
and CASPT2 levels of theory. Unless indicated, CASPT2
results will be used in the discussion. Both at the FC region
and adiabatically, the lowest-lying singlet excited state is of
the nπ* (nNπ*) type, whereas the one carrying the largest
intensity for the related transition, and therefore getting
initially most of the population at low energies almost up to
6.0 eV, is the 1(ππ*) HOMO (H) f LUMO (L) (hereafter
La) singlet excited state at 5.35 eV. The ultrafast nonradiative
decay undergone by adenine in the femtosecond range17,47

can be rationalized by the barrierless character of the path
on this state leading from the FC region toward a CI seam
with the ground state, (gs/1ππ*)CI,29,38,41,43,57 and it is shown
also here in Figure 2. Unlike simple geometry optimizations,

Table 1. Computed Properties for the Low-Lying Singlet
and Triplet Excited States of Adenine

vertical transition (eV) band origin (Te, eV)

State CASSCF CASPT2a CASSCF CASPT2 τrad
b

1(nπ*) 5.95 4.96 (0.004) 4.88 4.52 334 ns
1(Lb ππ*) 5.56 5.16 (0.004) 4.92 4.83 251 ns
1(La ππ*)c 7.03 5.35 (0.175)
3(La ππ*) 3.77 4.00 3.52 3.36d 359 ms
3(nπ*) 5.38 4.91 4.84 4.41
3(ππ*) 5.07 4.95

a Oscillator strengths within parentheses. b Computed using the
Strickler-Berg approximation. See SI. c Geometry optimization
leads directly to a conical intersection with the ground state, (gs/
ππ*)CI, at 4.0 eV. See refs 29 and 38. d Phosphorescence band
origin and maximum in solution/glasses: 3.43 and 3.05 eV,
respectively. See refs 58 and 59.
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the use of the MEP technique guarantees the absence of
energy barriers along the lowest-energy path. The structure
of the CI at the end of the MEP can be characterized as
methanamine-like, involving combined stretching and twist-
ing of the C2dN3 bond (analogous to a ethene-like CI).37-39,60

The presence of an accessible CI explains also the low
fluorescence quantum yield (∼φF ) 10-4) detected for adenine
with a band origin near 4.4 eV in water.17 This weak emission
can be related to the presence of a more polar 7H isomer in
solution.29,38 A nonfluorescent 1(nπ*) minimum is found at 4.52
eV (see Table 1) with a minor contribution to the emissive
properties. Similar vertical and adiabatic energy values have
been found at other levels of theory.21,40,41,43-45,61

Triplet ππ*-type states typically lie much lower in energy
(here, the lowest one is placed near 1.3 eV) than their singlet
counterparts, unlike for nπ*-type states, in which a small
exchange integral term leads the triplet to be just slightly
below the corresponding singlet state. In adenine, for
instance, the lowest-energy 3(nπ*) state lies, both vertically

and adiabatically, less than 0.1 eV below its singlet analogous
state. The consequences for the triplet photophysics of the
system are important. Direct singlet 1(ππ*)-triplet 3(ππ*)
energy transfer seems unlikely in the FC region, where the
molecule is almost planar, because of both the large energy
gap and low electronic SOC terms (<0.1 cm-1). The presence
of two almost degenerate singlet and triplet nπ*-type states
at the ground-state geometry can be, however, of high
relevance. Along the main decay pathway on S1, 1(ππ* La),
the state becomes degenerate with different triplet states. As
it can be seen in Figures 2 and 3, along the 1(ππ* La) state
MEP, two singlet-triplet crossings are described: one at 5.2
eV with the 3(nπ*) triplet state, (3nπ*/1ππ*)STC, and another
at 4.0 eV, further along the relaxation path and near the
methanamine-like CI with the ground state. The latter
crossing involves directly the lowest 3(ππ*) T1 triplet state,
(3ππ*/1ππ*)STC, and it has a structure displaying the same
type of envelope puckered geometry39 with a stretched and
twisted double C2dN3 bond, as at the (gs/1ππ*) CI.29,38 At

Figure 2. Evolution of the ground and lowest singlet and triplet excited states for adenine from the FC geometry along the
1(ππ* La) MEP.

Figure 3. Scheme, based on CASPT2 results, of the photochemistry of adenine focused on the population of the lowest-
energy triplet state. Unless otherwise stated, 1ππ* represents the 1La ππ* state.
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these two STC regions, the computed electronic SOC terms
are 2 (3nπ*/1ππ*) and 7 cm-1 (3ππ*/1ππ*). These values
can be considered in agreement with the qualitative El-Sayed
rules, which pointed to large SOC terms for states of different
natures and small otherwise.62 El-Sayed rules were developed
for molecules near the FC region, where most of the (organic)
molecules considered were planar, and their identity, ππ*,
nπ*, etc., could be qualitatively described as such. Far from
the FC region, in particular, close to a strongly distorted and
puckered geometry like the 2E CI, the same rules are not so
easy to apply. For instance, the ππ* state at this region, due
to the out-of-plane distortion, has a close diradical character
with two electrons in orbitals that are almost perpendicular
to each other, the same as the nπ* state in the FC region.
This effect is particularly true for the low-energy singlet-triplet
crossing region, which will be shown to be common in all
nucleobases. The presence of the STCs combined with large
electronic SOC terms are necessary, but not sufficient,
conditions to guarantee efficient ISC processes, but they are
good indications of relevant regions in which the population
transfer toward the triplet states may take place, provided
that the wave packet remains there for a long enough time
for the ISC process to take place. The high-energy (∼5.2 eV)
1ππ*-3nπ* STC area, not far from the FC absorption region,
fulfills those conditions. On the other hand, recent reaction
dynamics calculations suggest45 that the region of the (gs/
1ππ*)CI (reached in femtoseconds), where also the STC takes
place, represents an area in which the system stays trapped for
some time (due to the structure of the CI) until the population
switch toward the ground state takes place, which could also
explain the slower picosecond channel observed in nucleo-
bases.17 Figure 3 includes a scheme describing the population
of T1 based on our CASPT2 calculations.

From each one of the STC regions, we have computed
corresponding MEPs along the populated triplet states, 3(nπ*)
and 3(ππ*), for the suggested high- and low-energy ISC
channels, respectively (they can be found in the SI). Soon,
along the MEP on 3(nπ*), a crossing with the lowest-lying
3(ππ*) state takes place. The corresponding CI, (3nπ*/
3ππ*)CI, represents another funnel for efficient energy transfer
within the triplet manifold. Additionally, as the singlet 1(nπ*)
state lies very close to the triplet counterpart and their PEHs
run almost parallel, an STC (1nπ*/3ππ*) also occurs at that
region. Considering that the computed SOC term in this case
rises to 15 cm-1, the corresponding ISC process toward the
3(ππ*) state should be considered very favorable. A subse-
quent MEP from the (3nπ*/3ππ*)CI along the (3ππ*) PEH
leads to the lowest triplet state minimum (see SI). Regarding
the STC described at 4.0 eV, the MEP computed from the
(3ππ*/1ππ*)STC along the (3ππ*) state leads directly to the
minimum of the triplet state (see SI). The involvement of a
dark singlet nπ* state on adenine relaxation dynamics was
previously suggested by other authors to explain slow decay
features.17,63,64

After the lowest triplet state is populated by any of the
previous ISC processes, the system is finally expected to
evolve toward the triplet state minimum, 3(ππ*)min (see
Figure 3), which is characterized by a structure with almost
planar rings but with the terminal hydrogen C8H lifted near

40° and with an increased bond length C2N3 of 1.389 Å
(compared to 1.311 Å in the ground state), in agreement with
previous estimations.55 The reactivity that could be attributed
to this triplet state originates from its biradical character on
C2 and N3. The minimum is placed at 3.36 eV adiabatically
(see Table 1) from the ground state optimized minimum, a
value consistent with the measured phosphorescence band
origin in solution at 3.43,58 and other theoretical results.43,55

We have also located the singlet-triplet crossing connecting
the 3(ππ*) and the ground state and mapped the MEP leading
from such an STC toward 3(ππ*)min (see SI). The crossing
is placed near 4.0 eV from the ground state minimum, which
means that there is a barrier of near 0.6 eV (14.0 kcal/mol)
to reach (gs/3ππ*)STC from 3(ππ*)min. The distortion of the
five-membered ring is larger at the STC point, and the
computed electronic SOC is somewhat low, ∼2 cm-1,
suggesting for the triplet state a long lifetime and a slow
relaxation, becoming therefore prone to reacting or trans-
fering its energy by photosensitization mechanisms.8-10

In summary, we have identified in adenine (see Figure 3)
three possible intrinsic ISC channels toward the lowest triplet
state which can be easily accessed from the main barrierless
MEP for singlet decay dynamics, two of them mediated by
nπ* states. In all three cases, the magnitude of the computed
SOC terms between the relevant states is high enough to
suggest an efficient population of the triplet manifold in
adenine upon UV irradiation. This type of 1ππ*/3ππ* ISC
mechanism via intermediate nπ* states can be suggested here
as favorable, even far from the FC region, as it has been
recently reported also for other biological chromophores such
as isoalloxazine65 and psoralen.66 Both mechanisms de-
scribed here can in any case contribute to the overall
population of the lowest triplet state. In principle, in different
environments, such as in polar solvents, it is expected that
the nπ*-type excited state will become destabilized with
respect to ππ*-type excited states.67 Despite those effects,
both singlet and triplet nπ*-type states are estimated to lie
in the solvent below the 1(ππ* La) state at the FC geometry,68

guaranteeing the existence of the STC crossing upon decay
along the 1(ππ* La) state. Intersystem crossing quantum
yields have been measured by means of nanosecond laser
photolysis in adenine to be 0.23 × 10-2 higher than in
guanine.7 Likewise, phosphorescence quantum yields of 4.5
× 10-2 for adenine in frozen solutions at 77 K have been
reported, slightly higher than for guanine, 3.6 × 10-2 and 2
× 10-2,69,70 and lower than thymine.7 For the purine
nucleobases, the ISC yield has been measured to be lower
in the nucleotide.7 Also in adenine,71 although less clearly
documented as in pyrimidine nucleobases, a wavelength
dependence of the intersystem crossing quantum yield in
nucleobases has been reported, as it can be expected by the
contribution of the three (at excitation energies higher than
5.0 eV) or just the lowest-energy (at energies close to 4.0
eV) ISC mechanisms. This point requires further experi-
mental confirmation.

B. Population of the Triplet Manifold in Guanine. The
same strategy as for adenine has been followed in the
calculations of guanine. Table 2 lists the main spectroscopic
properties of the lowest-lying singlet and triplet states of the
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molecule. As compared to adenine, a couple of important
aspects of the electronic structure of guanine have to be
highlighted. First of all is the low energy displayed by the
1(ππ* La) HOMO f LUMO state, placed at 4.93 eV at the
FC region as the lowest-energy feature. The value of the
related oscillator strength, 0.158, indicates that this is the
bright singlet state basically populated in the low-energy
absorption spectrum, and that the relevant photophysics of
the system will take place along the MEP on such a state.
The second aspect is related to the high-energy of the low-
lying nπ* states, which are placed near 0.6 (singlet) and 0.4
(triplet) eV above the 1(ππ* La) state (even higher in
solution). As is clear from Table 2, and also from Figure 4,
the gap between the initially populated singlet state and the
nπ* states is much larger than in adenine. At the FC region,
it is therefore expected that an ISC process relating the 1(ππ*
La) and 3nπ* states is less favorable than for adenine.

Figure 4 displays the MEP from the FC structure and along
the 1(ππ* La) state. At the beginning of the MEP, the singlet
state only crosses with the second triplet 3(ππ*) state. The
computed electronic SOC terms are small (<0.1 cm-1), and
only strongly coupled vibronic terms would enhance in this
region the ISC rate. Near point 9 of the MEP, the singlet
state crosses with the lowest triplet state, as it occurred in
adenine. The STC region, placed adiabatically at 4.3 eV, is
not far from the CI between the singlet and the ground state.
The corresponding SOC terms are much larger here, 8 cm-1,
and therefore a more efficient ISC process leading directly
to the population of the lowest 3(ππ*) state can be therefore
expected, or at least proposed. As compared with adenine,
however, the overall population of the triplet manifold cannot
be expected to be favorable. Even when the 3(nOπ*) excited
state minimum lies lower in energy than the (gs/ππ*)CI, and
therefore a crossing with the 1(ππ*) state takes place at some
other region, the key point is that such a crossing cannot be
easily accessed from the photochemically relevant MEP, that
is, the main decay path for singlet deactivation. As a matter
of fact, we have computed the STC crossing structure (3nOπ*/
1ππ*)STC, which lies almost degenerate with the computed
(1nOπ*/1ππ*)CI (see ref 39), at 4.6 eV, but far from the main
MEP region, because it represents the stretching and twisting
of the C6N1 bond. Even when such a structure, in which the
SOC is large enough, 8 cm-1, can be accessed with excess
energy, it cannot be considered as favorable as those reached
via the MEP-related channels.

For the sake of completeness, we have connected the
mentioned STC points with the minimum of the lowest
3(ππ*) state by computing the corresponding MEPs: (i) from
the computed (3ππ*/1ππ*)STC and (3nOπ*/1ππ*)STC structures
along the 3(ππ*) and 3(nOπ*) states, leading to their
respective minima, (ii) from the computed (3nOπ*/3ππ*)CI

to the 3(ππ*) minimum, and (iii) from the singlet-triplet
(1gs/3ππ*)STC toward the final 3(ππ*) minimum. All them
are possible paths leading to the population of the lowest
triplet state, although we emphasize that, unlike adenine, only
the lowest-lying 4.3 eV ISC mechanism related to the (3ππ*/
1ππ*) STC should be initially considered efficient, because
it is the only one taking place in the proximity of the main
1(ππ* La) MEP (see Figure 5 for a scheme of the triplet
photophysics in guanine). Finally, the 3(ππ*) minimum has
been connected through a corresponding MEP with the STC
with the ground state, (gs/3ππ*)STC. Although the SOC terms
at this point are higher than in adenine, the barrier from the
minimum, placed at 3.15 eV, is too large (0.85 eV) to expect
an efficient decay to the ground state. All computed MEPs
can be found in the SI. At the 3(ππ*) minimum, the molecule
displays a slightly puckered envelope structure on the six-
membered ring,39 with the C2N3 bond having a biradical
character and enlarged up to 1.438 Å, as compared to 1.286
Å at the FC ground-state geometry.

It has to be finally mentioned that guanine is the only
natural nucleobase in which no phosphorescence data or
triplet state formation has been reported for the parent
compound, although intersystem crossing7 and phosphores-
cence quantum yields of 0.042 and 0.095 have been reported
for the nucleoside and nucleotide in ethanol,6 5 to 7 times
larger than the fluorescence quantum yields. It has to be
remembered also that the natural keto form of 9H-guanine
is not the most stable in the gas phase and that other close
tautomers can contribute to the measurements for the isolated
system,39,72 not in an oligomer sample.

C. Population of the Triplet Manifold in Pyrimidine
Nucleobases: Thymine, Uracil, and Cytosine. For the sake
of brevity, we will discuss the triplet manifold population
of the pyrimidine nucleobases together within the same
framework. The computational strategies followed have been
those described above for adenine and guanine. As uracil
has a state structure and triplet photophysics very similar to
that of thymine, we will refer to our previous results25 and
concentrate on the latter. Thymine has, at the FC region, a
low-lying 1(nOπ*) state (basically related to the O4 atom),
placed 0.2 eV below the spectroscopic 1(ππ* La) HOMO
f LUMO state, this one lying at 4.89 eV with a related
oscillator strength of 0.167 (see Table 3). The photophysical
mechanisms proposed for the population of the lowest triplet
state will be very similar to those already explained for
adenine, as Table 3 and Figures 6 and 7 can confirm. Once
more, the key point is that three different STC regions can
be easily accessed through the main decay path of the energy,
as it is the FC 1(ππ* La) MEP, being prospective channels
for ISC toward the lowest-lying triplet state.

Soon after the beginning of the MEP (see Figure 6), the
1(ππ* La) state crosses with both singlet and triplet nπ*
states. Apart from a possible IC toward the singlet 1(nOπ*)

Table 2. Computed Properties for the Low-Lying Singlet
and Triplet Excited States of Guanine

vertical transition (eV) band origin (Te, eV)

state CASSCF CASPT2a CASSCF CASPT2 τrad
b

1(La ππ*)c 6.36 4.93 (0.158)
1(nOπ*) 5.70 5.54 (0.002) 4.04 4.56 6800 ns
1(Lb ππ*) 7.04 5.72 (0.145) 6.07 5.69 5 ns
3(La ππ*) 3.97 4.11 3.13 3.15 3562 ms
3(ππ*) 5.08 4.76
3(ππ*) 5.41 5.14
3(nOπ*) 5.82 5.30 4.64 4.17

a Oscillator strengths within parentheses. b Computed using the
Strickler-Berg approximation. See SI. c Geometry optimization
leads directly to a conical intersection with the ground state, (gs/
ππ*)CI, at 4.3 eV. See ref.39
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state through a corresponding CI, this region may be
responsible for the first ISC process taking place in thymine
at high energies (4.8 eV), in which the 3(nOπ*) state could
be populated from the initially activated singlet ππ* state.
The SOC terms, computed as 8 cm-1, point to the efficiency
of the process. Another MEP computed from this crossing
and along the 3(nOπ*) PEH leads the system toward the

minimum of this state, in whose neighborhood we have found
the conical intersection with the lowest triplet state, (3nOπ*/
3ππ*)CI, near 3.9 eV. As the singlet and triplet nπ* PEHs
are always very close along the MEP, near the CI we have
also found the (1nOπ*/ 3ππ*) STC. In case some population
reaches the 1(nOπ*) state via the higher-energy crossing with
1(ππ* La)sand a decay path through this dark intermediate
has been recently reported68sthe energy switch toward the
lowest triplet state would be extremely favorable, because
the computed SOC term increases in the (1nOπ*/3ππ*)STC

region to 61 cm-1. It is possible to confirm our suggestions
about the effectiveness of this type of mechanism thanks to
the recent study by Etinski et al.,26 which has established
the efficiency of the (1nOπ*/3ππ*)STC ISC channel by
computing vibrational FC factors and ISC rates. Either by
triplet-triplet IC or by singlet-triplet ISC, the final popula-
tion process of the lowest 3(ππ*) state should be considered
to be extremely favorable. As in the other nucleobases, a
low-energy STC region lies close to the end of the FC 1(ππ*

Figure 4. Evolution of the ground and lowest singlet and triplet excited states for guanine from the FC geometry along the
1(ππ* La) MEP.

Figure 5. Scheme, based on CASPT2 results, of the photochemistry of guanine focused on the population of the lowest-
energy triplet state. Unless otherwise stated, 1ππ* represents the 1La ππ* state.

Table 3. Computed Properties for the Low-Lying Singlet
and Triplet Excited States of Thyminea

vertical transition (eV) band origin (Te, eV)

state CASSCF CASPT2b CASSCF CASPT2 τrad
c

1(nOπ*)d 5.41 4.77 (0.004) 4.23 4.05 2501 ns
1(ππ* La) 6.52 4.89 (0.167) 6.07 4.49 9 ns
1(ππ*) 7.36 5.94 (0.114)
3(ππ* La) 3.95 3.59 2.99 2.87 17 ms
3(nOπ*)d 5.21 4.75 3.84 3.93
3(ππ*) 5.86 5.14

a See also ref 24. b Oscillator strengths within parentheses.
c Computed using the Strickler-Berg approximation. See SI.
d Involving basically O4 (in ortho position with methyl group).
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La) MEP, at 4.0 eV. As observed in Figure 6, this area of
the PEH is flat and extended close to the end of the MEP.
The SOC values computed at different points along the path
range from 5 to 8 cm-1. The efficiency of the process would
be also high if, as in adenine, the wave packet decaying
through the singlet manifold is delayed in the region of the
singlet-singlet CI. The present model allows for an under-
standing of the reported wavelength dependence on the ISC
quantum yield in nucleobases, surely caused by the location
of the two STC interacting regions and their accessibility
upon the initial excitation conditions. In the case of thymine,
the value increases from 3.9 × 10-3 at 280 nm (4.43 eV),
where only the lowest-energy channel can be reached, to
5.2 × 10-2 at 240 nm (5.17 eV),7,73 where both described
channels are accessible.

As for the purine nucleobases, MEPs connecting the
different critical points have been computed (see SI). The
lowest triplet state may be populated by any of the previous
ISC processes. At the state minimum, the molecule displays

a distorted structure with a ring deformation including the
dihedral angle C2N1C6C5 as 44° and an increased bond length
C5C6 of 1.494 Å with certain biradical character. The
minimum is placed at 2.87 eV adiabatically from the ground
state optimized minimum, a value somewhat lower than the
3.2 eV estimated for the location of the triplet state for the
thymine mononucleotide in aqueous solution at room tem-
perature9 and consistent with previous theoretical determina-
tions at around 2.8-3.0 eV.74 As a final aspect of the
evolution along the triplet manifold in thymine, we have
located the singlet-triplet crossing connecting the 3(ππ*)
and the ground state and mapped the MEP leading from such
an STC toward 3(ππ*)min (see SI). The crossing is placed
near 3.0 eV from the ground state minimum, which means
that there is a barrier of 0.13 eV (3.0 kcal/mol) to reach (gs/
3ππ*)STC from 3(ππ*)min, and the molecule recovers there
the planarity. Although the computed electronic SOC is
somewhat low, ∼2 cm-1, a barrier which is smaller than
that for purines may explain the shorter triplet lifetimes

Figure 6. Evolution of the ground and lowest singlet excited states for thymine from the FC geometry along the 1(ππ* La) MEP.

Figure 7. Scheme, based on CASPT2 results, of the photochemistry of thymine focused on the population of the lowest-energy
triplet state. Unless otherwise stated, 1ππ* represents the 1La ππ* state.
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measured for pyrimidine (∼0.6 s) than for purine (∼2.0 s)
nucleobases in ethanol glasses.6 Similar conclusions can be
derived for uracil, which has a state structure and properties
very similar to those of thymine.25,26

Regarding cytosine, the values in Table 4 help to under-
stand (and predict to some extent) the behavior of its triplet
photophysics. As in guanine, cytosine has a lowest-lying
singlet 1(ππ* La) state, whose initial interaction with the nπ*
states, placed higher in energy, will not be strong either at
the FC region or along the 1(ππ* La) decay pathway (see
Figure 8). The singlet relaxation in C is somewhat more
complex than in the other nucleobases. The presence of a
low-lying planar minimum for the 1(ππ* La) state at 3.62
eV, nearly isoenergetic with the ethene-like (gs/ππ*)CI,
generates several competitive decay paths, as has been
analyzed before.23,37,75 The possibilities for displaying dif-
ferent ISC processes are therefore larger, but always at low,
not at high, energies like, for instance, in thymine, uracil, or
adenine. In particular, we show in Figure 8 a linear
interpolation in internal coordinates (LIIC) path from the FC
region toward the ethene-like CI with the ground state. The
barrier along the 1(ππ* La) state, computed 2.5 kcal mol-1

as a higher bound, is very small, and in practice the path
can be considered barrierless. As in the other nucleobases,
an STC between the lowest ππ* states takes place close to
the CI, at 3.6 eV, yielding a SOC term value of 6 cm-1. In
a previous study,23 we analyzed ISC processes taking place
at other low-energy regions, obtaining also large SOC values
and expectedly favorable situations for the lowest triplet
population.

As a result of the excited state structure in C, obtained at
the CASPT2 level, the photophysical scheme for the popula-
tion of the lowest triplet state of the molecule can be
summarized in Figure 9. Unlike in the other two pyrimidine
nucleobases, where three basic channels for the possible
triplet manifold population were found, one at high energies
(close to FC and nπ* mediated) and another at low energies
(caused by the common ethene-like CI type of decay present
in all nucleobases), in C, only low-energy channels seem to
be accessible. This feature could probably help to explain
the absence of cytosine (guanine too) components in DNA
phosphorescence at low temperatures,1-3 and also the
generally lower phosphorescence quantum yields obtained
for cytosine and its derivatives as compared to other

nucleobases.6 The same trends are obtained for ISC yields
from flash photolysis experiments in nucleotides, although
not in nucleobases.7 Higher yields of nπ* formation have
been suggested for cytosine than thymine,68 but theoretical
evidence indicates that the higher-lying nπ* states of cytosine
will be less accessible from the main relaxation pathways
than in thymine due to the large potential energy barriers
found in the former.76

IV. Summary and Conclusions

Calculation of PEHs for the low-lying singlet and triplet
states of natural DNA/RNA nucleobases adenine, guanine,
thymine, uracil, and cytosine at the ab initio multiconfigu-
rational CASPT2//CASSCF quantum-chemical level have
been carried out in order to help to establish general
mechanisms for the population of the triplet manifold of the
molecules. The proposed framework is an attempt to
rationalize the reported triplet states properties of DNA
components, in particular the measurement of larger quantum
yields of phosphorescence than of fluorescence in the
individual systems,4,7 the observed wavelength dependence
of the triplet state formation,7,73 or the prevalence of adenine
and thymine components in the phosphorescence signals of
DNA at low temperatures.1-3 It can be considered that an
efficient ISC channel is easily accessible from the regions
close to the main decay pathway of the initially populated
singlet state. We have analyzed the accessibility of the ISC
channels for the population of the lowest triplet state along
such a pathway, a strategy that requires computation of
minimum energy paths on the different states and determi-
nation of singlet-triplet crossings and conical intersections.
This is, however, only a necessary but not sufficient condition
to establish the efficiency of an ISC process. Computation
of vibronic contributions to the ISC rates and reaction
dynamic calculations establishing the temporal evolution of
the system are encouraged in a close future in order to
unambiguously determine if the proposed accessible singlet-
triplet crossing regions fulfill all the requirements: close
singlet-triplet energies, a high density of vibronic states,
large vibronic contributions to the spin-orbit coupling terms,
and regions where the population gets trapped for long
enough of a time to allow the ISC process to take place in
competition with the internal conversion decay, for instance,
close to the FC region, to a singlet state minimum, or near
a sloped conical intersection. Recent ISC rate calculations
on thymine and uracil26 confirm the main role of some of
our proposed ISC mechanisms in these systems.

Our results indicate that three STC regions can be easily
accessed from the singlet main decay pathway in adenine,
thymine, and uracil, two of them located at high energies
and mediated by the presence of lowest-lying singlet and
triplet nπ* states, and a third one at low energies close to
the end of the main MEP on the 1(ππ*) singlet excited state
and the ethene-like (pyrimidines) or methanamine-like (pu-
rines) conical intersection of this state with the ground state.
These three regions are proposed as prospective ISC chan-
nels. At least those related to the 1nπ*-3ππ* STC seem to
be confirmed as such by recent calculations on ISC rates on
pyrimidine nucleobases.26 Additionally, the wavelength

Table 4. Computed Properties for the Low-Lying Singlet
and Triplet Excited States of Cytosine

vertical transition (eV) band origin (Te, eV)

state CASSCF CASPT2a CASSCF CASPT2 τrad
b

1(La ππ*)c 5.22 4.41 (0.069) 4.14 3.62 30 ns
1(nOπ*) 5.23 4.95 (0.001) 3.68 3.72 1200 ns
1(nNπ*)d 5.59 5.06 (0.003)
1(Lb ππ*) 6.17 5.89 (0.106)
3(La ππ*) 3.64 3.53 2.85 2.98 437 ms
3(ππ*) 4.87 4.45
3(nOπ*) 5.13 4.63 3.49 3.66
3(nNπ*) 5.31 4.94

a Oscillator strengths within parentheses. b Computed using the
Strickler-Berg approximation. See SI. c The MEP to the minimum
and the CI, (gs/ππ*)CI, at 3.6 eV, are competitive. See ref 37.
d Geometry optimization leads directly to a CI with the ground
state, (gs/nNπ*)CI. See ref 76.
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dependence of the triplet formation quantum yield reported
in these three molecules is suggested to be related to the
activation of the three (both at high and low excitation
energies) or only one (at low energies) ISC channels. On
the other hand, guanine and cytosine, having a much lower
spectroscopic 1(ππ*) singlet excited state below the nπ*-
type states, are not expected to display the nπ*-mediated
ISC mechanisms in regions close to the main MEP and may
have only efficient ISC funnels at low energies, close to the
singlet CI, a feature common to all nucleobases. The present
results explain the fact that guanine and cytosine contribute
much less to the phosphorescence of DNA, as it has been
established.1-3 It is noteworthy to indicate that the phos-
phorescence spectrum of RNA was also reported,77 and it
was shown, first, to be determined mainly by the individual
properties of the ribonucleotides’ π-electron systems, and
second, to be composed by triplet signals of adenosine groups
and centers of an unknown nature with structureless long-
wavelength phosphorescence different from that in DNA.
The present results would indicate that adenine and, in this

case, uracil nucleobases should be preferably considered as
sources of phosphorescence in RNA, as adenine and thymine
are in DNA. It is clear that the present results for the isolated
systems cannot be directly extrapolated to polymeric DNA/
RNA. As already explained before, the described properties
should be, however, considered intrinsic features of the
nucleobases that, even if they may change in condensed
phases or, in general, in the biological environment for the
single monomers, are expected to maintain their basic
characteristics, as occurs for the singlet states properties and
it seems also for triplet states.77
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Figure 8. Evolution of the ground and lowest singlet and triplet excited states of cytosine from the FC geometry to the (gs/ππ*
La)CI along an LIIC path competitive with the 1(ππ* La) MEP.

Figure 9. Scheme, based on CASPT2 results, of the photochemistry of cytosine focused on the population of the lowest-
energy triplet state.
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Chem.B 2006, 110, 26471.

(38) Serrano-Andrés, L.; Merchán, M.; Borin, A. C. Chem.sEur.
J. 2006, 12, 6559.

(39) Serrano-Andrés, L.; Merchán, M.; Borin, A. C. J. Am. Chem.
Soc. 2008, 130, 2473.

(40) Blancafort, L. J. Am. Chem. Soc. 2006, 128, 210.

(41) Perun, S.; Sobolewski, A. L.; Domcke, W. J. Am. Chem. Soc.
2005, 127, 6257.

(42) Perun, S.; Sobolewski, A. L.; Domcke, W. J. Phys. Chem. A
2006, 110, 13238.

(43) Marian, C. M. J. Chem. Phys. 2005, 122, 104314.

(44) Chen, H.; Li, S. H. J. Phys. Chem. A. 2005, 109, 8443.

(45) Barbatti, M.; Lischka, H. J. Am. Chem. Soc. 2008, 130, 6831.

(46) Hudock, H. R.; Martinez, T. J. ChemPhysChem 2008, 9,
2486.

(47) Canuel, C.; Mons, M.; Pluzzi, F.; Tardivel, B.; Dimicoli, I.;
Elhanine, M. J. Chem. Phys. 2005, 122, 074316.

(48) Bernardi, F.; Olivucci, M.; Robb, M. A. Pure Appl. Chem.
1995, 67, 17.

(49) Takaya, T.; Su, C.; De La Harpe, K.; Crespo-Hernández, C. E.;
Kohler, B. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 10285.
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Abstract: This work aims to provide reliable benchmark data on the accuracy of harmonic and
anharmonic vibrational frequencies computed with the B2PLYP double-hybrid density functional method.
The exchange-correlation contributions required for the B2PLYP analytical second derivatives are
presented here, which allow for the effective calculation of harmonic frequency as well as cubic and
semidiagonal quartic force fields. The latter, in turn, are necessary to compute the anharmonic vibrational
frequencies with the perturbative approach (VPT2). The quality of harmonic vibrational frequencies com-
puted in conjunction with basis sets of double- to quadruple-� quality has been checked against reference
data from the F38 benchmark set. Then, for an additional set of small closed- and open-shell systems,
both harmonic frequencies and anharmonic contributions computed at the B2PLYP/N07D and the
B2PLYP/aug-cc-pVTZ levels have been compared to their CCSD(T) counterparts. Moreover, for selected
medium-size molecules (furan, pyrrole, thiophene, uracil, anisole, phenol, and pyridine), anharmonic
frequencies have been compared to well established experimental results. Such benchmark studies have
shown that the B2PLYP/N07D model provides good quality harmonic frequencies and describes correctly
anharmonic contributions, the latter being of similar accuracy to their B3LYP/N07D counterparts, but
obtained at significantly larger computational cost. Additionally, increased accuracy can be obtained by
adopting hybrid models where the B2PLYP/N07D anharmonic contributions are combined with harmonic
frequencies computed with more accurate quantum mechanical (QM) approaches or by B2PLYP with
larger basis sets. This work confirmed also that most of the recently developed density functionals are
significantly less suited for vibrational computations, while the B2PLYP method can be recommended
for spectroscopic studies where a good accuracy of vibrational properties is required.

1. Introduction

Computational chemistry experiments have already been
proven to deliver highly accurate results for small mole-

cules,1-5 clearly demonstrating their usefulness as tools for
the prediction and understanding of many kinds of spectro-
scopic properties of molecular systems. At present, it is
widely recognized that, for semirigid molecules, the com-
putation of vibrational frequencies by a second-order per-
turbative approach (VPT2)6,7 can be applied even for quite
large systems to support reliable interpretation of spectro-
scopic measurements. In particular, VPT2 computations
coupled with semidiagonal quartic force fields evaluated at
the CCSD(T) (coupled clusters with single, double, and
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perturbative inclusion of triple excitations8) level in conjunc-
tion with basis sets of at least triple-� quality usually provide
results with an accuracy on the order of 10-15 cm-1 for
the fundamental transitions.9-21 However, computations
at the CCSD(T) level are still limited to small systems, so
that the extension of accurate computational studies to larger
systems requires cheaper yet reliable electronic structure
methods. In this respect, the density functional theory (DFT)
stands as a valuable route, and several VPT2 computations
based on the DFT anharmonic force fields have been reported
for small and medium-sized semirigid molecules.22-27

Among the functionals tested, hybrid ones provide satisfac-
tory results when coupled to basis sets of at least double-�
plus polarization quality supplemented by diffuse sp func-
tions. However, as we recently pointed out,28,29 computation
of the vibrational frequencies turned out to be a particularly
challenging task, even for newly developed density func-
tionals. As a matter of fact, some of the most successful last-
generation functionals (M06-2X and ωB97X) provided quite
disappointing results, showing that vibrational properties
should not be overlooked while optimizing parameters in
this kind of functional.

Recently, some of us have presented a DFT/N07D
model30-32 which, for density functionals like B3LYP,33

CAM-B3LYP,34 and PBE0,35 provides results of remarkable
quality for a broad range of spectroscopic parameters (ESR,
IR, UV, ECD).36-38 In the search for a computational
approach able to reproduce different spectroscopic properties
with consistent accuracy, the double-hybrid B2PLYP39

method appears as a promising alternative, as it has already
been shown to provide accurate results even for excited
electronic states,40 including challenging topics like electronic
circular dichroism.41 In this work, we test the performance
of B2PLYP in the evaluation of vibrational properties, which
represents an issue for several functionals, preventing their
systematic use in computational spectroscopy. For this
purpose, both harmonic and anharmonic vibrational frequen-
cies will be computed using the B2PLYP approach. At this
point, is should be remembered that anharmonic VPT2
computations require cubic and semidiagonal quartic force
fields, which in turn can be effectively determined via
numerical differentiation of analytically evaluated force
constants.7,13,42,43 In this respect, anharmonic computations
with the B2PLYP method have become feasible thanks to
the development and implementation of the B2PLYP ana-
lytical 2nd derivatives (see section 2). Concerning the
validation of the B2PLYP vibrational properties, and further
extension of the DFT/N07D model, VPT2 computations with
the B2PLYP method have been performed in conjunction
with the N07D basis set for all systems. It should be noted
that, in the case of B3LYP computations, the basis set
extension beyond N07D has a negligible effect on the
accuracy of vibrational properties.29 However, in the case
of B2PLYP, it can be expected that significantly larger basis
sets are required due to the MP2 contribution. For this
purpose, the quality of the B2PLYP/N07D harmonic fre-
quencies has been assessed by comparison with the results
obtained at the CCSD(T) level and from experimental data,
while the basis set convergence has been checked by

extending the basis set to aug-cc-pVTZ (AVTZ) and/or aug-
cc-pVQZ (AVQZ). Next, the performance of the B2PLYP/
N07D model in evaluating the anharmonic contributions has
been tested for a set of small closed- and open-shell systems
by comparison to quartic force fields at the B2PLYP/AVTZ
and CCSD(T) levels of theory. Moreover, for larger systems,
the quality of the anharmonic frequencies computed with
the B2PLYP/N07D and hybrid models has been assessed
relative to state-of-the art experimental results. Finally, the
accuracy of the vibrational properties computed with several
other density functionals has been evaluated, in order to
validate further the conclusions drawn on the basis of a
smaller set of data.28,29

The paper is organized as follows. Section 2 describes the
exchange-correlation contributions required by the formalism
of the analytical second derivatives of the B2PLYP energies.
The details on the computational models applied to the
determination of structures and harmonic and anharmonic
vibrations are gathered in Section 3. Section 4 reports the
benchmark results on vibrational properties computed at the
B2PLYP/N07D level. Harmonic frequencies for the mol-
ecules from the F38 benchmark set are reported in section
4.1. VPT2 computations for small closed- and open-shell
systems validated by comparison with accurate results at the
CCSD(T) level are collected in section 4.2. Additionally,
B2PLYP/N07D and hybrid B2PLYP//AVTZ/N07D VPT2
anharmonic frequency results are compared to experimental
data in section 4.3. Finally, our conclusions on the accuracy
of B2PLYP and other DFT approaches in computing
vibrational properties are presented in section 4.4.

2. Exchange-Correlation Contributions to the
B2PLYP Analytic Second Derivative

B2PLYP belongs to the family of so-called “double-hybrid”
methods, which are essentially a second-order perturbation
(PT2) treatment of the correlation energy. When the results
of a Hartree-Fock (HF) self-consistent field (SCF) calcula-
tion are used as a zeroth-order reference, the PT2 approach
corresponds to the well-known MP2 method. However, the
results of a DFT Kohn-Sham (KS) SCF can be used as a
reference as well, and by a suitable (semiempirical) scaling
of the PT2 contribution to the energy, a significant improve-
ment in the accuracy of the method can be achieved.39,44

Therefore, the formalism of the derivatives of the KS-PT2
method (and of B2PLYP in particular) is best understood as
a combination of the KS-SCF and MP2 first and second
derivatives.

In the following, we will describe only and all of the
exchange-correlation (XC) terms required to evaluate the
second derivatives of the KS-PT2 energy. The interested
reader is invited to review refs 45-47, which describe the
details of the evaluation of the first and second derivatives
of the KS-SCF energy, and refs 48-50,where the MP2 first
derivatives are illustrated. Moreover, a presentation of the
overall formalism of the MP2 energy second derivatives can
be found in refs 51-53,while the first derivatives of the KS-
PT2 method have been recently reported in ref 54. Finally,
the exchange-correlation terms involved in any “post-KS”
gradient (and thus also in the B2PLYP gradient) have been
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described in detail in connection with the implementation
of the time-dependent DFT (TD-DFT) gradient in ref 55.
The complete formalism of the KS-PT2 2nd derivatives,
including frozen-core approximation and solvent effects by
means of the polarizable continuum model (PCM),56,57 will
be presented in a more organic form in a forthcoming paper.

In order to concisely write the various exchange-correlation
(XC) contributions to the KS-PT2 energy and its derivatives,
it is necessary to introduce some notation. First, we write
the XC contribution to the KS-SCF energy as

where we assume an integration grid point index on both
the integration weights w and the functional values F, and
we assume the required sum over the grid points. The
functional itself depends on a set of variables {vI}55 which
typically include the density F, the density gradient ∇F, the
kinetic energy density τ, and the Laplacian of the density
∇2F, i.e.,

Note that all of the elements of the set {vI} are linear in a
one-particle density matrix P according to

where vI, µν ) �µ�ν for the density, vI, µν ) ∇(�µ�ν) for the
density gradients, vI, µν ) (∇�µ) · (∇�ν) for the kinetic energy
density, and vI, µν ) ∇2(�µ�ν) for the Laplacian of the density.
The set {�µ} represents the atomic orbital (AO) basis set.
The functional F is usually written as depending on the
squared norms of the density gradient, i.e., γσσ′ )
(∇Fσ) · (∇Fσ′), where σ and σ′ are spin labels. However, for
the sake of a more concise notation, we will assume that the
chain rule has been applied to the functional derivatives to
obtain derivatives with respect to the elements of the set {vI}.

The first derivative of the XC energy is well-known45 to
be

where wx represents the first derivatives of the integration
weights, F I is the first derivative of the functional with
respect to the Ith variable, and a sum over I is implied. Also,
with the parentheses, we indicate the explicit dependence of
the variables through the basis function, i.e.,

The corresponding XC energy second derivatives45,46 can
be written as

where the first five terms on the right-hand side involve
explicit dependence of the weights and the variables on the
perturbations, while the last three terms account for the

implicit dependence of the variables on the density derivative,
which we indicate using the square brackets

Note that the last three terms in eq 6 can be also written as
follows

i.e., like the trace of the density derivative Py with the XC
portion of the skeleton Fock matrix derivative. The occupied-
virtual block of the density derivative Pov

x is the solution of
the couple-perturbed KS (CP-KS) equations, whose right-
hand side involves the skeleton Fock matrix derivative and
the additional XC term

where58 Soo
x ) -Poo

x , while the left-hand side includes the
corresponding XC term, which depends on the unknown
quantity Pov

x , i.e.

In addition to the terms in eq 6, there is also an XC
contribution to the total energy second derivatives, namely,
through the 〈WySx〉 trace, where the derivatives of the energy-
weighted matrix express the dependence of the SCF orbital
energies on the perturbations, which is assembled from the
complete Px and Fx matrices.

On the other hand, the XC contributions to the KS-PT2
gradient,54 or more generally speaking to any “post-KS”
gradient,55 assume the following form:

where γ is the correlation contribution to the one-particle
density matrix, back-transformed to the AO basis. The
occupied-virtual block of γ is found by solving the so-called
Z-vector equations. These are CP-KS equations whose right-
hand side involves the KS-PT2 Lagrangian,54 which is indeed
identical to the MP2 Lagrangian48 since the KS-PT2 energy
EKS-PT2 does not involve any explicit XC energy term beyond
the KS-SCF level. The last term on the right-hand side of
eq 11 represents the trace of the overlap matrix derivative
Sx with the correlation contribution to the appropriate energy-
weighted density matrix WKS-PT2.

Finally, the XC contributions to the KS-PT2 energy second
derivatives are

Exc ) wF [vI] (1)

{vI} ) {F, ∇F, τ, ∇2F} (2)

vI[P] ) ∑
µν

PµνvI,µν (3)

Exc
x ) wxF + wF IvI

(x) (4)

vI
(x) ) ∑

µν
PµνvI,µν

x (5)

Exc
xy ) wxyF + wxF IvI

(y) + wyF IvI
(x) + wF I,JvI

(x)vJ
(y) + wF IvI

(x,y)

+ wxF IvI
[y] + wF I,JvI

(x)vJ
[y] + wF IvI

(x)[y]

(6)

vI
[x] ) vI[P

x] ) ∑
µν

Pµν
x vI,µν (7)

∑
µν

Pµν
y (wxF IvI,µν + wF I,JvJ

(x)vI,µν + wF IvI,µν
x ) ) 〈PyGxc

(x)〉

(8)

Gxc[Poo
x ] ) -wF I,JvJ[Soo

x ]vI,µν (9)

Gxc[Pov
x ] ) wF I,JvJ[Pov

x ]vI,µν (10)

Exc
KS-PT2(x) ) wxF + wF IvI

(x) + 〈γGxc
(x)〉 - 〈SxGxc[γ]〉

) wx(F + F IvI[γ]) + w(F I + F I,JvJ[γ])vI
(x)

+ wF IvI
(x)[γ] - wF I,JvJ[γ]vI[S

x] (11)
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where

and

In order to completely evaluate eq 12, the full derivative
γx of the correlation contribution to the one-particle density
matrix must be computed. The occupied-occupied and
virtual-virtual blocks of γx depend on products of PT2
amplitudes and amplitudes derivatives. The latter can be
assembled from undifferentiated amplitudes and orbital
energies, two-electron integral derivatives, and the derivatives
of the Fock operators (see, e.g., eq 39 in ref 53). These are
the derivatives of the Fock matrix in the canonical molecular
orbital basis, which are no longer diagonal matrices and include
automatically the proper XC contributions, once the nuclear
coordinate CP-KS equations have been solved and the full Px

and Fx matrices are available. Thus, the only remaining piece
is the occupied-virtual block of γx, which is the solution of the
deriVatiVe Z-vector equations, whose right-hand side involves
the derivatives of the MP2 Lagrangian51-53 and all the terms
from the derivatives of the left-hand side which do not involve
the unknowns γov

x , i.e., the quantities in eqs 13 and 14 together
with the additional term

3. Computational Details

Density functional theory computations have been carried
out using the double-hybrid B2PLYP39 method in con-
junction with the recently developed polarized double-�
N07D30-32,59 and aug-cc-pVXZ (X ) T, Q)60,61 basis sets.
The N07D basis set has been constructed by adding a reduced
number of polarization and diffuse functions to the 6-31G set
(see refs 30 and 31 for details), leading to an optimum
compromise between reliability and computational cost.

All structures have been optimized using tight convergence
criteria, followed by the computation of the anharmonic
frequencies by means of the VPT2 approach,6,7 as imple-
mented in the Gaussian package.62 Semidiagonal quartic
force fields have been evaluated by numerical differentiation
(with a standard 0.025 Å step) of analytical second deriva-
tives.42 Since VPT2 computations are sensitive to the proper
treatment of the Fermi resonances, it is crucial to automati-
cally neglect nearly singular contributions (deperturbed

computations). This is performed by effectively removing
interactions in the second-order treatment, which are more
properly treated in the first-order. For this purpose, our VPT2
implementation7 makes use of the criteria proposed by Martin
and Boese,25 through an automated scheme that has already
been shown to provide accurate results, at least for funda-
mental bands.63 Additionally, in some cases, the hybrid
CCSD(T)/DFT or DFT AVTZ/N07D approaches have also
been applied to evaluate the anharmonic frequencies, and
two possible routes have been implemented. In the simpler
one (DPT2), the harmonic frequencies computed at the higher
level of theory (CCSD(T), B2PLYP/AVTZ) are a posteriori
corrected by the anharmonic contributions (∆ν) derived from
VPT2 computations performed at the lower level: νHigher/Lower

) ωHigher + ∆νLower. Such an approximation, in particular
within the CCSD(T)/DFT scheme, has been already validated
for several closed- and open-shell systems (see for instance
refs 29, 64-67). The second route introduces the harmonic
frequencies evaluated at the higher level directly into the
VPT2 computations along with the 3rd and 4th order force
constants obtained at the lower level of theory. Such an
approach is available in the Gaussian package through the
InDerAU and InFreq options, with harmonic frequencies
computed at the higher level of theory listed in the input
stream (a feature available in the standard package68) or with
the corresponding Hessian matrix read from the checkpoint
file. For the latter case, an automatic procedure which
compares normal modes computed by the two levels of
theory and replaces harmonic data accordingly is introduced
in this work. Such an implementation facilitates the applica-
tion of a hybrid InFreq route for large systems for which
the ordering of several closely lying vibrations might be
exchanged. It should be noted that the InFreq procedure
might significantly improve the quality of the results in
difficult cases, i.e., when large discrepancies between
harmonic frequencies computed at two levels of theory or
Fermi resonances are present.

In addition to the computations with the B2PLYP method,
we decided to benchmark the performances of other density
functionals, in order to confirm the findings obtained in
several case studies28,29 where an unsatisfactory description
of vibrational frequencies had been found out. In this context,
a broad range of recently introduced density functionals,
namely, M06/M06-2X,69,70 the ωB97 family,71,72 HSE06,73

and LC-ωPBE,74 has been considered. For the sake of
completeness, standard functionals like B3LYP,33 CAM-
B3LYP,34 and B97-175 and the parameter-free PBE035 have
also been included in our tests. All calculations have been
performed with a locally modified version of the Gaussian
suite of quantum chemistry programs.62

4. Validation of the B2PLYP Method for the
Calculation of Vibrational Frequencies

4.1. Harmonic Vibrational Frequencies for Small
Molecules from the F38 Database. The present work is
devoted to the validation of the B2PLYP/N07D model for
the computation of vibrational frequencies. Thus, it is
appropriate to start the analysis discussing the accuracy of

Exc
KS-PT2(x,y) ) wxy(F + F IvI[γ]) + wx[(F I + F I,JvJ[γ])vI

(y) +

F IvI
(y)[γ]] + wy[(F I + F I,JvJ[γ])vI

(x) + F IvI
(x)[γ]] +

w[(F I,J + F I,J,KvK[γ])vI
(x)vJ

(y) + F I,J(vI
(x)vJ

(y)[γ] +

vI
(y)vJ

(x)[γ]) + (F I + F I,JvJ[γ])vI
(x,y) + F IvI

(x,y)[γ]] +

〈PyGxc
(x)[γ]〉 + 〈γyGxc

(x)〉 - 〈SxyGxc[γ]〉 - 〈SxGxc
(y)[γ]〉 -

〈SxGxc
[y][γ]〉 - 〈SxGxc[γ

y]〉 (12)

Gxc
(x)[γ] ) wx(F I + F I,JvJ[γ])vI,µν

+ w[(F I,J + F I,J,KvK[γ])vJ
(x) + F I,JvJ

(x)[γ]]vI,µν

+ w(F I + F I,JvJ[γ])vI,µν
x

(13)

Gxc
[x][γ] ) wF I,J,KvK[γ]vJ[P

x]vI,µν (14)

wF I,JvJ[γoo
x + γvv

x ]vI,µν (15)
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harmonic frequencies with reference to the recently intro-
duced benchmark set F38,70 designed to cover a broad range
of frequencies for small molecules. It has been applied here
to assess the accuracy of harmonic vibrational frequencies
for several density functional70,76,77 methods. The F38
reference set of data is based on the best experimental
harmonic frequencies,78,79 with the single exception for the
umbrella mode of the NH3, which is taken from a CCSD(T)/
cc-pVQZ calculation.80 It should be noted that, for consis-
tency with the available benchmark studies, Table 1 compares
harmonic frequencies computed at the B2PLYP level to the
original F38 reference data,70 while in section 4.2 we report
the best theoretical harmonic frequencies up to date for some
molecules from the F38 database. However, the best
experimental and theoretical values for these molecules
(H2O,81 NH3,83 and H2CO83) are very similar, with an

average deviation of 6 cm-1 only. The results presented in
Table 1 clearly show the good overall accuracy of the
harmonic frequencies computed by the B2PLYP/N07D
model, which are off by only 1.5% on average from the
reference, with a maximum error of about 5%. In absolute
values, this corresponds to a mean unsigned error (MUE) of
about 23 cm-1, and maximum negative (MIN) and positive
(MAX) discrepancies of -56 cm-1 and 100 cm-1, respec-
tively, with the single absolute deviation above 60 cm-1

observed for the H-H stretching frequency in H2. Addition-
ally, it can be noted that slightly higher absolute deviations
are observed for frequencies above 2500 cm-1. The separate
analysis performed for frequencies above and below this
threshold led to MUEs of 37 cm-1 and 15 cm-1, respectively.
The results presented in Table 1 show also that the extension
of the basis set up to aug-cc-pVTZ, or even aug-cc-pVQZ
(with the exception of the F2 molecule), leads in most cases
to a slightly superior agreement with the reference data with
a MUE of 18 cm-1 and 17 cm-1, respectively. Such an effect
is most pronounced for the frequencies above 2500 cm-1,
and in the extreme case of the H2 molecule, the extension
of the basis set improves the agreement by about 50%. It is
worth adding that the frequencies computed with the aug-
cc-pVTZ and aug-cc-pVQZ basis sets agree on average to 5
cm-1, with a maximum discrepancy of 20 cm-1, confirming
that frequency calculations approach the basis set conver-
gence at the AVTZ level. Indeed, the MP2 contribution to
B2PLYP causes the computed harmonic frequencies to be
not fully converged with respect to the basis set at the N07D
level. However, comparison of the results obtained with the
double-� N07D (58 basis functions for Cl2) and aug-cc-pVQZ
(168 basis functions for Cl2) basis sets shows that the error
compensation allows the B2PLYP/N07D model to deliver
good quality harmonic frequencies. The above arguments
are confirmed by the data gathered in Table 1, which point
out that, for the standard B3LYP functional, no overall
improvement is obtained going from N07D to the more
computationally demanding AVTZ basis set, as already
shown by the comparison of the harmonic frequencies
computed with B3LYP using basis sets of both double- and
triple-� quality.65 Additionally, it can be observed that the
B2PLYP method outperforms the B3LYP functional, in line
with preliminary studies by Grimme.39 In fact, for the F38
database, B2PLYP/N07D shows a MUE about 30% smaller
than B3LYP/N07D (34 cm-1). Thus, despite the fact that
particularly difficult cases and/or a need of extreme accuracy
might require CCSD(T) computations with extended basis sets,
the overall impression is that the B2PLYP stands as the most
accurate DFT model to compute harmonic frequencies.

4.2. Anharmonic Vibrational Frequencies for Small
Closed- and Open-Shell Systems: B2PLYP vs CCSD(T). In
a next step, we compare results provided by the B2PLYP
method with those obtained at the CCSD(T) level, with
extended basis sets, in order to dissect the overall accuracy
of the vibrational frequencies into harmonic and anharmonic
contributions. In this respect, we have chosen a set of closed-
and open-shell molecules, for which the accuracy of
CCSD(T) results has been confirmed by a comparison with
experimental data.5,29,81-83,87-89 As we did in the previous

Table 1. Harmonic (ω) Vibrational Frequencies (in cm-1)
Computed with the B2PLYP and B3LYP Functionals and
the N07D or aug-cc-pVTZ(AVTZ) (for B2PLYP also
aug-cc-pVQZ(AVQZ)) Basis Sets for Molecules from the
F38 Benchmark Set, and Compared to the F38 Reference
Data

B2PLYP B3LYP

exp.a N07D AVTZ AVQZ N07D AVTZ

H2 ω1 4401 4501 4464 4461 4451 4418
CH4 ω1 1367 1361 1353 1352 1342 1339

ω2 1583 1576 1576 1575 1557 1557
ω3 3026 3068 3050 3050 3037 3028
ω4 3157 3191 3162 3163 3150 3130

NH3 ω1 3478 3517 3489 3492 3485 3469
ω2 1084 1028 1037 1034 999 1025
ω3 3597 3660 3617 3621 3621 3588
ω4 1684 1682 1673 1674 1666 1664

H2O ω1 1649 1652 1635 1637 1641 1627
ω2 3832 3832 3813 3823 3814 3796
ω3 3943 3951 3924 3934 3922 3899

HF ω1 4139 4096 4099 4107 4071 4070
CO ω1 2170 2155 2154 2161 2205 2207
N2 ω1 2359 2351 2341 2346 2453 2448
F2 ω1 917 970 1016 1012 1023 1050
C2H2 ω1 624 588 643 649 622 666

ω2 747 765 766 762 772 770
ω3 2008 2025 2024 2025 2063 2068
ω4 3415 3457 3429 3432 3429 3412
ω5 3495 3550 3530 3524 3531 3517

HCN ω1 727 753 745 745 768 759
ω2 2127 2129 2125 2129 2198 2200
ω3 3443 3495 3460 3456 3473 3444

H2CO ω1 2937 2951 2930 2928 2901 2885
ω2 1778 1790 1782 1786 1819 1813
ω3 1544 1543 1538 1540 1529 1530
ω4 1188 1192 1201 1204 1188 1198
ω5 3012 3023 2992 2991 2967 2940
ω6 1269 1269 1268 1272 1260 1263

CO2 ω1 673 660 666 668 666 674
ω2 1353 1343 1341 1345 1370 1369
ω3 2392 2400 2384 2392 2416 2400

N2O ω1 596 572 599 608 592 617
ω2 1298 1310 1298 1301 1337 1324
ω3 2282 2271 2259 2279 2352 2340

Cl2 ω1 560 540 551 555 532 537
OH ω1 3738 3758 3737 3748 3712 3695

MIN -56 -47 -50 -85 -72
MAX 100 99 95 106 133
MUE 23 18 17 33 33

a Benchmark harmonic frequency values as compiled in refs 70
and 76 on the basis of data from refs 78-80.
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section, we start the analysis of vibrational data by discussing
harmonic frequencies, It should be noted that discrepancies

in the former term can be reduced by applying hybrid CC/
DFT schemes, which are also presented in Table 2. First,

Table 2. Harmonic (ω) and Anharmonic (ν) Vibrational Frequencies (in cm-1) Computed at the B2PLYP/N07D, B2PLYP/
AVTZ, and Hybrid CC+DFT Levels for Selected Closed- and Open-Shell Systems, Compared to the Best Available
Theoretical Results Computed at Coupled Cluster Levels

B2PLYP CCSD(T)

ω ν νCC+DFTa ω ν νCC+DFTa ω ν

H2O N07D AVTZ CBS(67)/PESb

v1 3832 3659 3663 3812 3645 3669 3836 3659
v2 1652 1598 1596 1635 1582 1598 1650 1596
v3 3951 3766 3761 3924 3744 3766 3946 3758

HCO N07D AVTZ CBS/aCVc CBS+ QZc

v1 2724 2483 2476 2708 2458 2466 2717 2460
v2 1892 1868 1880 1886 1862 1881 1905 1878
v3 1120 1087 1088 1112 1077 1084 1120 1093

FCO N07D AVTZ augVQZd augVTZd

v1 1896 1834 1838 1888 1849 1861 1900 1864
v2 1019 978 1012 1037 1009 1026 1054 1025
v3 619 608 623 628 617 623 634 624

H2CO N07D AVTZ AVTZ(F12a)e

v1 2951 2794 2775 2930 2775 2778 2933 2784
v2 1790 1760 1747 1782 1752 1747 1777 1747
v3 1543 1509 1498 1538 1505 1499 1532 1498
v4 1192 1175 1170 1201 1184 1170 1187 1167
v5 3023 2842 2823 2992 2842 2853 3004 2849
v6 1268 1248 1247 1268 1246 1246 1267 1246

H2O2 N07D AVTZ AVTZ(F12a)e

v1 3788 3598 3606 3777 3590 3609 3796 3606
v2 1431 1390 1395 1431 1386 1391 1436 1393
v3 909 877 881 930 901 883 913 880
v4 389 357 351 376 310 317 384 378
v5 3788 3601 3609 3777 3594 3613 3796 3608
v6 1324 1272 1278 1321 1262 1270 1329 1280

NH3 N07D AVTZ cc-pwCVQZf

v1 3517 3372 3344 3488 3348 3348 3489 3342
v2 1028 938 986 1037 954 993 1076 1001
v3 3660 3490 3449 3617 3450 3452 3619 3444
v4 1682 1635 1633 1673 1626 1633 1680 1635

PH3 N07D AVTZ cc-pwCVQZf

v1 2427 2328 2329 2427 2328 2329 2429 2331
v2 1031 1009 996 1018 998 997 1017 997
v3 2439 2329 2327 2437 2327 2327 2437 2336
v4 1152 1127 1122 1150 1123 1121 1147 1122

F2CN N07D AVTZ augVQZg aVQZ+ augVTZg

v1 1809 1787 1790 1796 1775 1790 1811 1781
v2 960 946 960 967 953 960 974 957
v3 544 538 547 547 542 547 552 546
v4 673 667 674 687 681 673 679 673
v5 1252 1219 1262 1261 1228 1262 1295 1262
v6 493 489 497 500 496 497 501 496

NH3
+ N07D AVTZ VQZh

v1 3395 3252 3231 3372 3234 3237 3375 3231
v2 873 928 921 864 922 923 865 910
v3 3590 3419 3388 3552 3393 3400 3559 3388
v4 1557 1523 1517 1548 1507 1510 1551 1507

PH3
+ N07D AVTZ VQZh

v1 2501 2406 2402 2505 2419 2410 2497 2400
v2 745 667 673 748 674 678 751 670
v3 2577 2482 2474 2584 2492 2476 2568 2469
v4 2577 2471 2463 2584 2494 2478 2568 2469
v5 1058 1036 1032 1056 1037 1035 1054 1029
v6 1059 1035 1030 1056 1037 1035 1054 1029

C2H3 N07D AVTZ AVTZ(PES/S)i

v1 3290 3267 3242 3267 3129 3105 3242 3108
v2 3211 3053 3016 3178 3024 3021 3174 3016
v3 3109 2946 2907 3077 2917 2910 3070 2901
v4 1679 1659 1590 1667 1647 1590 1610 1576
v5 1412 1378 1356 1405 1370 1355 1390 1355
v6 1069 1019 1014 1061 1010 1013 1064 1015
v7 728 695 683 716 681 683 717 688
v8 932 920 895 935 921 893 907 892
v9 821 809 787 828 812 784 799 793

MIN -48 -63 -27 -39 -68 -61
MAX 69 83 17 57 71 14
MUE 16 18 4 10 11 4

a Anharmonic corrections at the B2PLYP/N07D level. b Ref 81. c Ref 87. d Ref 29. e Ref 83. f Ref 82. g Ref 5. h Ref 88. i Analytic harmonic
frequencies and anharmonic results from VCI calculations using five-mode potential coupling based on a full-dimensional PES computed at
the RCCSD(T)/aug-cc-pVTZ level. For details on PES/S, see ref 89.
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considering the accuracy of harmonic frequencies, it is
immediately apparent that the conclusions drawn in section
4.1 are, in general terms, confirmed. Namely, the values
computed at the B2PLYP/N07D level agree well with the
most accurate calculations, with a MUE of 16 cm-1, and
further improvement (MUE of 10 cm-1) can be achieved
by using the aug-cc-pVTZ basis set. Similarly, anharmonic
frequencies computed at the B2PLYP/N07D level show a
MUE of 18 cm-1, while the extension of the basis set to
aug-cc-pVTZ leads to a MUE of 11 cm-1. Additionally, a
significant improvement is achieved through hybrid ap-
proaches with harmonic frequencies computed at the CCS-
D(T) level, which lead to a MUE of 4 cm-1 with respect to
the anharmonic data computed entirely at the CCSD(T) level.
Such a finding confirms the remarkable accuracy of the
anharmonic force fields computed with the B2PLYP method,
showing also that an improved accuracy can be achieved by
using harmonic frequencies of coupled cluster quality. It
should be underlined that both hybrid models, which differ
by the computational cost associated with the size of the
basis set, provide equally accurate results. This demonstrates
clearly that the better agreement for the vibrational frequen-
cies computed with the AVTZ basis set should be attributed
uniquely to the higher accuracy of the harmonic component.
In summary, a direct comparison with accurate computations
at the CCSD(T) level clearly shows that the B2PLYP/N07D
model provides harmonic frequencies of good accuracy and
leads to a description of the anharmonic contributions in
agreement with more accurate QM methods. However, it
should be noted that results of equivalent accuracy can be
delivered by hybrid approaches with anharmonic force fields
obtained using the less computationally demanding B3LYP/
N07D method.29

4.3. Anharmonic Vibrational Frequencies of Larger
Molecules Computed with B2PLYP/N07D and Hybrid
Schemes. In this section, the performances of the B2PLYP
method will be checked against well established experimental
data for medium-size molecules. In this respect, we have chosen
a set of organic aromatic systems, namely, pyridyne, furan,
pyrrole, thiophene, uracil, phenol, and anisole, for which
previous calculations of anharmonic frequencies using the
B3LYP or the B97-1 density functionals resulted in a very good
agreement with the experimental results.23-25,63,84-86 In this
work, both the B2PLYP/N07D model and a hybrid scheme
with harmonic frequencies refined through B2PLYP/AVTZ
calculations have been tested. For the latter, corrections have
been applied to all normal modes or only to normal modes
above 2500 cm-1, in line with the findings reported in section
4.1 which displayed a larger basis set dependence for higher
harmonic frequencies. Table 3 reports the mean unsigned
errors with respect to the experimental data, along with
maximum (negative and positive) deviations for all molecules
considered. Figure 1 shows differences between computed
and experimental frequencies for all normal modes of
pyridyne, furan, pyrrole, thiophene, uracil, phenol, and
anisole, which are listed in order of increasing wavenumber.
First, it can be observed that the overall agreement of the
B2PLYP/N07D anharmonic frequencies with the reference
data is very good, i.e., in the range of 9-15 cm-1 for all the

molecules studied, corresponding to an average of 11 cm-1.
Moreover, as shown in Figure 1, despite maximum positive
and negative discrepancies of 70 cm-1 and -41 cm-1,
respectively, the computed anharmonic frequencies are within
25 cm-1 of the experimental references, for almost all of
the normal modes. Somewhat larger discrepancies are

Table 3. Mean Absolute Errors (MUE), Maximum Negative
(MIN) and Positive (MAX) Deviations of Anharmonic
Vibrational Frequencies (in cm-1) Computed with the
B2PLYP/N07D and Hybrid B2PLYP/(AVTZ/N07D) Models
As Compared to the Experimental Dataa

N07D AVTZ/N07D
AVTZ>2500b/

N07D

MUE MIN MAX MUE MIN MAX MUE MIN MAX

pyridine 9 -22 40 17 -35 53 10 -35 40
furan 9 -11 29 9 -14 55 5 -11 7
pyrrole 10 -7 32 11 -20 43 6 -11 28
thiophene 12 -10 34 6 -8 29 7 -10 21
uracil 11 -41 31 8 -12 27 9 -41 31
phenol 12 -18 70 13 -26 65 11 -27 70
anisole 15 -10 48 15 -51 72 12 -51 48
average all 11 -17 41 11 -24 49 9 -27 35

a Experimental data are taken from (and references therein):
pyridine, ref 90; furan and pyrrole, ref 91; thiophene, ref 92; uracil,
ref 93; phenol, ref 94; anisole, ref 86. b Hybrid scheme applied to
normal modes with frequencies above 2500 cm-1, see text for
details.

Figure 1. Performance of the B2PLYP/N07D (panel a) and
hybrid B2PLYP/(AVTZ/N07D) (panel b) models for the predic-
tion of anharmonic frequencies. The relative absolute dis-
crepancies with respect to experimental results are shown for
all normal modes of pyridyne, furan, pyrrole, thiophene, uracil,
phenol, and anisole, which are listed according to the increas-
ing wavenumbers (in cm-1).
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observed in the high frequency region of the spectrum.
However, the relative deviation from experiment remains
within 2% even for these frequencies, with only four
frequencies above 1000 cm-1 exceeding this limit. It can
be noted that a significant improvement of the absolute values
in the high frequency region is achieved through a hybrid
scheme, where the harmonic component is corrected using
B2PLYP/aug-cc-pVTZ results. However, the hybrid scheme
does not provide a systematic improvement for every normal
mode; thus, the overall accuracy of the B2PLYP/(AVTZ/
N07D) (referred to as AVTZ/N07D later on) model does
not change with respect to the straightforward B2PLYP/
N07D approach. On the other hand, it is possible to apply
harmonic frequency refinements only to the high frequency
normal modes (>2500 cm-1); such a scheme effectively
improves the agreement with respect to the experiment and
should be considered when a good accuracy in the high
frequency region of the spectrum is of particular importance.
Thus, it can be concluded that the B2PLYP/N07D model
provides very reliable anharmonic frequencies and can be safely
applied to spectroscopic studies. However, it should also be

noted that the good overall accuracy of the B2PLYP/N07D and
the hybrid AVTZ/N07D models is comparable to that obtained
by less expensive anharmonic B3LYP/N07D calculations.

4.4. Accuracy of Harmonic and Anharmonic Vibra-
tional Frequencies Computed with Other DFT/N07D
Models. For the sake of completeness, we have investigated
the performances of other density functional approaches
using the N07D basis set. The same scheme as applied in
the previous sections is used here. First, we assessed the
accuracy of the harmonic frequencies with respect to the
results from the F38 database. Table 4 collects the results
obtained by means of some last generation DFT functionals
not considered in the work of Zhao and Truhlar,70,77 along
with a few standard functionals, which are among the most
popular ones. First, it should be noted that the B3LYP, PBE0,
M06, and M06-2X functionals together with the N07D basis
set yield harmonic frequencies of accuracy essentially
equivalent to the one reported in refs 70 and 77. Additionally,
among all the density functionals tested either here or in the
work by Zhao and Truhlar,70,77 only B3LYP, B97-1, and
B2PLYP yield harmonic frequencies with the accuracy
required for spectroscopic studies, and the B2PLYP method
shows clearly the best results. As a next step, it seemed
interesting to check also the quality of the cubic and
semidiagonal quartic force fields computed with the recently
developed density functionals. In this respect, the accuracy
of anharmonic contributions has been assessed by comparison
with their CCSD(T) counterparts for a few selected mol-
ecules, namely, H2O, NH3, PH3, and F2CN. This set of
molecules has been chosen in view of the superior accuracy
of anharmonic frequencies obtained with the hybrid CCSD(T)/
B2PLYP scheme. The quality of the anharmonic force fields
has been checked by inspection of the relative discrepancies
between ∆νPT2’s computed at the DFT and CCSD(T) levels,
respectively. Figure 2 shows a plot of the differences in ∆νPT2

Figure 2. Performance of different density functionals for the prediction of the anharmonic contribution. The relative discrepancies
with respect to the values computed at the CCSD(T) level are shown for each normal mode of H2O, NH3, PH3, and F2CN and
are listed according to their wavenumbers (in cm-1).

Table 4. Mean Absolute Errors (MUE), Maximum Negative
(MIN), and Positive (MAX) Deviations of Harmonic
Vibrational Frequencies (in cm-1) Computed with Several
DFT/N07D Models for Molecules from the F38 Benchmark
Set, and Compared to the F38 Reference Data

MUE MIN MAX

CAM-B3LYP 52 -110 129
PBE0 50 -86 140
LC-ωPBE 74 -135 192
M06 57 -124 134
M06-2X 66 -77 163
HSE06 50 -86 138
ωB97 62 -93 159
ωB97X 60 -97 152
B97-1 33 -81 61
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between DFT and CCSD(T) for each normal mode of
selected molecules, which are listed according to their
wavenumbers (in cm-1). First, it is clear that anharmonic
corrections at the B2PLYP level agree very well with the
reference data, as discussed in section 4.2. Similar results
can be observed for B3LYP, further supporting the well-
known good quality of the B3LYP/N07D force fields. The
other density functionals show different trends, considering
that only HSE06 performs in a qualitatively correct way,
while functionals belonging to the M06 and the ωB97
families provide unreliable anharmonic corrections. Finally,
we assessed the overall accuracy of the anharmonic vibra-
tional frequencies computed by all of the DFT/N07D models
considered in this work. For this purpose, Table 5 reports
the mean unsigned errors and maximum deviations with
respect to experimental data for pyridine, furan, pyrrole, and
thiophene. These results show clearly that, among last
generation DFT models, only the B2PLYP method (as
discussed above) provides anharmonic frequencies in good
agreement with experimental results, consistent with the
accuracy of harmonic contributions and anharmonic correc-

tions discussed above. Moreover, the good performances of
the B3LYP and the B97-1 functionals, when used in
conjunction with the N07D basis set, are confirmed. In fact,
for both functionals, the MUE is lower than 8 cm-1.
Qualitatively correct frequencies are also predicted by the
PBE0 and HSE06 functionals, both showing MUEs of about
15 cm-1. All of the other DFT models considered yield
MUEs in the range of 20-40 cm-1 and also show larger
absolute discrepancies. Overall, the results presented in this
section show that most of the recently developed density
functionals are significantly less accurate in the calculation
of vibrational frequencies, confirming the conclusions drawn
in refs 28 and 29, on the basis of a smaller benchmark set.
On the other hand, the B2PLYP method should be preferred
for spectroscopic studies where a good accuracy of the
vibrational properties is required.

5. Conclusions

In this work, we presented a concise exposition of the formalism
of the analytic second derivatives for the double-hybrid
B2PLYP method, along with an assessment of their accuracy
in the calculation of vibrational properties. To that end, the
computed harmonic vibrational frequencies have been compared
with the best experimental estimates from the established F38
benchmark set. Additionally, for several small closed- and open-
shell systems, both harmonic frequencies and anharmonic
corrections have been compared to their CCSD(T) counterparts,
while, for larger systems, the quality of the calculated frequen-
cies has been evaluated by comparison with experimental data.
It has been shown that B2PLYP yields harmonic frequencies
substantially more accurate than other approaches rooted in the
density functional theory, and in this respect, it outperforms
the B3LYP functional. However, such an improved accuracy
is achieved at a significantly increased computational cost,
caused by the second-order perturbation treatment of the electron
correlation and the slower convergence with respect to the basis
set. Nevertheless, when high quality harmonic contributions are
required, the availability of the B2PLYP analytic second
derivatives shall improve the current state-of-the-art accuracy
for significantly larger systems. In addition to accurate harmonic
frequencies, the numerical differentiation of the B2PLYP
analytic second derivatives provides also cubic and semidiagonal
quartic force fields of good quality. However, in this case,
despite the significantly larger computational cost, no clear
improvement over calculations employing anharmonic force
constants obtained at the B3LYP level has been observed.
Additionally, in this work, it has been further confirmed that
some of the otherwise successful last generation functionals (the
M06 and ωB97X families) do not provide sufficiently accurate
vibrational properties, concerning both harmonic frequencies
and anharmonic contributions. For such reasons, it seems that
the most cost-effective approach is currently to add anharmonic
corrections calculated at the B3LYP level to harmonic force
fields obtained using more sophisticated computational models,
like, e.g., CCSD(T) or B2PLYP with large basis sets. In this
respect, the B2PLYP/AVTZ//B3LYP/N07D approach combines
the feasibility of accurate harmonic frequency computations with
the possibility of taking into account the vibrational effects

Table 5. Mean Absolute Errors (MUE), Maximum Negative
(MIN) and Positive (MAX) Deviations of Anharmonic
Vibrational Frequencies (in cm-1) Computed with Several
DFT/N07D Models and Compared to the Experimental
Dataa

pyridine furan pyrrole thiophene all

MUE
B2PLYP 9 9 10 12 10
B3LYP 9 5 6 7 7
CAM-B3LYP 19 22 21 20 20
PBE0 14 15 18 14 15
LC-ωPBE 28 44 47 35 39
M06 18 13 24 22 19
M06-2X 29 37 50 17 33
HSE06 12 16 20 11 15
ωB97 25 20 20 36 25
ωB97X 25 20 20 26 23
B97-1 13 5 5 9 8

MIN
B2PLYP -22 -11 -7 -10 -13
B3LYP -33 -15 -16 -19 -21
CAM-B3LYP -9 6 7 3 2
PBE0 -19 -7 -4 -9 -10
LC-ωPBE 0 14 8 9 8
M06 -39 -17 -118 -63 -59
M06-2X -18 -7 -15 -17 -14
HSE06 -20 -4 -4 -10 -9
ωB97 -53 -10 -21 4 -20
ωB97X -50 1 -10 3 -14
B97-1 -47 -14 -13 -20 -24

MAX
B2PLYP 40 29 32 34 34
B3LYP 24 5 24 14 17
CAM-B3LYP 46 49 57 51 51
PBE0 75 31 43 40 47
LC-ωPBE 86 92 85 95 90
M06 74 50 55 29 52
M06-2X 136 137 298 56 157
HSE06 71 39 44 38 48
ωB97 74 75 72 82 76
ωB97X 59 70 68 65 66
B97-1 22 4 18 8 13

a Experimental data from refs (and references therein): pyridine,
ref 90; furan and pyrrole, ref 91; thiophene, ref 92.
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beyond the harmonic approximation even for quite large systems
of biological and/or technological interest.
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Abstract: In view of identifying routine procedures to estimate formation enthalpies of ionic
systems such as energetic salts or ionic liquids on the basis of density functional theory (DFT),
various combinations of atom equivalent (AE) schemes, functionals, and basis sets are compared,
using a specially designed training set to parametrize the models. After correction, none of the
functionals considered proves significantly more reliable than B3LYP. A small but systematic
improvement is noted as AE values are allowed to depend on the atomic environment. However,
AE parameters fail to make up for basis set limitations, in constrast to previous observations for
neutrals. Finally, a good trade-off between reliability and cost is obtained for ions using B3LYP/
6-31++G** energies.

1. Introduction

In recent years, molecular ionic species have received much
interest as constituents of ionic liquids or high energy density
materials.1-3 Depending on the application in view, ions with
high stability and/or high energy content are needed. In this
context, procedures to predict the formation enthalpies of
ionic compounds are needed to focus new syntheses on the
most promising candidates. While a plethora of methods are
available for neutral molecules, such as group additivity
schemes,4 molecular mechanics,5,6 or quantitative structure
property relationships,7,8 evaluation of the standard formation
enthalpy ∆fH° of ions in gas-phase must resort to quantum
mechanics for most cases of practical interest.9-12 Provided
a suitable basis set is used, high level ab initio methods
perform well for charged species without any specific
treatment.13,14

However, more efficient methods are needed to predict
∆fH° for arbitrary ions on a routine basis. Unfortunetely,
detailed investigations of the performance of such procedures
when applied to charged species are still lacking. Available
data indicate that semiempirical methods are not suitable for
such systems,15,16 while simple approaches based on density
functional theory (DFT) yield reasonable estimates of the
energy content of energetic salts.17,18 Therefore, this work
compares simple quantum procedures, with a focus on

efficient DFT-based methods involving empirical local
corrections. Such procedures have been extensively inves-
tigated for neutrals.19,20 However, they might be less effective
for ions in view of the delocalization arising from the fact
that their wave function usually involves several canonical
structures.

More specifically, the present work examines how the
performance of standard correction schemes is affected
on going from neutrals to ions. Experimental gas phase
enthalpies of ions, taken from the literature, are compared
to the results of extensive calculations using various levels
of theory for the electronic energy, different procedures
to convert this energy into formation enthalpies, and a
newly introduced approach to define the training set
employed to fit the adjustable parameters involved. A clear
picture of the accuracy that may be obtained according
to the specific procedure employed is thus obtained. Cost
effective procedures are identified, with a reliability
consistent with the uncertainties associated with the
evaluation of intermolecular interactions.9,18,21 They are
now implemented in a user-friendly software package22

and allow bench chemists to perform routine calculations
of ∆fH° for materials of potential interest. On the other
hand, in contrast to many recent papers in the field,23-25

no attempt is made to improve the accuracy of state-of-
the-art DFT methodologies for gas-phase enthalpies.
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2. Computational Methods

2.1. Theoretical Framework. By definition, the formation
enthalpy of a given compound made of different atomic
elements H, C, N, ... with Z ) 1, 6, 7, ... is obtained as the
difference between the theoretical enthalpy H° of the
compound and the corresponding enthalpies H°(Z, stp) of
every atom Z in its standard reference state (i.e., standard
temperature and pressure):

Here, nZ is the number of atoms with atomic number Z in
the compound. For most light elements, the theoretical
evaluation of H°(Z, stp) is straightforward. For instance, for
the nitrogen atom, it is simply H° (N2, stp)/2 since its
standard reference state is the N2 molecule. Nevertheless, in
some cases, H°(Z, stp) may be more difficult to calculate.
Even for carbon, whose reference state (graphite) is well-
known, a problem arises because many theoretical methods
are only implemented for finite systems and cannot be used
to compute H°(Cgraphite, stp).

This problem is avoided by the use of molecular or atomic
reference states, i.e., gaseous species i with well-established
formation enthalpies ∆fH°(i). The formation enthalpy is then
obtained as

where the numbers Ni of the reference species must be
consistent with the empirical formula of the compound
studied. In other words, if nZ

i stands for the number of atoms
Z in species i, the values of Ni must satisfy for every element
Z:

In principle, any set of reference compounds i can be used
as long as the linear system defined by eq 3 is regular and
exhibits a solution {Ni}. Notwithstanding the role of the level
of theory used to compute H° data, it is important to keep
in mind that calculated ∆fH° values also depend in practice
on the reference compounds selected.

In some cases, reference compounds i with accurate ∆fH°
data available may be found in such a way that the number
of each kind of chemical bond is the same for the reference
compounds and for the molecule studied. In other words,
the compound studied is obtained from species i through an
isodesmic reaction.4 This situation is especially favorable
as the calculation of the enthalpy difference between the
molecule under study and reference species benefits from
an effective cancellation of errors. In principle, a computer
algorithm coupled with a database for accurate ∆fH° data
could be used to identify suitable reference species for every
new compound studied. In the lack of such a program, the
use of isodesmic reactions is not convenient for routine
calculations. In fact, it is not always possible to identify a
suitable isodesmic scheme. For ions, this approach is

problematic as bond orders cannot always be assigned
unambiguously.

Relaxing the constraint to rely on isodesmic reactions
allows more practical approaches. For instance, a molecular
reference species Zm may be introduced for every atomic
element Z in the compound studied.26 Possibles values of m
are m ) 2, 60, 2, 2, 8, ... for elements H, C, N, O, S, ...,
respectively. In this case, the linear system defined by eq 3
is diagonal. As a result, eq 2 becomes simply

It is clear from eq 4 that the role of the differences ∆fH°(Zm)
- H°(Zm) between experimental and theoretical enthalpies
is simply to shift the zero of enthalpies in order to make
theoretical data consistent with the conventional thermody-
namic reference state. On the other hand, the second term
in this equation depends in practice on the reference
compounds used because of the uncertainties associated with
experimental ∆fH°(Zm) and theoretical H°(Zm) data.

As the formation enthalpies of gaseous atoms are well-
known for the main group elements, their use as reference
states yields small uncertainties associated with experimental
data. Formation enthalpies are then obtained as the difference
between the formation enthalpies of the gaseous atoms and
the atomization enthalpy of the compound:

Unfortunately, this approach leads to much larger errors than
isodesmic reaction schemes since the errors on calculated
enthalpies do not effectively cancel for atomization reactions.
A simple approach to remove these systematic errors consists
in introducing empirical parameters XZ:

In further attempts to improve the results, XZ may be assumed
to depend not only on the atomic number Z of the atom but
also on its environment within the molecule under study:

The last sum in eq 7 runs over every atom in the compound
studied. The present work compares the performance of
procedures based on this equation, according to the level of
theory used to compute H° and the actual definition adopted
for the XA parameters, hereafter referred to as atom equiva-
lents (AEs).

Beyond AE schemes, a number of alternatives have been
introduced to convert HF or DFT energies into formation
enthalpies while correcting their main deficiencies.27,28 These
methods focus on neutral molecules and rely on empirical
relationships. However, simpler procedures based on eq 7
are not necessarily less reliable.29,39 In favorable situations,

∆fH° ) H° - ∑
Z

nZH°(Z, stp) (1)

∆fH° ) ∑
i

Ni∆fH°(i) + (H° - ∑
i

NiH°(i)) (2)

∑
i

nZ
i Ni ) nZ (3)

∆fH° ) H° + ∑
Z

nZ

m
(∆fH°(Zm) - H°(Zm)) (4)

∆fH° ) ∑
Z

nZ∆fH°(Z) - ( ∑
Z

nZH°(Z) - H°) (5)

∆fH° ) H° + ∑
Z

nZCZ ) H° + ∑
Z

nZ(∆fH°(Z) -

H°(Z)) + ∑
Z

nZXZ (6)

∆fH° ) H° + ∑
Z

nZ(∆fH°(Z) - H°(Z)) + ∑
A

XA (7)
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they yield average absolute deviations (AAD) from experi-
mental results close to 2.5 kcal/mol.30,40 Therefore, all
models considered in the present work rely on eq 7. They
differ only in the definition adopted for the XA parameters.

2.2. Definition of Atom Equivalents. Five procedures are
considered in this work for predicting formation enthalpies
of ions from theoretical total energies and eq 7. They are
named Pm where m is the number of adjustable parameters
required to fit ∆fH° values of compounds made of HCNOF
atoms. In procedure P5, XA is assumed to be independent of
the environment of the atom. It depends only on the atomic
number Z of the atom. Therefore, only five adjustable
parameters are required for HCNOF. Procedure P8 introduces
three additional AEs C′, N′, and O′ for atoms involved in
multiple bonds, as done by Rice and co-workers.39,41

In procedure P10, an atom equivalent depends not only
on the atomic symbol X but also on the atom coordination
number n.42 It is thus denoted Xn. In principle, the 10 P10
parameters listed in Table 1 do not allow for handling of
ammonium and hydronium cations, due to the lack of N4
and O3 parameters. In fact, it was previously noted that using
the N3 value instead of N4 for ammonium salts yields
satisfactory results.17 In this work, using N3 and O2
parameters for NH4

+ and H3O+ does not lead to specially
large deviations. This indicates that N4 and O3 values
derived from these two ions are close to the N3 and O2
parameters, which refer to atoms in different bonding
environments but with the same hybridizations. The deriva-
tion of optimal N4 and O3 values is beyond the scope of
this work, as such values should be averaged over typical
atomic environments. Moreover, for reasons detailed in
section 3, present parameters are derived from gas-phase data
for neutrals.

Finally, procedure P3 aims at reducing the number of
adjustable parameters by taking advantage of the linear
correlation often observed between the values of the equiva-
lents for CNOF atoms and the corresponding atomic
numbers. In other words, while a constant value is attributed
to the H equivalent, the others are assumed to vary according
to XA ) a + bZ where Z is the atomic number of atom A.
This leaves only three adjustable parameters: a, b, and H.
Such a procedure to reduce the number of empirical
parameters is especially interesting in view of extending AE
methods beyond first-row atoms.

These procedures are summarized in Table 1. In earlier
studies, specific AEs or group equivalents are sometimes
introduced for some special chemical groups, such as nitros
or azides.41,42 However, such group specific parameters
hamper the generality of the procedure. In fact, they are often
unsuitable for ions because of ill-defined bond orders.
Accordingly, no attempt is made here to introduce such group
parameters. On the other hand, alternative approaches based

on bond equivalents (BEs), charge-dependent AEs, or BEs
depending on Mulliken bond populations have also been
investigated. However, for the present compounds, they
prove significantly worse than the Pn procedures described
above, despite encouraging results sometimes reported for
other data sets or theoretical levels.30,31,43

2.3. Computational Procedures. Having defined the
atom equivalents XA involved in eq 7, computational
procedures remain to be selected to derive theoretical
enthalpies H°(Z) for gaseous atoms and H° for the compound
under study. In this work, H°(Z) is computed at the
G3MP2B3 level,44 a specially efficient version of the well-
known G3 composite method.45 This choice is irrelevant as
any deficiency in H°(Z) will be absorbed into the AE values
XA. However, an explicit evaluation of H°(Z) with reasonable
accuracy makes it possible to interpret XA as approximate
corrections to H°.

The evaluation of molecular enthalpies H° from total
electronic energies E0 (frozen atoms at 0 K) and vibrational
frequencies is straightforward within the ideal gas and
harmonic approximations. Because frequencies add a sig-
nificant computational overhead compared with single-point
energy calculations, simple additive schemes have been
developed to estimate H° - E0, which includes the zero-
point energy as well as thermal contributions.30,43,46 In this
work, it is obtained from standard enthalpic corrections
Hcorr(Z) introduced by Winget and Clark:46

Finally, the approach based on eqs 7 and 8 amounts to adding
atomic parameters to the total quantum chemical energy E0

in order to obtain the formation enthalpy:

The YA parameters introduced previously42 and also referred
to as -εA

18 are commonly used for straightforward conver-
sion of E0 data into ∆fH° values. In this work, it was decided
to make their various contributions explicit. This facilitates
the interpretation of the XA parameters. Since the latter should
ideally be zero, their magnitude provides an estimate of the
errors in the other contributions. Previous studies show that
these errors are dominated by the uncertainties associated
with E0 values.42,46

The derivation of formation enthalpies from eq 7 involves
the calculation of total energies E0. They are computed using
various levels of theory: the nonlocal exchange HF func-
tional;47 the self-consistent-charge density functional tight
binding scheme (SCC-DFTB);48 functionals based on the
local density approximation (LDA): XR49 and SVWN;49,50

functionals based on the generalized gradient approximation
(GGA): BP86,51,52 BLYP,51,53,54 PW91,55,56 mPW91,57

PBE,58,59 and HCTH;60 hybrid GGA functionals (H-GGA):
B3LYP,51,53,61 B3P86,51-53 B3PW91,51,53,55 PBE1PBE,62

B1LYP,63 B98,64 and the “half and half” functionals

Table 1. Definition of the Correction Procedures P3, P5,
P8, and P10 Used in This Work

P3 specific AE for H, XA ) a + bZ for A ) C, N, O, F
P5 one AE for every element: H, C, N, O, F
P8 additional AEs C′, N′, O′ for atoms with multiple bonds
P10 H1, C4, C3, C2, N3, N2, N1, O2, O1, F1

H° ) E0 + ∑
Z

nZHcorr(Z) (8)

∆fH° ) E0 + ∑
Z

nZ(∆fH°(Z) - H°(Z) + Hcorr(Z)) +

∑
A

XA ) Eo + ∑
A

YA (9)
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BHandH and BHandHLYP implemented in Gaussian65

following those introduced by Becke;66 meta GGA func-
tionals (M-GGA): TPSS67 and VSXC;68 and hybrid meta
GGA functionals (HM-GGA): B1B9561 and BMK.69

The large number of functionals presently considered
stems from the fact that AE-based correction procedures have
been so far applied only to a few popular functionals,
especially BP86 and B3LYP. A systematic application of
such procedures is of interest because functionals discarded
as inaccurate on the basis of raw ∆fH° predictions might
prove valuable if the errors lend themselves to effective
corrections. For instance, earlier attempts to obtain good
thermochemistry from XR calculations rely on atom-depend-
ent values of the Slater exchange parameter R rather than
AE-based corrections.70 Although so far unsuccessful, the
search for effective procedures to estimate ∆fH° from XR
calculations is of special interest as the XR functional lends
itself to a fully analytic calculation of the Hamiltonian matrix,
in constrast to the others.71 In this work, the standard value
of 0.7 is used for the Slater coefficient in order to make up
for the lack of an explicit correlation model. With regard to
the correlation part of SVWN, the default version in
Gaussian65 is used, namely, the one numbered III in the
original paper.50 Present nomenclature for other DFT func-
tionals follows the one adopted in a recent review of their
performance, in which a more comprehensive list of refer-
ences may be found.72 More recent HM-GGA functionals,
including TPSSh67 or the M06 family,25,73 are not yet
available in our group and lie beyond the scope of the present
paper. Although they are relatively costly, these functionals
perform remarkably well without a posteriori corrections.
It will be of interest to investigate whether their predictions
can be further enhanced by correction procedures such as
those considered here.

In addition to the new AEs introduced in the present paper,
alternative approaches to ∆fH° are used for comparison:
G3MP2B3,44 and popular semiempirical methods based on
the NDDO approximation, namely, AM1,74 PM3,75,76 and
RM1.15 The latter is a recent reparametrization of the AM1
Hamiltonian which provides a remarkable improvement for
the prediction of formation enthalpies of organic and
biological molecules. In order to compare the predictive
power of the models for ions, the root-mean-square deviation
(RMSD) between calculated and observed values is used as
the main criterion. However, the average absolute deviation
(AAD) is also reported to make comparison with previous
work easier. On the other hand, although this study focuses
on ions, RMSD and AAD values derived from a leave-one-
out cross validation of the training set data are also
considered as rough indicators of the reliability of these
procedures for neutral systems. The following software is
used for all present calculations: MOPAC7 for semiempirical
methods,77 the original DFTB code for SCC-DFTB,48 and
Gaussian 03W for ab initio and DFT methods.65

3. Database

The selection of a suitable database to assess or parametrize
computational procedures is no trivial task. The scope of
the method, its expected accuracy, or the number of

adjustable parameters to be fitted must be considered. Over
the years, highly accurate thermochemical data have been
collected to assess the performance of high-level theories,
especially composite ab initio models.78-82 Since they
exhibit only relatively small species, such data sets are not
optimal to parametrize more approximate procedures ap-
plicable to large organic compounds.

Such procedures, based on either molecular mechanics,
semiempirical Hamiltonians, HF, or DFT are developed using
larger data sets obtained by including somewhat less reliable
data, often without error bars.15,16,83,84 This is acceptable,
as the corresponding procedures yield typical errors signifi-
cantly larger than experimental uncertainties. Extended data
sets used to develop general schemes invariably exhibit a
significant proportion of hydrocarbons or other simple,
monofunctionalized organic compounds. As a result, they
might provide too optimistic views of the reliability of a
given procedure when applied to unusual compounds, such
as molecular ions.46

An alternative approach consists in developing specific
parameters on the basis of a restricted family of compounds.
For instance, training sets focused on nitro compounds have
been used to derive AEs specially optimized for energetic
materials.39,41 Specialized equivalents have also been pub-
lished for hydrocarbons,85,86 propellanes,87 and some mono-
functionalized compounds.88,89 For molecular ions, this
strategy is not well suited owing to the scarcity and relative
lack of reliability of available gas phase data. Furthermore,
while AE values depend on local atom environments, they
should not depend on the total charge of the compound.
Indeed, besides a charged group, ions may exhibit the same
functional groups as neutral molecules. Therefore, it would
make no sense to develop specific AEs for ionic systems.

Accordingly, present procedures are parametrized exclu-
sively against data for neutral CHNOF molecules compiled
in Table 2, while ∆fH° data for ions (Tables 3 and 4) are
used only for validation purposes. This provides a stringent
test of the transferability of the parameters. For most
compounds in the training set, ∆fH° is reported to within
<1 kcal/mol (Table 2). In contrast, error bars are often
unavailable for ions. Therefore, ∆fH° data reported in Tables
3 and 4 are prone to large uncertainties, and one should not
attach too much significance to individual values. Neverthe-
less, they are significantly more reliable on average than
present DFT-based values, as confirmed by their overall good
agreement with G3MP3B3 data (Tables 3 and 4). Therefore,
the corresponding RMSD and AAD values provide suitable
comparison criteria to assess the performance of the present
procedures.

The present training set is specially designed to ensure a
balanced coverage of the many possible chemical environ-
ments for an atom in polyatomic species, thus avoiding a
bias of the parametrization due to the prevalence of specific
moieties such as alkyl groups. First, all possible bonds
between CNOF atoms are listed, considering only 1, 2, and
3 as possible formal values for the bond orders. Then,
dangling bonds are saturated with H atoms. This yields 24
simple compounds for which experimental ∆fH° values are
available. For each of these compounds, and whenever
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possible, a new molecule is obtained by substitution of a
hydrogen atom, in such a way that ∆fH° is available in the

NIST Webbook for the new derivative.90 At this stage,
aromatic systems are not represented in the database since

Table 2. Experimental Formation Enthalpies (with Error Bars when Available) and Corresponding Deviations for Theoretical Values
Calculated Using G3MP2B3, PM3, and DFT, More Specifically the P5 Procedure Applied to B3LYP/6-31++G** Total Energiesa

compound CAS number exptl. G3MP2B3 PM3 DFT

HNdNH (trans) 15626-43-4 50.9 ( 2 -2.9 -13.1 -3.3
C10H8 (naphthalene) 91-20-3 35.9 ( 2 -2.6 4.8 1.0
H5C6-NO2 98-95-3 16.4 ( 0.2 -2.2 -1.7 -1.2
C4H4N2 289-95-2 46.8 ( 0.4 -2.2 -8.6 -4.8
F-CHd CH2 75-02-5 -32.5 -1.9 3.8 -3.1
C9H7N (quinoline) 91-22-5 47.9 -1.9 -0.2 -0.2
H5C6-NdN-C6H5 17082-12-1 96.9 ( 0.3 -1.9 -6.0 -0.7
HCN 74-90-8 32.3 -1.7 0.5 -1.9
(CH3)2CdO 67-64-1 -49.8 ( 0.1 -1.4 -3.3 -2.6
H2 1333-74-0 0.0 -1.0 -13.4 6.0
C6H6 71-43-2 19.8 ( 0.2 -0.7 3.6 -0.5
C5H5N 110-86-1 33.6 -0.7 -3.1 -1.9
H2CdO 50-00-0 -26.0 ( 0.1 -0.7 -8.1 0.7
C2H4N4 (1-methyl-1H-tetrazole) 16681-77-9 77.2 ( 0.5 -0.5 6.9 -1.0
H2CdCH2 74-85-1 12.5 ( 0.1 -0.5 4.1 0.7
HCCCH3 74-99-7 44.3 ( 0.2 -0.5 -4.1 -1.0
HCCH 74-86-2 54.3 ( 0.2 -0.2 -3.6 1.4
H5C6-NH2 62-53-3 20.8 ( 0.2 -0.2 0.5 0.5
H3CF 593-53-3 -56.0 -0.2 2.2 -3.1
HF 7664-39-3 -65.3 ( 0.2 0.0 2.4 1.4
C3H3NO (isoxazole) 288-14-2 19.6 ( 0.1 0.0 15.3 -0.2
H2CdCH-CH2-CH3 106-98-9 -0.1 ( 0.2 0.0 1.4 0.2
H2CdC(CH3) 2 115-11-7 -4.3 ( 0.3 0.2 0.7 1.0
C4H4N2 (pyridazine) 289-80-5 66.5 ( 0.3 0.2 -10.5 -1.4
H3C-CH2-OH 64-17-5 -55.9 ( 0.5 0.2 -0.7 -1.7
H2O 7732-18-5 -57.8 ( 0.01 0.2 4.3 2.4
H3C-CH3 74-84-0 -20.0 ( 0.1 0.2 1.7 -1.4
CH4 74-82-8 -17.9 0.2 4.8 0.2
H3C-OH 67-56-1 -48.1 ( 3 0.2 -3.6 -1.0
NF3 7783-54-2 -31.6 0.2 7.2 -2.6
H3C-CH2-CH2-CH3 106-97-8 -30.0 ( 0.2 0.5 1.0 -1.4
H3C-NO2 75-52-5 -17.9 0.5 1.9 -0.5
(CH3)3CONO 540-80-7 -41.1 ( 1 0.5 16.0 2.6
HO-NdO 7782-77-6 -18.3 0.5 4.8 0.7
N2 7727-37-9 0.0 0.5 17.4 0.5
F3C-NF2 335-01-3 -169.0 ( 0.6 0.5 1.0 -1.0
NH3 7664-41-7 -11.0 0.7 -1.9 0.2
C8H6N2 (phthalazine) 253-52-1 78.8 ( 0.8 0.7 -6.5 1.9
H2N-C6H4-NO2 (p-nitroaniline) 100-01-6 13.2 ( 0.4 0.7 -2.4 0.7
C4H87N2O3 (4-nitromorpholine) 4164-32-3 -31.3 ( 0.4 0.7 -1.7 -1.0
H3C- ONO2 598-58-3 -29.1 ( 0.3 0.7 -3.1 -1.9
H3C-CH2-CH2-NH2 107-10-8 -16.7 ( 0.2 0.7 0.0 -0.2
(CH3)3C-NO2 594-70-7 -42.3 ( 0.8 1.0 10.0 3.6
H3C-COOH 64-19-7 -103.5 ( 0.6 1.0 1.4 -0.7
C2H3N3 (1,2,4-triazole) 288-88-0 46.1 ( 0.2 1.0 5.7 -0.2
HOOH 7722-84-1 -32.5 1.2 -8.1 0.5
H3C-NH2 74-89-5 -5.5 1.2 0.2 0.2
HO-NO2 7697-37-2 -32.1 1.2 -5.7 -0.5
F2 7782-41-4 0.0 1.4 -21.5 -0.0
(CH3)2N-NO2 4164-28-7 -1.2 ( 0.3 1.4 2.4 -1.4
OF2 7783-41-7 5.9 1.4 -10.5 -2.4
H3C-OOH 3031-73-0 -31.3 1.7 -5.7 -1.0
HNdO 14332-28-6 23.8 1.7 -9.8 4.8
H2N-OH 7803-49-8 -11.4 1.7 -1.9 0.7
FO-NO2 7789-26-6 2.5 1.7 -8.4 -2.6
H2N-NH2 302-01-2 22.8 1.7 -1.9 1.0
C4H4N2 (pyrazine) 290-37-9 46.9 ( 0.4 1.9 -7.4 -0.7
H2CdCH-CN 107-13-1 41.3 2.4 8.8 1.0
C5H10N2O2 (1-nitropiperidine) 7119-94-0 -10.6 ( 0.6 2.9 3.1 2.2
C8H6N2 (quinoxaline) 91-19-0 57.4 ( 0.8 3.3 -1.2 3.3
HOF 14034-79-8 -23.5 3.6 -5.5 2.2
H2CdNH 2053-29-4 16.0 ( 2 4.8 5.0 5.0
FNH2 15861-05-9 -11.5 ( 0.6 5.7 6.7 3.8
F3C-OF 373-91-1 -182.8 ( 2.4 6.5 -4.3 4.8

a Experimental values taken from the NIST Webbook,90 except for HNdNH whose formation enthalpy is taken from ref 96. The reader is
referred to references therein for further details. Unit: kcal/mol.
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only integer bond orders have been considered. Therefore,
additional aromatic and nitro compounds are subsequently
included in order to introduce fractional formal bond orders.

Finally, this work relies on a training set of 64 neutral
molecules and a validation set of 73 ions, including 43
cations and 30 anions. All of these compounds are listed in
Tables 2, 3, and 4. To obtain statistical data involving SCC-
DFTB, three compounds are discarded. F2 is removed from
the training set, as SCC-DFTB yields an unrealistic F-F
bond length of 1.112 Å, to be compared with the B3LYP/
6-31G* value of 1.404 Å. The OH+ and NH2

+ cations are
not considered either since the data available correspond to
their triplet state, which cannot be handled by the tight-
binding formalism at the basis of SCC-DFTB.

4. Equilibrium Geometries

4.1. Assessment against B3LYP/6-31G* Structures. The
reliability of different levels of theory for the determination
of equilibrium geometries is extensively documented in the
literature.91,92 B3LYP/6-31G* geometries are known to be

quite accurate. In fact, the composite methods G3B3 and
G3MP2B3 rely on B3LYP/6-31G* structures.44 However,
for large ions or when a large number of structures is to be
considered, more efficient methods are of interest. Presently
available data suggest SCC-DFTB as the method of choice
for fast optimization of molecular geometries, except in the
presence of NO bonds for which huge errors are noted.93,94

However, this conclusion emerges from investigations mainly
focused on common CHNO neutrals. Therefore, further
assessment of geometries obtained with such methods is of
interest, especially for ions.

Experimental gas-phase geometries are clearly not avail-
able for most species considered in this work. Therefore,
the quality of SCC-DFTB and NDDO structures is assessed
against B3LYP/6-31G* geometries. Among present NDDO
methods, the best agreement with B3LYP/6-31G* geometries
is obtained for AM1 structures. Root mean square deviations
from reference B3LYP/6-31G* data for bond lengths and
angles are reported in Table 5. Deviations from B3LYP/6-
31G* prove systematically larger for ions than for neutral
species, and larger for cations than for anions. This latter

Table 3. Same Data As in Table 2 for Cationsa

compound exptl. G3MP2B3 PM3 DFT

C3H5
+ (cyclopropyl) 235.0 a -6.2 -2.2 -9.8

NO2
+ (nitrogen dioxide) 233.0 a -4.8 -24.4 1.9

C4H9
+ (isobutyl) 176.0 a -3.3 2.6 -7.6

OH+ (triplet) 309.1 b -2.9 -19.4 6.0
NH4

+ (ammonium) 155.0 a -2.2 -1.4 -2.4
CH+ 387.8 b -2.2 -21.7 9.3
CHO+ (formyl) 199.0 a -1.4 -22.0 4.5
C4H7

+ (methyl allyl) 207.9 b -1.4 3.8 -7.4
NO+ (nitric oxide) 237.0 a -1.2 1.2 8.4
NH2

+ (triplet) 302.0 b -1.2 -41.8 4.3
C2H4

+ (ethylene) 257.0 a -0.7 -8.1 -5.3
C3H5

+ (propenyl) 237.0 a -0.7 1.2 -4.5
C4H5O+ (C-protonated furan) 165.0 b -0.5 10.3 -3.3
C5H6N+ (pyridinium) 178.0 b 0.0 9.1 -3.1
CH3O+ (H2COH) 169.3 b 0.7 -2.9 1.2
CH3

+ (methyl) 261.0 a 1.0 -4.3 3.3
C2H5

+ (ethyl) 216.0 a 1.2 6.5 0.0
CH4N+ 179.4 b 1.2 5.7 0.7
C3H3

+ (cyclopropenyl) 257.0 a 1.2 12.7 0.2
C7H7

+ (tropilium) 209.0 a 1.2 12.0 -4.8
HCNH+ 225.8 b 1.7 -12.2 4.5
OCOH+ 141.0 b 1.7 -1.4 3.6
CH3CO+ 156.0 b 1.9 2.9 2.9
C6H5

+ (phenyl) 269.3 b 1.9 19.4 0.7
C3H7

+ (1-propyl) 211.0 b 2.2 3.3 -21.5
CH4N+ (methaniminium) 178.0 a 2.6 7.2 2.2
CH3CNH+ 195.0 b 2.6 2.6 1.4
C3H5

+ (allyl) 226.0 a 2.6 6.7 -1.0
HO-CH-OH+ 96.0 b 3.1 -0.7 1.7
CH3OH2

+ 136.0 b 3.1 20.6 1.2
C4H9

+ (n-butyl) 183.0 b 3.1 7.6 -1.9
C3H7

+ (2-propyl) 190.9 b 3.3 6.2 -1.4
C3H3

+ (propynyl) 281.0 a 3.6 -5.5 0.2
CH3-OH-CH3

+ 130.0 b 4.3 27.0 0.5
CH3CHOH+ 139.0 b 4.5 5.5 1.9
C2H3

+ (vinyl) 266.0 a 5.0 -1.9 5.7
C4H9

+ (tert-Butyl) 165.8 b 5.3 12.0 1.0
C7H7

+ (benzyl) 212.0 a 5.5 15.3 1.9
C5H9

+ (cyclopentyl) 188.0 a 5.7 5.3 2.4
H3O+ (hydronium) 138.9 a 6.0 20.1 7.6
C4H7

+ (2-butenyl) 200.0 a 6.2 11.7 0.5
C6H11

+ (cyclohexyl) 177.0 a 7.2 9.1 3.1
C4H7

+ (cyclobutyl) 213.0 a 17.9 12.4 13.4

a Sources: a ) ref 15, b ) ref 98.

Table 4. Same Data as in Table 2 for Anionsa

compound exptl. G3MP2B3 PM3 DFT

CN- (cyanide) 17.7 b -3.1 9.8 -5.3
C6H5

- (phenyl) 54.7 b -2.9 -2.9 -0.2
C5H5

- (cyclopentadienyl) 21.3 a -2.6 -5.3 2.4
HCO2

- (formate) -110.9 a -1.7 0.0 -3.8
H3C-CH2

- 35.1 b -1.4 -3.3 0.7
C6H5CO2

- -97.3 b -1.2 7.4 0.7
C6H5O- -39.4 b -1.2 -4.5 -0.5
H3C-N-CH3

- 26.1 b -1.0 -18.2 -2.2
C4H4N- 18.9 b -1.0 -7.4 1.4
C5H5

- 19.6 b -0.7 -3.6 4.1
HCC- 65.5 b -0.5 10.8 0.5
C6H5O- (phenoxy) -40.5 a 0.0 -3.6 -0.5
CHO- 1.9 b 0.0 -9.3 0.0
NH2

- 27.0 b 0.0 11.2 3.1
OH- (hydroxyde) -33.2 a 0.0 15.5 2.2
CH2CN- 25.1 b 0.2 3.3 -3.1
CH3NH- 32.0 b 0.2 -10.3 0.5
C2H6N- (dimethyl nitrogen) 24.7 a 0.2 -16.7 -0.7
H2CCH- 52.8 b 0.5 8.8 2.6
C2H3O2

- (acetate) -122.5 a 0.7 2.9 -0.5
NO2

- -45.2 b 1.0 2.2 -1.9
CH2NO2

- -27.2 b 1.2 -16.0 -2.2
HOO- -22.5 b 1.4 -1.4 -0.7
CH4N- (methylamine) 30.5 a 1.7 -8.6 0.5
C5 H11

- (neopentyl) 3.2 a 1.9 7.9 9.6
NO3

- (nitrate) -74.7 a 2.2 -18.4 -2.6
CH3

- 33.2 b 2.4 18.2 4.8
C2H5O- (ethoxy) -47.5 a 4.5 2.6 2.9
CH3O- (methoxy) -36.0 a 4.5 -1.9 3.6
H- (hydrure) 33.2 b 6.2 58.6 4.8

a Sources: a ) ref 15, b ) Supporting Information from ref 94.

Table 5. Summary of Root Mean Square Deviations of
Bond Lengths and Angles Calculated Using Efficient
Methods (AM1 and SCC-DFTB) from Corresponding
Values Calculated at the B3LYP/6-31G* Level

lengths (Å) angles (deg)

AM1 SCC-DFTB AM1 SCC-DFTB

neutrals 0.015 0.025 1.327 2.103
cations 0.043 0.046 7.855 5.720
anions 0.016 0.039 1.606 3.422
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finding might be unexpected, since the minimal valence basis
set used at the AM1 level might be expected to be a more
signifiant problem for anions than for cations, owing to the
more diffuse character of anionic electron clouds. However,
it is understandable if the limitations of AM1 for ions arise
primarily as a result of the simplifications regarding the
Hamiltonian matrix, rather than as a consequence of the lack
of flexibility of the basis set.

SCC-DFTB appears significantly less reliable than AM1
for anions and neutral species, with RMSD values for bond
lengths and angles about twice as large. This result is
unexpected since AM1 is parametrized primarily against data
for neutral compounds. Moreover, it contrasts with previous
investigations focused on CHNO compounds.93,94 However,
a detailed examination of present data reveals that the
relatively poor performance of SCC-DFTB is due to fluori-
nated compounds. In particular, C-F bond lengths in
F3C-NF2 are overestimated by as much as 0.177 Å.
Moreover, while N-O bonds are known to be poorly
described by SCC-DFTB,93,94 it is especially true for the
O2N-OF bond length which is too long by 0.131 Å.

4.2. Influence on Energies and Enthalpies. Total energy
increases by up to 6 kcal/mol are observed on substituting
B3LYP/6-31G* geometries with either SCC-DFTB or AM1
structures, with many increases in the range 2.5-5 kcal/mol.
This is consistent with the root-mean-square increase of about
5 kcal/mol observed previously on substituting DFT geom-
etries with molecular mechanics structures.42 Because such
energy variations have the same magnitude as typical
deviations from experimental values of ∆fH° derived from
present AE schemes, as detailed below, applying such
schemes to approximate geometries would lead to a dramatic
loss of accuracy.

However, it is interesting to note that this is not the case
provided that the AEs are specifically optimized for these
more approximate geometries. Indeed, Table 6 reports the
performance of the P10 procedure applied to B3LYP/6-
311++G(2df,2p) energies calculated on geometries opti-
mized at lower levels of theory, using AE specifically
optimized for the corresponding structures. Only a moderate
increase of the RMSD is observed on going from B3LYP/
6-31G* structures to either AM1 or SCC-DFTB structures.
This shows that reoptimizing the AE parameters is an
efficient way to make up for systematic errors affecting the
underlying geometries. As a result, the use of single-point
calculations on AM1 or SCC-DFTB geometries is reason-
able, provided that specific AEs are used. On the other hand,
as discussed in the sequel, the best results for ions, and more

specifically for anions, are obtained with relatively flexible
bases including diffuse functions. Therefore, the use of
B3LYP/6-31G* geometries is no dramatic overhead. Unless
mentioned otherwise, the following results refer to such
structures.

5. Comparison of Present Correction
Schemes

While many different correction schemes are used in the
literature, systematic comparisons of their relative merits are
still lacking. Some results suggest that more flexible schemes
yield more reliable ∆fH° values.29 However, with a lack of
cross-validation or application of the models to external test
sets, it is not possible to determine whether the improvement
observed on increasing the flexibility of the empirical
correction scheme reflects a true enhancement of the predic-
tive power of the method.

For all theoretical levels employed in the present work to
compute total energies, the procedures P3, P5, P8, and P10
have been applied to convert total energies into formation
enthalpies. Whatever the specific procedure used, quite
similar results are obtained. Nevertheless, the RMSD values
reported in Table 7 indicate a small but mostly systematic
improvement with the number of adjustable parameters, with
the P10 and P8 procedures yielding the smallest RMSD
values. On the other hand, no improvement is noted
concerning the minimum and maximum deviations from
experimental values. Similar observations can be made for
other basis sets and functionals. The only exceptions concern
the functionals for which the assumption at the basis of the
P3 correction scheme breaks down, such as PBE1PBE and
to some extent PBE (c.f. section 8). In such cases, P3
naturally leads to very poor predictions. The fact that going
from P5 to P10 provides only a few improvements indicates
that the P8/P10 definitions for the AEs account only for a
small fraction of their environment dependence. Alterna-
tively, one might consider introducing even more specific
AEs, or group equivalents, which appear to provide some
improvement for neutrals.41,42 However, their determination
requires a training set larger than the present one. Moreover,
this approach does not address the fundamental limitations
of equivalents associated with their local character.

Table 6. RMS Deviations from the Experiment of
P10-B3LYP/6-311++G** Enthalpies for Neutrals (N),
Cations (C), Anions (A), and the Whole Set of Ions (AI)a

geometry N C A AI

B3LYP/6-31G* 2.1 (-4.8/+6.0) 5.7 3.3 4.8 (-21.5/+13.4)
AM1 2.3 (-4.8/+7.4) 6.4 5.3 6.0 (-10.0/+25.3)
SCC-DFTB 3.0 (-6.7/+6.0) 5.0 4.0 4.6 (-9.8/+15.1)

a In addition, minimum and maximum deviations are given in
parentheses for neutrals and ions. All data are in kcal/mol. The
performance of SCC-DFTB for cations is overestimated by the fact
that cations in triplet states are not considered at this level.

Table 7. RMS Deviations from Experiment of B3LYP
Enthalpies Calculated Using the P3, P5, P8, and P10
Correction Schemes, with the 6-311++G(2df,2p) and
6-31++G** Basesa

N C A AI

6-311++G(2df,2p) basis set
P3 2.2 (-5.5/+7.4) 6.2 3.6 5.3 (-22.0/+14.8)
P5 2.6 (-4.3/+6.2) 6.3 3.2 5.2 (-22.0/+15.1)
P8 2.3 (-5.3/+5.7) 6.0 3.2 5.0 (-22.2/+13.4)
P10 2.2 (-4.5/+5.7) 5.9 3.2 4.9 (-22.2/+13.4)

6-31++G** basis set
P3 2.9 (-4.1/+8.8) 6.6 3.7 5.6 (-22.5/+14.3)
P5 2.8 (-4.8/+7.9) 6.7 3.5 5.6 (-22.5/+14.3)
P8 2.7 (-5.5/+6.7) 6.5 3.4 5.4 (-22.7/+13.6)
P10 2.3 (-4.5/+5.5) 6.1 3.4 5.2 (-22.7/+12.7)

a Minimum and maximum deviations for neutrals and ions are
also given in parentheses. All values are reported in kcal/mol.
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6. Influence of the Basis Set

It is well-known that relatively extended basis sets including
diffuse functions are required for an accurate description of
the electronic structure and properties of anions. The present
work shows that this conclusion remains valid for ∆fH° after
application of the present correction schemes. In other words,
AEs are not efficient to make up for basis set deficiencies.
This observation is illustrated in Table 8 by the results
obtained with the B3LYP functional associated with the P10
procedure.

For neutrals, cations, and anions, ∆fH° predictions steadily
improve as more flexible bases are used. For neutrals and
cations, the basis set limit appears to be obtained using
6-311+G*, with 6-31+G** already providing quite good
results. For anions, diffuse functions on hydrogen atoms,
usually considered to play a marginal role,92 prove necessary
to obtain RMSD values below 3.5 kcal/mol. Increasing the
flexibility of the basis beyond 6-311++G** still yields some
improvement for anions. However, it is not very significant,
since the RMSD decreases only by 0.2 kcal/mol if
6-311++G(2df,2p) is used instead. Therefore, one might
prefer the former basis which is about 5 times more efficient.

Not surprisingly, a flexible basis set including diffuse
functions is especially mandatory for anions. RMSD values
> 15 kcal/mol are obtained otherwise. With the most flexible
bases, comparable RMSDs (2.6-3.2 kcal/mol) are obtained
for neutrals and anions, while the corresponding value (6.3
kcal/mol) for cations is significantly larger, as discussed in
further detail in section 9.

While diffuse functions are especially important for anions,
they prove significant for neutral compounds as well, with
the RMSD decreasing from 3.9 to 2.9 kcal/mol on going
from 6-31G** to 6-31+G**. Not surprisingly, their role is
not significant for cations which exhibit more compact
electron clouds.

Focusing on neutrals, the deviations from experimental
results increase 2-fold on going from the most flexible to
the smallest basis. The RMSD of 3.9 kcal/mol obtained using

the popular 6-31G** basis is significantly larger than the
value of 2.5 kcal/mol obtained with the most flexible bases.
On the other hand, a numerical basis set such as DN** proves
superior to a Gaussian basis of similar flexibility, such as
6-31G**, in line with previous results.20 This finding is not
surprising as a numerical basis better spans the space of the
s and p atomic orbitals.

Finally, 6-31++G** appears to provide a reasonable
trade-off between efficiency and accuracy if anions are to
be considered, while 6-31+G** should be sufficient other-
wise. Indeed, it yields RMSD values within 0.5 kcal/mol of
those obtained using 6-311++G(2df,2p) which is almost 8
times more costly. This good performance is observed for
neutral compounds, for cations, and for anions as well.

7. Influence of the Functional

A comparison of the performance of various functionals for
∆fH° prediction is provided in Table 9, using the P10
procedure and the 6-31++G** basis set. The best results
are obtained using popular H-GGA functionals, especially
B3LYP and B3PW91, with RMSD < 5.3 kcal/mol for ions
and < 2.4 kcal/mol for neutrals. Although PBE1PBE results
are better for neutrals, they appear less reliable for ions. Other
H-GGA functionals, especially B3P86, BHandH, and to a
lesser extent BHandHLYP do not perform so well. The
relatively poor results obtained using BHandHLYP may be
attributed to the overestimated contribution of HF exchange
in this inappropriately constructed functional. Similarly, the
results obtained using the more complicated HM-GGA
approach are somewhat less satisfactory. All in all, among
the DFT functionals considered is this paper, B3LYP,
B3PW91, B98, and PBE1PBE emerge as the most reliable
for ∆fH° predictions on ionic systems.

Table 8. RMS Deviations (kcal/mol) from Experimental
Results of B3LYP Enthalpies Calculated Using the P5
Procedure and a Variety of Basis Sets, for Neutrals
Compounds of the Training Set (N), Cations (C), Anions
(A) and All Ions (AI) of the Test Seta

N C A AI CPU

6-31G* 4.9 7.7 26.1 17.9 273
6-31G** 3.9 7.5 25.8 17.7 338
6-311G* 4.0 6.5 16.7 11.9 477
6-31+G* 3.6 7.3 9.7 8.4 731
6-31+G** 2.9 6.7 9.6 8.1 861
6-31++G** 2.8 6.7 3.5 5.6 1022
6-311+G* 3.3 6.7 5.3 6.1 1211
6-311+G** 2.5 6.1 4.9 5.6 1418
6-311++G** 2.5 6.0 3.4 5.1 1663
6-311++G(2df,2p) 2.6 6.3 3.2 5.2 7803

a The last column provides a rough indication of the relative
cost of the different bases as implemented in Gaussian. Each
CPU number represents the relative CPU time of a single point
calculation for a typically energetic salt, namely, a bicyclic azolium
with empirical formula C7H9N6O2 and no symmetry.95 An AM1
calculation using Gaussian corresponds roughly to CPU ) 1.

Table 9. RMS Deviations (kcal/mol) from Experimental
Results of Enthalpies Calculated Using the P10 Procedure
and the 6-31++G** Basis Seta

functional N C A AI

Xalpha 3.0 22.7 20.6 21.8
SVWN 3.0 15.6 9.6 13.4
BLYP 3.4 8.6 4.8 7.3
BP86 3.3 7.2 3.4 6.0
PBEPBE 3.3 7.5 4.8 6.5
mPWPW91 3.3 7.3 4.1 6.2
PW91PW91 3.2 7.3 3.8 6.1
HCTH 3.3 7.0 3.8 5.9
HF 4.8 26.1 19.2 24.2
TPSS 3.7 7.6 5.5 6.8
VSXC 2.7 7.1 5.5 6.5
BHandH 3.0 9.8 9.8 9.8
BHandHLYP 2.6 6.9 7.4 7.1
B1LYP 2.2 7.0 5.5 6.4
B3P86 2.2 13.9 10.7 12.6
PBE1PBE 2.1 6.0 4.8 5.5
B3LYP 2.3 6.1 3.4 5.2
B3PW91 2.2 5.8 3.9 5.1
B98 2.2 6.1 4.3 5.4
B1B95 2.1 6.3 6.4 6.3
BMK 2.8 6.4 6.6 6.5

a The functionals are listed from top to bottom according to the
underlying approximation, starting with LDA and followed by GGA,
HF, M-GGA, H-GGA, and HM-GGA.
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Turning our attention to more efficient models, the best
results are obtained within GGA. BP86 and HCTH, in
particular, yield quite satisfactory results, comparable to those
obtained with the BMK functional, which is the most costly
considered in this paper (about 3 times more time-consuming
than SVWN using Gaussian). In fact, GGA appears as
valuable as HM-GGA as far as ions are concerned, although
BLYP proves somewhat less reliable than other GGA
functionals. This result contrasts with what is observed for
neutral compounds from the training set, where HM-GGA
proves more reliable than GGA, especially if the B1B95
functional is used. Besides such general trends, significant
conclusions regarding the relative performance of various
functionals within the same family can hardly be drawn from
present data in view of the small differences between
corresponding RMSD data.

8. Atom Equivalents

To discuss the main features of atom equivalents as defined
in the present paper, values obtained for the P5 procedure,
using the 6-31++G** basis set and various functionals, are
listed in Table 10. In addition, the variation of environmen-
tally dependent atom equivalents for the P10 procedure, using
the same basis set, is illustrated in Figure 1 for the functionals
considered in this paper. All AEs derived in this work are
statistically well-defined. Indeed, the associated standard
deviations derived from a singular value decomposition are
systematically ,1% of their actual values.

As stated in section 2.1, the explicit evaluation of all
contributions to ∆fH° allows a straightforward interpretation
of these values in terms of additive corrections to E0. Their
magnitude is much smaller than additive contributions to
∆fH° - E0 often used in practical schemes.42 On the other
hand, it is much larger than additive corrections to theoretical

formation enthalpies derived from molecular reference
states.40 This is understandable as errors on total energies
partially cancel out for such reference states.

While the reliability of calculated enthalpies depends
mostly on the basis set, AE values exhibit a more significant
dependence on the functional. Focusing on 6-31++G** data,
they increase according to the following order: XR ,
BHandH < HF = SVWN , PBE e PBE1PBE < most DFT
functionals < TPSS < VSXC , B3P86, with negative values
for the former four methods. This significant dependence
indicates that AE corrections are suitable to make up for
systematic errors associated with the functional but not so
efficient to correct for basis set effects.

Considering all parameters as a whole, the upper plot in
Figure 1 clearly shows that the main difference is between
the AE for hydrogen and those for heavier elements. With
regard to the latter, their different values turn out to depend
on both the number of electrons and the coordination number
of the atom. For some models requiring relatively large
corrections to E0, such as XR, SVWN, or B3P86, the atomic
number have the most significant influence on AE values.
However, for most functionals, the role of the coordination
number is equally significant, as is clear from the bottom

Table 10. Atom Equivalents for the P5 Procedure with the
6-31++G** Basis Set (kcal/mol)a

functional H C N O F R2

Xalpha -30.6 -274.4 -332.1 -390.9 -462.2 1.00
SVWN 2.1 -98.1 -133.2 -171.2 -225.7 0.98
BLYP -2.0 33.9 42.7 50.9 51.7 1.00
BP86 1.4 41.4 50.0 57.1 55.0 1.00
PBEPBE -1.8 13.1 12.9 10.8 -1.9 0.73
mPWPW91 0.4 39.4 46.5 52.7 50.0 1.00
PW91PW91 -0.4 33.7 39.2 44.1 39.6 1.00
HCTH 5.7 35.8 39.3 41.7 37.8 0.99
HF -10.2 -107.5 -145.0 -183.3 -203.9 0.98
TPSSTPSS 1.6 46.5 53.3 59.5 58.9 1.00
VSXC 1.9 52.9 57.6 64.7 67.8 0.99
BHandH -11.0 -134.5 -176.1 -219.5 -263.6 0.99
BHandHLYP 1.1 27.5 26.1 25.0 29.3 0.84
B1LYP -0.4 30.4 34.0 37.3 39.9 0.99
B3P86 14.6 108.4 124.4 139.6 150.9 1.00
PBE1PBE 0.2 14.1 10.0 4.4 -4.8 0.02
B3LYP 2.7 41.5 46.7 51.4 53.8 0.99
B3PW91 2.7 31.8 33.2 33.4 30.4 0.95
B98 2.1 31.5 33.6 34.5 33.2 0.96
B1B95 -1.1 32.8 36.1 38.3 40.1 0.98
BMK 0.2 25.8 29.7 30.4 32.2 0.98

a The functionals are listed from top to bottom according to the
underlying approximation, starting with LDA and followed by GGA,
HF, M-GGA, H-GGA, and HM-GGA. The last column reports the
squared correlation coefficients between AE values and atomic
numbers for CNOF atoms.

Figure 1. Dependence of P10 atom equivalents for use with
6-31++G** on the energy functional. Color code for the
functionals: white ) LDA, red ) GGA, indigo ) M-GGA, blue
) H-GGA, and green ) HM-GGA. In the upper graph, Xa
stands for the XR functional, and the shaded area is where
data symbols for most GGA, H-GGA, and HM-GGA function-
als are to be found, as detailed in the lower graph.
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graph in Figure 1. This confirms the actual significance of
the slight improvement observed on going from the P5 to
the P10 correction scheme.

An interesting feature is the linear correlation observed
between AE values and atomic numbers, at the basis of the
present P3 procedure. Considering AEs derived for P5 and
listed in Table 10, this correlation is usually very high, with
squared correlation coefficients R2g 0.99 in most cases. This
explains the similar performances of P3 and P5 procedures
for most functionals. However, no such correlation is
observed for PBE1PBE, while it is relatively poor (R2 )
0.71) for PBE.

Considering the influence of the atomic environment, it
is clear from Figure 1 that, in most cases, AE values increase
with the atom coordination number. The reverse dependence
is observed only in few cases, for instance, for oxygen using
HCTH or VSXC and for nitrogen at the HF level. This
indicates that for most DFT fonctionals, namely those
associated with positive equivalents, errors on total energies
are less significant for atoms with lower coordination
numbers, while the opposite is true for XR, SVWN, and
BHandH, which require negative equivalents.

At the HF level, all atom equivalents are negative, as
expected in view of the variational character of the
Hartree-Fock theory, which implies overestimated E0 values.
Interestingly, notwithstanding the role of coordination num-
bers, the corrections to SVWN energies are quite similar.
This might appear paradoxical in view of the very different
behaviors of HF and LDA approximations, for instance, the
fact that HF tends to underestimate bond energies, while the
opposite is true for LDA functionals.91 However, it must be
kept in mind that present corrections apply to total energies,
not to binding energies. Therefore, the similar magnitudes
of HF and LDA equivalents is related to the fact that both
theories yield similar errors on molecular total energies, while
total energies of isolated atoms are more severely overesti-
mated at the LDA level.

Compared with HF or SVWN functionals, the more
approximate XR method requires corrections roughly twice
as negative, indicating that E0 values are even more
overestimated. On the other hand, the fact that XR bond
dissociation energies are not significantly worse that SVWN
values91 indicates that the overestimation of E0 with respect
to SVWN is observed for isolated atoms as well. The last
functional for which significantly negative atom equivalents
are obtained is BHandH. This functional is unique among
advanced DFT functionals with regard to its overestimation
of total energies. All other functionals yield essentially
positive AEs, i.e., underestimated E0 values. PBE1PBE and,
to a lesser extent, PBE emerge as the functionals requiring
the least significant corrections. For energies calculated using
the 6-31++G** basis, this is clear considering the AEs listed
in Table 10 for P5 corrections and those shown in Figure 1
for P10 corrections. Of course, since these functionals
underestimate E0, increasing the size of the basis set
decreases E0 and therefore calls for larger corrections.

Because the magnitude of AEs reflects errors of the
functionals on calculated total energies, while they are more
often assessed on the basis of a comparison of energy

differences with experimental data, the present study provides
some new insight into the relative performances of different
functionals. Present results should also be useful in view of
extending available AE schemes to new elements while
minimizing the number of adjustable parameters.

9. Calculated Enthalpies

This final section examines in more detail the enthalpies
calculated using the various procedures considered in this
paper. For this purpose, PM3, G3MP2B3, and P5-B3LYP/
6-31++G** enthalpies are compared to experimental values
in Tables 2, 3, and 4 for neutrals, cations, and anions,
respectively. An overview of the relative performance of
some the most interesting AE schemes presently introduced
is provided in Table 11, where they are compared to
G3MP2B3 and NDDO methods.

9.1. G3MP2B3 Enthalpies. In order not to spoil present
AE values with the use of spurious data, only compounds
with experimental ∆fH° values in reasonable agreement with
G3MP2B3 values are included in the training set. As a result,
all G3MP2B3 values reported in Table 2 are within 7 kcal/
mol from experimental ones, in line with the usual perfor-
mance of the G3MP2B3 method.97 In fact, the largest
deviations arise for compounds for which the NIST values
are reported with significant error bars (up to 2.5 kcal/mol
for instance for F3C-OF).

While an accurate description of the electronic structure
of anions might be expected to prove more challenging owing
to its diffuse character, ∆fH° values for anions are quite
satisfactory, with RMSD ) 2.4 kcal/mol and all deviations
between -6 kcal/mol (for HCOO-) and +6.3 kcal/mol (for
H-), as shown in Table 4. However, somewhat larger
deviations are observed for cations, as reported in Table 3.
In particular, the experimental value found for the cyclobutyl
cation is 18 kcal/mol above experimental results. This
disagreement might stem from the fact that this cation can
easily undergo transition to isomers about 9 kcal/mol lower
in energy.99 In fact, the RMSD for cations, reported as 4.4
kcal/mol in Table 11, drops to 3.5 kcal/mol if the cyclobutyl
cation is not considered. This value remains almost 50%
larger than the corresponding value for anions. The larger
RMSD obtained for cations cannot be explained by the
occurrence of triplet species (OH+ and NH2

+) in the cation
data set, as deviations from the experiment for these open

Table 11. Summary of RMS Deviations (kcal/mol) between
Theoretical and Experimental Enthalpies for Sets Made of
Neutral Compounds (N), Cations (C), Anions (A), and All
Ions (AI)

N C A AI

G3MP2B3 1.9 4.4 2.4 3.7
P10-B3LYP/6-311++G** 2.1 5.7 3.3 4.8
P5-B3LYP/6-311++G** 2.5 6.0 3.4 5.1
P10-B3LYP/6-31++G** 2.3 6.1 3.4 5.2
P5-B3LYP/6-31++G** 2.8 6.7 3.5 5.6
AM1 11.0 9.6 15.2 12.3
PM3 7.0 13.3 14.2 13.7
RM1 12.3 25.6 26.9 26.2
P5-SCC-DFTB 14.5 14.9 28.8 16.2
P10-SCC-DFTB 11.5 11.8 31.1 22.3
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shell systems are not especially large. According to the data
in Tables 3 and 4, it arises because of relatively large
deviations (>5 kcal/mol) for some cyclic species (cyclopro-
pyl, cyclopentyl, cyclohexyl). All in all, the RMSD increases
by ca. 60% on going from neutrals to ions. This increase
might stem to some extent from larger uncertainties associ-
ated with experimental data for gas-phase ions.

For neutrals, the RMSD between G3MP2B3 and experi-
mental enthalpies can be further decreased by the application
of additive corrections. In the present case, bond equiva-
lents97 do not perform significantly better than P10 correc-
tions, in view of the respective RMSD values of 1.5 and 1.6
kcal/mol. In fact, this specific case of G3MP2B3 calculations
for neutrals is the only one where BE corrections are found
to provide better results than AE corrections. However, no
correction scheme was found to improve G3MP2B3 enthal-
pies for ions. Therefore, one should consider raw G3MP2B3
values rather than bond-corrected values for studies involving
ionic systems.

9.2. Semiempirical Enthalpies. PM3 and RM1 were
developed in order to overcome the limitations of AM1 to
predict ∆fH°. In fact, Table 11 clearly shows that none of
these semiempirical methods is suitable for ions. In fact, PM3
and RM1 predictions for ions are even worse than AM1
values. This is especially true for RM1, probably as a result
of its more empirical character. Furthermore, although this
recent method is reported to yield a significant improvement
over previous NDDO schemes with regard to the prediction
of formation enthalpies for neutral organic compounds,15 it
proves even worse for neutral compounds in the present
training set. This may be explained by the fact that the large
data sets employed to fit RM1 and earlier NDDO methods
are not representative of the variety of bonding patterns
spanned by the present training set. While none of these
methods are parametrized for ions, the fact that deviations
from experimental results for ions are twice as large with
RM1 than with AM1 or PM3 confirms the idea that the
superiority of RM1 for standard organic compounds is
obtained at the expense of its reliability for less commonly
encountered structures. PM3 appears to provide a reasonable
trade-off between reliability for common structures and
applicability to less common moieties.

All in all, present NDDO results for ions are not
significantly better than those obtained using obsolete
schemes such as MINDO/3 or MNDO.98 Indeed, accordingly
to the RMSD data in Table 11, typical errors are about 12

kcal/mol, or somewhat lower for neutrals using PM3. They
are at best about 4-6 times larger than G3MP2B3 errors.
This confirms the potential interest of procedures more
reliable than available NDDO approaches for ions, while at
the same time being more efficient than G3MP2B3 for
complex systems.

9.3. Enthalpies Derived from Present AE Schemes. The
combination of DFT energies with AEs provides such
procedures. For instance, it is clear from Tables 2, 3, and 4
that P10 equivalents applied to B3LYP/6-31++G** energies
provide ∆fH° values much more reliable than PM3 values.
The improvement is dramatic for small molecules including
HNdHN, N2, and F2; some medium-size molecules such as
isoxazole; and small ions such as NO2

+, OH- and H-,
including some triplet species, OH+ and NH2

+. With respect
to G3MP2B3, such a DFT/AE approach yields errors
typically 20% larger for neutrals and 40% larger for ions,
as clear from Table 11. Using 6-311++G** instead of
6-31++G**, the corresponding increases are respectively
10% and 30%. Therefore, notwithstanding the possibility of
larger uncertainties associated with data for ions, their
enthalpies prove more difficult to predict than values for
neutrals with DFT/AE procedures.

The lower accuracy of present DFT/AE appproaches
compared with G3MP2B3 is consistent with recent findings
based on group equivalents optimized for nitro compounds.18,41

Applied to present ions, the latter yield respectively 6.8 and
5.2 kcal/mol for RMSD data associated with cations and
anions. These values are larger than present ones reported
in Table 11, as expected from their specialization toward
energetic materials. However, these data confirm present
conclusions regarding application of DFT/AE to ions, such
as the largest deviations observed for cations and the clear
superiority of such approaches over NDDO schemes.

Many combinations of the functional/basis set/correction
scheme yield very similar results, with the best ones obtained
using popular H-GGA functionals: B3LYP, B3PW91, B98,
and PBE1PBE, followed by GGA functionals BP86 and
HCTH. Whatever the correction scheme employed, SCC-
DFTB yields especially poor results, especially for anions.
This is probably related to the localized basis set specific to
this method.48 For practical purposes, application of the P10
equivalents listed in Table 12 for B3LYP/6-31++G** or
B3LYP/6-311++G** energies appears to be a valuable
procedure. P10-B3LYP/6-31++G** is now the default
procedure for ions in the MATEO program.22

Table 12. Atom Equivalents for the P10 Procedure (kcal/mol)

model for E0 H C4 C3 C2 N3 N2 N1 O2 O1 F

For Use with B3LYP/6-31G* Geometries
B3LYP/6-31+G** 2.7 41.2 41.5 39.4 47.6 46.5 43.0 50.5 51.4 53.8
B3LYP/6-31++G** 2.7 41.2 41.5 39.4 47.6 46.5 43.0 50.5 51.4 53.8
B3LYP/6-311++G** 3.3 44.3 45.3 44.7 55.3 54.1 52.2 63.6 65.0 71.3
B3LYP/6-311++G(2df,2p) 3.3 45.8 47.0 46.3 57.6 56.2 54.1 66.5 67.8 74.5

For Use with AM1 Geometries
B3LYP/6-311++G(2df,2p) 3.0 45.8 47.1 46.5 56.1 55.0 54.1 64.1 67.9 73.6
B3LYP/6-31+G** 2.6 41.5 41.6 39.5 47.9 46.3 43.0 50.5 51.1 53.6

For Use with SCC-DFTB Geometries:
B3LYP/6-311++G(2df,2p) 2.6 47.3 47.5 45.1 58.4 55.0 52.5 66.6 66.6 72.6
B3LYP/6-31+G** 1.8 43.2 42.2 38.0 48.9 45.3 39.9 51.0 49.7 51.7
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10. Conclusion

The present work is the most comprehensive investigation
to date of the relative performance of various approaches to
estimate the formation enthalpies of ions. In particular, it
provides a clear overview of the accuracy to be expected
from AE schemes, and new insight into their relative merits.

The most reliable DFT/AE procedures yield a root-mean-
square deviation (RMSD) from experimental values < 2.5
kcal/mol for neutrals, but close to 5 kcal/mol for a database
of 73 ions. This loss of accuracy is mainly attributed to the
fact that present local corrections cannot capture the electron
delocalization in ions, associated with the fact that their
electron cloud typically involves several canonical structures.
Allowing a dependence of AE parameters on the coordination
number of the atoms provides a small but systematic
improvement. Therefore, such coordination-dependent pa-
rameters should preferably be used, unless nonequilibrium
structures such as transition states are to be considered.

On the other hand, approximate geometries derived from
relatively low theoretical levels, such as AM1 or SCC-DFTB,
may be used with no significant loss of accuracy with respect
to calculation on B3LYP/6-31G* geometries provided that
the AEs employed are specifically optimized for these more
approximate geometries. Although AE corrections prove
quite efficient, and have been recently shown to make up
for errors associated with the use of small basis sets for many
systems,19,20 present results indicate that this is not really
the case for anions, with the associated RMSD steadily
increasing as less flexible bases are considered. This is bad
news for practical applications. Indeed, unless more sophis-
ticated correction schemes are introduced, this result implies
that routine calculations of formation enthalpies for ionic
liquids or energetic salts require relatively costly basis sets
including diffuse functions in order to get the most from
DFT.

Nevertheless, although more efficient procedures are
desirable for routine calculations, present DFT/AE procedures
fill the gap between costly composite methods and unreliable
semiempirical schemes. In particular, the use of B3LYP/6-
31++G** energies provides a good trade-off between
reliability and cost for anions and cations. In view of
predicting the performance of energetic salts, such procedures
appear especially suitable. Indeed, as long as the reliability
of such predictions depends on the uncertainties associated
with the evaluation of lattice energies, using more sophis-
ticated procedures to compute gas phase enthalpies will not
necessarily lead to significant improvement.
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Abstract: A method of rapid entropy estimation for small molecules in vacuum, solution, and
inside a protein receptor is proposed. We show that the Hessian matrix of second derivatives
built by a quasi-Newton optimizer during geometry optimization of a molecule with a classical
molecular potential in these three environments can be used to predict vibrational entropies.
We also show that a simple analytical solvation model allows for no less accurate entropy
estimation of molecules in solution than a physically rigorous but computationally more expensive
model based on Poisson’s equation. Our work also suggests that scaled particle theory more
precisely estimates the hydrophobic part of solvation entropy than the using a simple surface
area term.

Introduction

The estimation of ligand entropy in different environments
(vacuum, solution, and protein receptors) is essential for
predicting the free energy of ligand transfer between them.
While the prediction of entropy of the gas-phase compounds
under low and moderate pressures can be achieved using
basic statistical thermodynamics expressions for ideal gases,1

provided that a set of a compound’s normal frequencies is
given, estimation of that state function in condensed phases
is more difficult. The configurational part of entropy, Sc, is
given by

where R is the gas constant and P(r) is the probability density
of the configuration given by coordinates r, which is often
determined from MD simulation of the system where P(r)
is derived from the accumulated trajectory2 or, assuming that
P(r) is a multivariate Gaussian, from the quasiharmonic
analysis of the diagonalization of the covariance matrix σ
of the coordinate fluctuations:3,4

A similar method in which entropy is expressed as a
function of coordinate variance, 〈∆r2〉, derived from MD
simulation was proposed by Schlitter.5 All such MD-based
methods suffer from the large central processing unit (CPU)
times necessary to properly cover phase space, and no matter
how long a trajectory is generated, it is always incomplete.
Some alternative methods apply corrected versions of the
ideal gas-type entropy expressions, particularly to account
for finite molecular volume in the translational part of
entropy.6-8 Although such a correction does indeed eliminate
the overestimation of the entropy of a compound in solution
upon the usage of ideal gas-type translational expression, in
our opinion, it is not well founded because such a reduc-
tion is totally accounted for by the entropy effects of
solvation phenomena and can be quantitatively described
within an adopted solvation model, as, for example, in the
recent work of Graziano.9 In such a case, the Sackur-Tetrode
equation can still be used to estimate the translational part
of solute entropy.

These approaches rarely address the issue of conforma-
tional entropy. Conformational entropy as a part of configu-
rational ligand entropy was evaluated by Gilson and
colleagues10,11 and recently applied to protein-ligand bind-
ing;12 however their “mining minima“ algorithm requires tens
of hours on a commodity computer.* Corresponding author. E-mail: stan@eyesopen.com.

Sc ) -R∫P(r)ln P(r)dr (1)

σij ) (ri - 〈ri〉)(rj - 〈rj〉) (2)
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None of the above approaches are suitable when the
evaluation of entropy has to be done for a large number of
ligands, for example, during drug design research. There is
a need, therefore, for a rapid and reliable method of ligand
entropy evaluation.

There are many factors that make the rapid and reliable
estimation of ligand entropy in the condensed phase, either
in solution or inside a protein receptor, a difficult task. One
factor is the conformational diversity of a ligand in solution.
Another is the necessity to include external forces acting on
ligands in these environments: solvation forces in the case
of solution ligands and protein-ligand intermolecular forces
for protein-bound ligands. In the latter case, the shape of
the protein-ligand potential well limits the motion of the
ligand and, therefore, modifies its entropy. Therefore, ac-
curate determination of solvent- and protein-ligand po-
tentials is an important part of ligand entropy calculation.

In this report we present a fast method for estimating
ligand entropy based on a Hessian matrix built during
optimization with a quasi-Newton optimization. The basic
assumption we made is that ligand molecules exist in
different conformations in the gas or solution phases and
that their fractional numbers in those phases are given by a
Boltzmann distribution. This might not be a reasonable
assumption for the ligand poses bound in the protein receptor;
in this case, we consider a single binding mode given by
the crystal structure of the protein-ligand complex.

In the next section, a description of our method is given,
followed by its validation against gas- and solution-phase
entropies. The last section contains a comparison of experi-
mental and calculated values of T∆S for the process of a
selected ligand’s binding by four protein receptors. We
demonstrate that this method is comparable in precision to
the more accurate determination of the vibrational part of
entropy based on the exact Hessian and is suitable for use
in rapid evaluations of ligand entropies.

Methods

Configurational entropy of a ligand in the gas- and solution-
phases is calculated from1

where k is the Boltzmann constant, N is the number of ligand
molecules, T is the absolute temperature, and q is the partition
function:

where qt is the translational partition function, the summation
is over the number of ligand conformers, nc, qiv, qir are
vibrational and rotational partition functions of conformer i,
and εi is a sum of the internal energy and solvation free
energy of conformation i.

In the case of protein-bound ligands, we assume that three
translational and three rotational degrees of freedom of a

ligand are transformed into six degrees of vibrational motion
of a trapped ligand, so eq 4 is reduced to

where np is the number of binding modes and qiv is the
vibrational partition function of a bound ligand in mode i.

Translational entropy in solution was calculated from the
Sackur-Tetrode equation:

where F ) N/V is the number density of the ligand in solution
(set at 1 M concentration when molar entropy was evaluated)
and Λ is the thermal de Broglie wavelength dependent on
the mass of ligand molecule m and temperature:

No empirical correction to St was applied in order to
account for the finite volume of solute molecules. The
entropic effects of the excluded volume (cavity) not available
for the solvent are an important part of solvation entropy
and can be explicitly included by adding appropriate solva-
tion terms. We have chosen to use this approach in our
calculations (see Solvation Entropy Section). In order to use
effectively the above formulation of ligand configurational
entropy, we need three fast and reliable computational
procedures:

(i) A method for generating an ensemble of ligand
conformations.

(ii) A method for determining vibrational frequencies of
each ligand conformer.

(iii) Method for estimating solvation effects on solute
entropy.

Each method is described briefly below.
Conformation Generation. We have generated conformer

ensembles by a method of random coordinates embedding,
MMFF94 force field13 refinement of fragments, combining
of fragments into a molecule and finally torsion driving of
rotatable bonds as implemented in Omega (version 2.1).14,15

Conformations were generated using default parameters,
except an 0.1 Å root-mean-square (RMS) threshold was used
to determine and eliminate duplicate conformations. This low
limit is intended to assume that the majority of conformers
are included in entropy calculations. All conformations
generated in this manner were energy minimized with the
MMFF94 force field but only structurally unique conforma-
tions that differed after minimization by at least 0.05 Å in
root-mean-square deviation (RMSD) are included in the
entropy calculations. The importance of thorough conforma-
tion sampling will be addressed in Results and Discussion
Section.

Vibrational Frequencies Determination. Our computa-
tional procedure introduces the following approximations:
(1) that the vibrational motion of a molecule is represented

Sc ) kN[1 + ln( q
N) + T

q
∂q
∂T] (3)

q ) qt ∑
i)1

nc

e-εi/kTqivqir (4)

q ) {qν for single binding mode

∑
i)1

np

exp(- εi

kT)qiv for multiple binding modes
(5)

St ) Nk(ln
1

FΛ3
+ 5

2) (6)

Λ ) h

(2πmkT)1/2
(7)
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as a set of independent, uncoupled oscillators and (2) that
each of those oscillators is harmonic. We realize that one
might expect that the low-frequency motion of a ligand in
the protein binding site might be significantly anharmonic
and that the issue of associated error in entropy will need to
be addressed in future, but far more important is the quality
of the molecular potential that determines the shape of the
potential well at minimum and, therefore, the values of the
vibrational frequencies. For the purpose of this study, we
adopted the MMFF94 potential force field,13 which recently
has been proved by us to have performed well in the
refinement of crystallographic ligand structures when fitted
into their electron densities.16

In order to calculate the vibrational entropy, we derived
the vibrational frequencies from the normal-mode analysis
of mass-weighted Hessian matrix of second derivatives:

where H and M are the Hessian and atomic mass matrices,
respectively. Eigenvalues λi of Hm determine harmonic
wavenumbers ν̃i following eq 9:

where c is the speed of light.
When the molecular potential is fully analytic, the Hessian

matrix can be calculated for the optimized ligand structure.
However, in order to make calculations more efficient and
extend them for cases where some potential terms are given
in the form of a high-resolution lookup table or three-
dimensional (3D) grid, this work uses a Hessian matrix built
by quasi-Newton type optimizers for the purpose of predict-
ing the next step:

where xi is the coordinate vector at step i, Hi+1
-1 is an inverse

of the Hessian matrix at step i + 1 constructed according to
the adopted scheme (for example, the widely used Broyden-
Fletcher-Goldfarb-Shanno, BFGS, scheme),17 and f(x) is
a function for which minimum is sought. At every iteration
the approximate H-1 is closer to the exact Hessian, so when
the optimization procedure is converged, a good quality
Hessian can be obtained. Before the normal frequencies are
calculated, we make sure that the Hessian is stable and does
indeed determine a real minimum. If one or more eigenvalues
are negative, the geometry of the ligand is randomly
perturbed and reoptimized using the final matrix H-1 from
the previous optimization as an initial guess of the invert
Hessian. We have found that such a correction is needed
very rarely when the molecular potential is fully analytic
and, more frequently but still only occasionally, when some
potential terms are evaluated on a grid.

The procedure outlined above is expected to result in
frequencies and moments of inertia reasonably close to
experiment only for the gas phase or for small ligands in
solution with no rotatable bonds. The structure of highly
flexible polar ligands, however, may be largely changed in
solution. That implies a need to include solvent forces in

order to properly estimate vibrational and rotational entropy
in solution. Here, a simple analytical solvation model recently
developed by Grant and colleagues, known as the Sheffield
solvation model,18 is adopted. Briefly, the solvation energy
of a ligand in solution is expressed as

where ε0 is permittivity of vacuum, Qi and Qj are partial
charges on atoms i and j, ri and rj are atomic radii, Rij is the
distance between atoms i and j, and the factor fε is defined
by dielectric constants of the solvent and the ligand (solute):

Dimensionless parameters a and b have been chosen in
such a way that the solvation energy given by eq 11 agrees
with a physically rigorous model based on the Poisson
equation.

Solvation Entropy. Solvation of a ligand in solution is
associated with the formation of cavities around solute
molecules and the reorganization of water molecules around
them due to electrostatic and nonelectrostatic solute-solvent
interactions. Each of those phenomena are accompanied by
entropy changes. Comparison of estimated ligand entropy
in solution with that of the corresponding experimental data,
therefore, requires inclusion of solvation entropy ∆Ss (along
with solute configurational entropy Sc) in the expression for
the total ligand solution entropy:

∆Ss consists of electrostatic and hydrophobic parts:

The way we estimate both parts of solvation entropy is given
below.

Electrostatic SolVation Entropy. Bulk effects of entropy
change upon solvation due to the electrostatic properties of
the solution result from the temperature dependence of the
solvent dielectric constant. This portion of solvation entropy
is estimated from

where εsolv is the solvent dielectric constant. The first term
in eq 15 can be calculated from the simple analytical
solvation model, while the second term is calculated from
the experimental temperature dependence of the water
dielectric constant.19

Entropic effects that reflect the change of the water
structure upon solvation, in particular formation of hydrogen
bonds between the solute and the solvent, are difficult to
estimate and are beyond the methods that treat water as
dielectric continuum. Water is a highly structured liquid in
which every H2O molecule with two proton donor and two
proton acceptor sites forms four hydrogen bonds (H-bonds)

Hm ) M-1/2HM-1/2 (8)

ν̃i )
1

2πc√λi (9)

xi+1 ) xi + Hi+1
-1 ∇f(xi) (10)

Es ) -
fε

8πε0
∑
i,j

QiQj

√arirj + bRij
2

(11)

fε ) ( 1
εsolu

- 1
εsolv

) (12)

Ssolution ) Sc + ∆Ss (13)

∆Ss ) ∆Ss,elec + ∆Ss,hyd (14)

∆Ss,elec_bulk ) -(∂∆Gs

∂εsolv
)(∂εsolv

∂T ) (15)
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with its neighbors in a tetrahedral arrangement. Entropy
change for the formation of such a single H-bond in water
is estimated to be -37.2 J/(mol K).20 Solute molecules
containing H-bond donors or acceptors engage water mol-
ecules from the first solvation shell in solute-solvent H-bond
formation, thus perturbing the original highly organized
liquid structure. Also, the vibrational entropy of the H-bonded
solute · (H2O)n complexes is usually higher than that of the
corresponding water clusters due to the larger number of low-
frequency modes available in the former.

In order to account for the formation of ligand-solvent
clusters due to strong hydrophilic interactions, we propose
using of an empiric constant term of 28 J/(mol K) that
increases the solution entropy of a compound containing
proton donors or acceptors. The rationale of such a choice
is based on the following two observations:

(i) Calculations of the vibrational entropy change for a
number of gas-phase reactions:

for a number of molecules M that contain proton
donors or acceptors with the use of the MMFF94
potential yield a vibrational entropy change in the range
15-50 J/(mol K). One might expect, therefore, a small
favorable entropic effect enhancing solubility of such
compounds.

(ii) Our calculations of solution entropy for polar mol-
ecules or molecules with π-electron donors produce
consistently underestimated values by 10-45 J/(mol
K), with the remarkable exception of alcohols, for
which a satisfactory agreement between calculated and
experimental solution entropies is observed. One
explanation for this observation is that in all cases but
alcohols we are missing the entropy change of the
H-bond rearrangements upon solvation in the first
solvation shell. It is possible that the hydroxyl group
in alcohols, with a very similar charge distribution to
the hydroxyl group in water, does not significantly
perturb the water structure even in the first solvation
shell, while the increase of the vibrational entropy
upon ROH ·H2O formation is small.

The proposed entropy correction accounting for solute-
solvent clusters formation due to specific hydrophilic interac-
tions is certainly a crude approximation, however, its accurate
calculation for drug-like ligands is too difficult at this stage
of our method development.

Hydrophobic SolVation Entropy. Calculation of the hy-
drophobic portion of solvation entropy is usually performed
by one of a few approximate methods. We estimate this
solvation entropy term in two ways. One is based on the
common assumption that the free energy of hydrophobic
solvation is proportional to the solute molecular surface area

where γ is the microscopic surface tension coefficient. The
value of γ is in the range of 0-10 cal/(mol Å)21,22 when
∆Gs,hyd represents the overall hydrophobic solvation effect,
which includes both cavitation and van der Waals solute-

solvent interactions. We may, therefore, assume that γ is
made of two components: γ ) γcav + γvdw. Assuming that
∆Gs,hyd depends linearly on temperature and that its enthalpic
contribution does not depend on temperature, the corre-
sponding entropy change is

Under the above assumptions, ∆Gs,hyd in eq 17 represents
the temperature-dependent cavity formation term for which
the value of γ ) γcav is about 30 cal/(mol Å), as determined
for alkanes.23,24 Using a set of 294 molecules containing a
variety of functional groups, we have found that γ ) 30
cal/(mol Å) indeed returns the best agreement on average
with solution entropies.

The main criticism of using eq 16 is that for small
molecules the hydrophobic portion of entropy is primarily
related to the creation of a cavity in the solvent and scales
with its volume25 rather than the molecule’s surface area A.
In addition, coefficient γ has no precisely established value
for all compounds. One has to conclude, therefore, that the
widely used expression (eq 16), although useful, is not
physically sound.

For the purpose of comparison, we apply, therefore, an
alternative approach in which the hydrophobic free energy
change ∆Gs,hyd is evaluated as a sum of a cavity formation
component, van der Waals solute-solvent interaction and
inductive (permanent dipole-induced dipole) interaction:

The first component in eq 18 is evaluated from the scaled
particle theory (SPT)9,26,27 according to the expression
containing up to the cubic term:

where K0 ) -ln(1 - �), K1 ) 3�/(1 - �) ) u, K2 ) u(u +
2)/2, K3 ) �PVs/RT, σc and σs are cavity and solvent
diameters, respectively (where solvent and solute are assumed
spherical), � is the packing density of the solvent, and νs is
the solvent molar volume. The second term in eq 18 is
calculated according to Pierotti’s relationship:26

where εls is Lennard-Jones (LJ) potential depth parameter
for ligand-solvent interaction calculated as (εlεs)1/2 where
εl and εs are the corresponding parameters for ligand and
solvent, respectively. The last term in eq 18, in most cases
very small (of the order of 0.1 J/(mol K)) in comparison to
∆Gcav and ∆Gvdw, was evaluated according to26

where µs, Rs, µl, and Rl are solvent and ligand dipole moment
and polarizability, respectively. The value of σls is taken as
the average (σs + σc)/2. ∆Ss,hyd is determined from

(H2O)2 + M f M · H2O + H2O

∆Gs,hyd ) γA (16)

∆Ss,hyd ) -
∆Gs,hyd

T
(17)

∆Gs,hyd ) ∆Gcav + ∆Gvdw + ∆Gind (18)

∆Gcav ) RT[K0 + K1(σc/σs) + K2(σc/σs)
2 + K3(σc/σs)

3]
(19)

∆Gvdw ) -(64/3)�εls(σls/σc)
3 (20)

∆Gind ) -8�(σcσls)
-3(µl

2Rs + µs
2Rl) (21)
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where the entropy change for cavity formation ∆Scav is
calculated from ∆Gcav (eq 19) and the corresponding enthalpy
change

as

Temperature derivatives of ∆Gvdw and ∆Gind are determined
from the known experimental temperature dependence of σs,
�, and Vs for water. Quantity R is the thermal expansion
coefficient of the solvent.

The accuracy of all the thermodynamic quantities derived
from the SPT theory (eqs 19-24) depends critically on
solvent parameters. Values adopted in this work for water
are: molecular volume Vs ) 18.0685 cm3mol-1, thermal
expansion coefficient R ) 2.572 × 10-4 K-1, effective hard
sphere diameter σs ) 2.8 Å, LJ potential depth εs/k ) 100
K, dipole moment µs ) 1.8 D, and polarizability Rs ) 1.4573
Å3. The value of the hard sphere diameter for water of 2.8
Å results from the location of the first peak in the
oxygen-oxygen radial distribution function for water,28

while the LJ parameter of 100 K (ratio of Lennard-Jones
parameter εs to Planck’s constant, to be correct) was adopted
after Graziano9 as the value that works well for alkanes and
alcohols.

In the case of solute parameters, we applied the simple
procedures described below to estimate all necessary pa-
rameters (σc, εl/k, µl, and Rl). For molecules with multiple
conformations, we used the geometry of the most stable
conformation in solution optimized with the MMFF94 and
Sheffield forces.

Hard Sphere Diameters. For each solute, the hard sphere
parameter was calculated from its molecular Gaussian
volume VG

29 as 2(0.75VG/π)1/3. We found a fair agreement
between hard sphere diameters calculated in this way with
the values obtained from solubility data for a number of
molecules listed in Table 1.

LJ Potential Depth. Experimental LJ potential parameters
derived from either second virial coefficients or viscosity
measurements are available only for a small number of
molecules. Critically evaluated data based on the second type
of measurements are available for 75 simple molecules in
the 1977 paper of Mourits and Rummens.31 Two decades
later, Cuadros et al.32 developed a simulation-based proce-
dure for evaluating LJ parameters for any small compound,
which was recently used by Cachadina and Mulero for
calculating the vaporization enthalpies for over 1500 sub-
stances.33 Our procedure of assigning the LJ potential depth
parameter of a compound uses both above-mentioned sources
of data in a hierarchical fashion: if the compound happens
to belong to the Mourits and Rummens set, the corresponding
experimental value is used; otherwise the data obtained by
Cachadina and Mulero are adopted. If a compound is not

found in any of the above two sets, an average value of 370
K for σc/k is used. This represents the average of the
Cachadina and Mulero set excluding mono-, di-, and triaomic
species.

Dipole Moments. The dipole moment for the most stable
solution conformation calculated from its AM1BCC partial
charges was used. Because such a value usually overestimates
the experimentally measured dipole moment, we further scale
it by a factor of 0.82, which is the ratio of experimental-to-
calculated dipole moment for water molecule. Other mol-
ecules are known to have similarly overpolarized charges
with the AM1BCC charging method.

Molecular Polarizabilities. The molecular polarizability
of a compound was estimated according to the recently
published method of Wang et al.34 (model 2E in Table 4 in
that publication).

Results and Discussion

When conformation ensembles are used for the estimation
of entropy, an important issue is the completeness of those
ensembles. The lack of thorough comformation sampling can
be illustrated with the gas-phase n-nonane: using an RMS
threshold of 0.8 Å for duplicate removal results in 25
conformations, which, after minimization, appear to be
unique. The total calculated entropy of n-nonane at 298 K
for this set of conformations is 452.9 J/(mol K). The use of
a 0.1 Å RMS threshold produces 130 conformations which
after minimization are reduced to 128 structurally unique
conformers and results in 472.7 J/(mol K) total entropy. The
error of about 20 J/(mol K) (or 4%) can easily be eliminated
by a fine-grain sampling of the conformational space. Further
lowering of the duplicate removal threshold to an RMS of
0.005 Å has no effect: 239 generated conformations con-
tained only 128 structurally unique conformers after
optimizations.

Gas-Phase Molecules. Gas-phase entropies calculated
with the MMFF94 force field and quasi-Newton Hessian
frequencies for the vibrational entropy component for most
small molecules with no torsions or containing only an
isolated methyl group bonded to aromatic rings (like toluene)
are in very good agreement with experimental values. This
is shown in Figure 1a for a number of molecules containing
carbon, oxygen, sulfur, nitrogen, and halogen atoms. In
contrast, molecules with single torsional bonds show up to
8% error in calculated entropies with respect to experimental
values. This behavior is shown in Figure 1b for n-alkanes
from ethane to decane and is not surprising given the
underlying approximations described in the previous section.
In particular, we might expect that the torsional, low-
frequency vibrations are significantly anharmonic, so the
error in entropy estimation for larger, more flexible molecules
will be larger than for rigid ones. A good illustration of
poorer entropy estimation for flexible and satisfactory
predictions for rigid molecules are calculated values for
benzene and n-hexane of 270.2 and 367.3 J/(mol K),
respectively, and the corresponding experimental values of
269.2 and 388.4 J/(mol K). Similarly, the RMS deviation
between calculated and experimental values in the series of

∆Ss,hyd ) ∆Scav - (∂∆Gvdw

∂T
+

∂∆Gind

∂T ) (22)

∆Hcav ) [�RRT2/(1 - �)3][(1 - �)2 + 3(1 - �)(σc/σs) +

3(1 + 2�)(σc/σs)
2] + �PVs(σc/σs)

3 (23)

∆Sc ) (∆Hcav - ∆Gcav)/T (24)
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thiacycloalkanes from thiacyclopropane to thiacycloheptane
is 5.7 J/(mol K), while the corresponding value for 1-thiols
from ethanethiol to 1-hexanethiol is 22.4 J/(mol K).

Anharmonicity error in the calculation of normal frequen-
cies has been recognized for a long time in quantum chemical
calculations; a number of remedies, including scaling fre-
quencies by factors within the (0.8, 1.0) range,37 selective
or overall scaling of force constants,38 and estimation of
anharmonicity constants by numerical calculation of third
and fourth potential derivatives along the normal modes,39,40

have been proposed and successfully used to predict the gas-
phase IR and Raman frequencies of a variety of small
molecules. For the purpose of our method, we adopted a
simple frequency scaling. Based on a set of 255 molecules
for which standard gas-phase entropies are available in the
compilation of Domalski and Hearing,36 we obtained an
optimum scaling factor of 0.85. Figure 2, compares calculated
gas-phase standard entropies with scaled and unscaled
frequencies with the experimental (or recommended) values
for the above-mentioned set of 255 molecules. This figure
shows that scaling of frequencies results in much better
agreement with the published experimental or recommended
entropies. Unfortunately, for some molecules the scaling

procedure results in significant overestimation of entropy that
is particularly visible in the range of 300-500 J/(mol K).
For example, visibly deviated points from the ideal line
correspond to cyclohexanone, thiacycloheptane, and hexachlo-
robenzene, for which the experimental and calculated
standard entropies in J/(mol K) with unscaled and scaled
normal frequencies are see in Table 2.

It is seen that for these compounds, frequency scaling
increases the error by largely overestimating the calculated
entropy.

Another source of error is the approximate character of
the quasi-Newton Hessian matrix. As mentioned in the
Vibrational Frequencies Determination Section, a good

Table 1. Comparison of Hard Sphere Diameters Derived from Gaussian Molecular Volumes (σG)a

compound σG σsolu compound σG σsolu

carbon dioxide 4.10 3.94 benzene 5.29 5.26
methane 3.60 3.70 toluene 5.61 5.64
ethane 4.20 4.38 m-xylene 5.89 5.97
ethylene 4.07 4.07 fluorobenzene 5.34 5.30
n-hexane 5.73 5.92 chlorobenzene 5.71 5.61
n-heptane 6.01 6.25 hexafluorobenzene 5.59 5.65
n-octane 6.26 6.54 nitrobenzene 5.85 5.74
n-nonane 6.50 6.83 methanol 4.01 3.69
n-decane 6.71 7.08 ethanol 4.53 4.34
3-methylheptane 6.26 6.52 cyclohexanol 5.76 5.75
2,3-dimethylhexane 6.26 6.50 acetone 4.86 4.76
cyclohexane 5.57 5.63 N-methylacetamide 5.15 4.96
methylcyclohexane 5.86 5.99 dimethylsulfoxide 5.10 4.91

a Corresponding values obtained from solubility data by Wilhelm and Battino30 (σsolu). All values in Å.

Figure 1. Calculated versus experimental entropies at 298K for the below-listed gas-phase molecules. Plot a: methane,a ethylene,a

acetylene,a cyclopropane,b allene,b benzene,b toluene,b naphtalene,b water,a carbon dioxide,a formaldehyde,a formic acid,a

oxirane,a methanol,b phenol,b thiacyclopropane,b thiophene,b methanethiol,b ammonia,a hydrogen cyanide,a aziridine,b pyridine,b

nitric acid,a nitrous acid,a acetonitrile,b benzoninitrile,b nitromethane,b methyl nitrate,b 3-picoline,b fluoromethane,a tetrafluoro-
ethylene,b 1,1-difluoroethylene,b trifluoroethylene,b fluorobenzene,b hexafluorobenzene,b p-fluorotoluene,b chloromethane,a

chloroethylene,b tetrachloroethylene,a 1,1-dichloroethylene,b t-1,2-dichloroethylene,b trichloroethylene,b chlorobenzene,b 1,2-
dichlorobenzene,b 1,3-dichlorobenzene,b 1,4-dichlorobenzene,b hexachlorobenzene,b bromomethane,a bromoethylene,b bro-
momethane,b chlorotrifluoroethylene,b iodomethane,b iodobenzene.b Plot b: n-alkanes from ethane to n-decane. aExperimental
values are taken from ref 35, and bexperimental values are taken from ref 36. Solid diagonal lines show ideal behavior of calculated
values.

Table 2. Comparison of Molecular Diameters Obtained in
Two Waysa,b

compound experimental unscaled scaled

cyclohexanone 322.2 341.1 354.5
thiacyclopentane 361.9 371.3 389.9
hexachlorobenzene 441.2 439.1 463.8

a σG - hard sphere diameters derived from Gaussian molecular
volume, and σsolu - diameters obtained from the solubility data by
Wilhelm and Battino.30 b All values in A.
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quality approximation of the quasi-Newton Hessian matrix
is obtained only when the optimization process is converged.
Figure 3 shows the effect of convergence criteria on the
calculated gas-phase entropy of four hydrocarbon molecules.
It is seen that, although for a molecule with no torsions, like
benzene, gradient norm reduction to 10-3 kJ/(mol Å2) is
sufficient to obtain a stable converged value of entropy, the
data for cyclohexane suggest that a convergence criteria of
at least 10-7 kJ/(mol Å2) is necessary to minimize the error
related to the approximated Hessian obtained in the quasi-
Newton optimization. Therefore, in all entropy calculations
we use a convergence on gradient norm below that value,
typically 10-10 kJ/(mol Å2).

In order to estimate the effect of the approximate character
of the quasi-Newton converged Hessian, we repeated the
calculations of entropies for the same set of 255 compounds
from Figure 2 but with the exact, analytical Hessian matrix
calculated for the optimized compounds. The RMS displace-
ment of entropies calculated in such a way from published
values is 15.0 J/(mol K), compared to 20.8 J/(mol K)
obtained with the quasi-Newton frequencies. The improve-
ment due to the diagonalization of the exact Hessian is,

therefore, real (as might be expected) but on average is not
dramatic. The quality of the force field is probably of more
significance, but in this paper, we make no attempt to
evaluate different available molecular potentials for entropy
estimation.

Molecules in Solution. The goal of this study is to
elucidate a very rapid means of calculating ligand entropies
in gas and condensed phases. Thus, we sought an ap-
proximate solvation model that could rapidly evaluate solvent
forces that modify equilibrium geometries and normal
frequencies of ligand conformations in solution. To determine
the accuracy of ligand entropies calculated with this ap-
proximate solvent model, we compared the values calculated
with a more rigorous but significantly slower Poisson model.
Calculated configurational entropies for 20 drug molecules
in solution with the use of a simplified analytical solvation
Sheffield model18 in comparison to a Poisson model are
shown in Figure 4a. It is seen that for the majority of
molecules, the Sheffield values are slightly larger. The
average signed error of Sheffield entropies is 13.9 J/(mol
K). Observed differences might also, however, be impacted
by the larger numerical errors in the calculation of the quasi-
Newton Hessian in the case of the Poisson potential evaluated
on the grid with respect to the fully analytical Sheffield
potential. Figure 4b compares the CPU times of both types
of entropy calculations and shows the obvious speed
advantage in the case of Sheffield model. Large CPU times
visible on the in Figure 4b for the Poisson-type entropy
calculations reflect numerous reoptimizations (as outlined in
the Methods Section) needed for some conformations to meet
the formal requirements for a Hessian matrix. Differences
in configurational entropy calculated with the two solvent
models are small (3-6%), yet on average, the Sheffield
model is over two orders of magnitude faster to calculate.
We conclude that using the Sheffield solvation model for
rapid entropy estimation of solution molecules is a reasonable
and beneficial approach.

Total solution entropies calculated according to eq 13 can
be compared with the corresponding experimental entropy

Figure 2. Gas-phase standard entropies (plot a) and their displacements from experimental values (plot b) calculated with the
use of unscaled (O) and scaled (b) normal frequencies for a set of 255 molecules containing carbon, oxygen, sulfur, nitrogen,
and halogen atoms. A list of molecules other than those mentioned in the caption of Figure 1 is given in the Appendix Section.
The RMS displacement from published entropies is 18.2 and 9.4 J/(mol K) for unscaled and scaled normal freqiencies, respectively.

Figure 3. Ratio of calculated-to-experimental gas-phase
entropy for ethane (O), n-decane (0), benzene (2), and
cyclohexane (b) as a function of gradient norm convergence
criteria in quasi-Newton built Hessian.
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data. Figure 5 shows such a comparison for 294 molecules
containing a variety of functional groups.

It is seen in Figure 5 that the calculated values follow the
experimental values; however, the use of the SPT theory
returns a better agreement with experimental data, as is
visible from slopes, R2’s, and confidence intervals for R2.
The root-mean-square error (RMSE) of the calculated
standard solution entropies using the SPT model from the
corresponding experimental data is 13.6 J/(mol K), while
the largest deviation visible on the plot is the underestimation
of the molar solution entropy by 39.8 J/(mol K) for 1,8-
nonadiyne. The corresponding values for the SA model are
20.0 and 56.0 J/(mol K) overestimation for trans-1,4-
dimethylcyclohexane. The differences in prediction accuracy

between the two models are not dramatic but statistically
significant: larger R2 for the SPT method (0.95 vs 0.88)
together with the lack of overlap of 95% confidence intervals
for R2, shown in the caption for Figure 5, clearly illustrates
that the SPT model outperforms the SA method in prediction
of solution entropies. We should also mention that our SPT
method has no adjustable parameters, whereas the SA method
was optimized albeit to a value that could have been estimated
from the physical properties of alkane-water transfer.

Figure 6 shows the comparison between total solution
entropies calculated with Sheffield/SPT and physically more
rigorous PB/SPT model. There is little difference in the use
of the Sheffield or the full PB model; while the slopes are
slightly different, the correlation coefficients are identical
within statistical error of 95% confidence. This is a remark-
able result, indicating that a simple, fully analytical, and fast
solvation model generates the same quality entropy prediction
for molecules in solution that the physically correct but much
more expensive to use Poisson solvation model. As discussed
above, slightly better prediction of Sheffield/SPT method is
not surprising and can be attributed to the higher accuracy
of analytical second-order derivatives.

We hope that using a molecular potential of higher quality
than MMFF and refinement of the model describing
solvent-solute interactions contribution to the solvation

Figure 4. (a) Calculated configurational entropies for 20 drug molecules using Sheffield solvation model (SSheffield) vs Poisson model
(SPB). (b) CPU times used for entropy calculations for each drug using Sheffield model (solid bars) and Poisson model (shaded bars).
Numbers on horizontal axis correspond to the following drugs: varenicline (1), acetaminophen (2), aspirin (3), ephedrine (4), telbiduvine
(5), lamivudine (6), ofloxacin (7), decitabine (8), meloxicam (9), hydrocortizone (10), sertraline (11), ciproflaxin (12), desonide (13),
ibuprofen (14), zoledronic acid (15), neralabine (16), ritalin (17), venlaxafine (18), warfarin (19), and tramadol (20).

Figure 5. Calculated vs experimental standard molar entro-
pies for 294 molecules in solution representing the following
group of compounds: normal and branched alkanes, cycloal-
kanes, alkenes, alkynes, alkylbenzenes, alcohols, ketones,
ethers, esters, thiols, sulfides, nitriles, and amines. Experi-
mental data are taken from the ORCHYD database41 except
those for amines and three purines (adenine, xanthine, and
hypoxanthine). Experimental data for amines are taken from
the 1981 paper of Cabani et al.42 Data for purines are taken
from papers of Boyer et al.43 and Tewari et al.44 Full circles
(b) show calculated standard entropies with the use of the
SPT theory, while squares (0) show similar data calculated
with the SA eqs 16 and 17 with tension coefficient γ set at 30
cal/(mol/ Å). The values of R2 and slopes (R2,slope) are
(0.945,0.923) and (0.878,0.865), respectively. Corresponding
lower and upper 95% confidence intervals for R2, obtained
from Fisher transformation are (0.931,0.956) for SPT and
(0.849,0.902) for SA solvation models, respectively. Straight
line shows ideal agreement with experiment.

Figure 6. Calculated vs experimental standard molar entro-
pies for 244 molecules, a subset of molecules for which data
are presented in Figure 5. Calculations were done with the
SPT/Sheffield (b) and SPT/Poissson (4). The corresonding
values of R2 and slopes are (0.911,0.906) and (0.899,0.808),
respectively. The 95% confidence intervals for R2 are
(0.887,0.930) and (0.872, 0.921), respectively.
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terms (both vdw and hydrogen bonding) (eq 14) could lead
to a better agreement with experimental data. It was shown
that, with water as a solvent, SPT provides reliable results
for simple small molecules,45,46 however, we are not aware
of its prior application to complex drug-like compounds. An
extended version of SPT for solutes of arbitrary shapes has
been developed,47 but it is not clear if it generates signifi-
cantly better results in aqueous solutions than its original
hard-sphere version, so at this point, we do not have plans
to implement it just for the purpose of entropy calculations.

Protein-Bound Molecules. The only way to test our
method of estimated ligand entropy inside a protein receptor is
to compare calculated and experimental entropy change (T∆S)
upon ligand binding. Only limited amounts of such experimental
data from microcalorimetry experiments exist. In addition, cases
where there is a significant contribution to the overall entropy
change from the protein itself, caused by large change in protein
structure upon binding, cannot be used for the purpose of testing
because we are not attempting here to estimate protein entropy
change. In fact, our basic approximation in evaluating a protein-
bound ligand is the complete rigidity of a protein. Such a crude
approximation, therefore, severely restricts the scope of protein-
ligand complexes which might be handled by our method.

We have chosen four protein-ligands systems shown
below. In selecting these systems, our main criteria were lack
of favorable entropy change upon binding (T∆S > 0) (protein
contribution to T∆S cannot be ignored otherwise), moderate
size of ligands, quality of experimental data, and of course,
existence of the protein-ligand X-ray structures in the
Protein Date Bank (PDB):48

(i) Major urinary protein (MUP-I)-n-alcohols (1znd,
1zne, 1zng, 1znh, and 1znk).

(ii) Renin-diaminopyrimidines (2iko, 2iku, and 2il2).
(iii) Aldose reductase-sorbinil/fidarestat (2pdk and 1pwm).
(iv) Quinone reductase-resveratrol/melatonin (1sgo and

2qx4).
X-ray protein structures used for calculations are shown above.
Protein preparation included hydrogenation to standard residues
ionization states and optimization of hydrogen atom positions
with the MMFF94 force field in vacuum. Entropy change upon
ligand binding has to include partial solvation of that part of
the ligand in the protein-ligand complex which is exposed to
the solvent, f∆Ss, and partial desolvation of the protein binding
site, ∆Sdes, upon ligand binding.

∆Ss is given by eq 14, and the fraction f of a bound ligand surface
exposed to the solvent is evaluated from the molecular surfaces
area of a ligand AL, protein AP, and protein-ligand complex APL:

Entropy of partial protein desolvation, ∆Sdes, is assumed to be
caused by the change of the hydrophobic part of protein desolvation
and is calculated from the surface area expression (eq 17) because
for macromolecules it scales with the molecular surface.25 The
microscopic surface tension coeffiecient γ is set at 5 cal/(mol Å).

MUP-I-n-Alcohols. Structures for the complexes of
pheromone-binding protein MUP-1 with five primary alco-

hols: pentanol, hexanol, heptanol, octanol, and nonanol were
taken from the PDB entries 1znd, 1zne, 1zng, 1znh, and 1znh,
respectively. The protein structures in these models are
essentially unchanged in each complex, but ligands can be
bound in two structurally different positions depicted on
Structure I. In the case of the pentanol complex, Malham et
al. have observed both positions simultaneously, however,
the second one (mode II) with much weaker density.49 In
the first run of entropy calculations, we assumed a single
binding mode with starting geometries given in the above
crystal structures. Table 3 contains the results along with
the experimental results of isothermal titration microcalo-
rimetry (ITC) performed by Malham et al.49 It is seen that
the calculated entropy penalty agrees very well with the
experimental values for pentanol and fairly well with the
corresponding values for octanol and nonanol. For hexanol
and heptanol, our prediction is too negative by 13.0 and 9.7
kJ/mol, respectively. In order to explain the difference, we
repeated the calculations for those two alcohols and for
pentanol, assuming that the initial position for pentanol is
given by the alternative position observed experimentally by
Malham et al.,49 while the starting poses for hexanol and
heptanol were obtained by truncating the terminal carbons
from the octanol 1znh structure (mode II in structure I).
Recalculated -T∆S values for pentanol, hexanol, and hep-
tanol are marked in Table 3 with a footnote (b, in this case).
It is seen that those latter values for both hexanol and
heptanol are in very good agreement with the experimental
data of Malham et al.49 In the case of pentanol, the alternative
pose leads to larger entropy penalty and larger deviation from
the experimental value (-22.6 vs -18.4 kJ/mol).

Our calculations suggest that as alcohol molecules grow,
due to steric hindrance only, mode II seems to be available,

∆Sbind ) Sprotein - Ssolution + f∆Ss + ∆Sdes (25)

f ) 0.5(AL - AP + APL)/AL (26)

Table 3. Calculated and Experimental Values of -T∆S for
the Binding Equilibria MUP-I + n-Alcohol h
MUP-I ·n-Alcohola

alcohol -T∆Scal -T∆Sexp

pentanol 18.4, 22.6b 17.9 ( 3.2
hexanol 32.3, 21.0b 19.3 ( 0.6
heptanol 30.6, 19.9b 20.9 ( 0.4
octanol 25.7 22.4 ( 0.6
nonanol 26.1 24.8 ( 0.5

a -T∆S in kJ/mol. b Value for the alternative position. c Value
for double binding modes.
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while for smaller pentanol, both are likely to occur with the
majority binding in mode I. X-ray data for pentanol, octanol,
and nonanol complexes are in full agreement with the above
suggestion. The source of disagreement for hexanol and
heptanol is not clear. One possibility is that our model does
not include explicit water molecules in the binding site. Such
water molecules were observed in X-ray data by Malham et
al.,49 and because they form H-bonds with hydroxyl groups
of both bound alcohols and Tyr120, they may contribute to
binding entropy. On the other hand, distribution between two
different modes of binding in the crystal and the liquid phase
might be different, so our prediction based on entropy
calculation should be verified with nuclear magnetic reso-
nance (NMR), rather X-ray structures. Finally there is a
possibility that a higher resolution X-ray structure determi-
nation of the protein-ligand complexes discussed here will
show a complete agreement with our entropy calculations.

Renin-Diaminopyrimidines. Calculations were done for
three ligands (compounds I-III), assuming single binding
modes determined by the ligand coordinates in the corre-
sponding PDB structures 2iko, 2iku, and 2il2.

Data in Table 4 show that, given the experimental uncertainty
of 4 kJ/mol, predicted values of - T∆S for compounds I and
II are in fair agreement with the experimental results of Sarver
et al.50 For compound II, experiment shows the lack of entropy
penalty (actually a small favorable effect) upon binding. Our
calculations showing the entropy penalty of 7.5 kJ/mol does
not reproduce this finding. It is likely that the loss of ligand
entropy when the ligand binds to renin is compensated for the
simultaneous increase in protein entropy, and as mentioned
above, our current model does not include such effects.

Aldose Reductase-Sorbinil/Fidarestat. The only dif-
ference between sorbinil (compound IV) and the drug
fidarestat (compound V) is the amide group missing in the
former. Its oxygen forms a H-bond with the backbone NH
group of Leu300 in the human enzyme. Fidarestat is bound
tighter than sorbinil, which makes the former an efficient
inhibitor of aldose reductase, able to slow the progression
of diabetic neuropathy.51 Microcalorimetry results of Petrova
et al.52 reported in Table 4 suggest however that the entropy
penalty upon binding is twice as big as in the case of sorbinil.
Our calculations based on the assumption of single binding
modes for both compounds given in the crystal structures
1pwm (for fidarestat) and 2pdk (for sorbinil) do not confirm
that finding. Predicted values of binding entropy -T∆S are

comparable for both compounds and agree well with the
experimental value for sorbinil. More recent, very high-
resolution (0.78 Å) crystallography data of Zhao et al.53 offer
a likely explanation of the discrepancy. It has been found
that the bound ligand is deprotonated at the imide nitrogen
and that the adjacent catalytic His110 is protonated. In other
words, a strong electrostatic cation-anion attraction not only
contributes to the large protein-ligand interaction (measured
∆H of binding is -75.5 kJ/mol52) but also decreases the
entropy of both the ligand and the side chain of His110 by
restricting their motion. Two possible mechanisms could lead
to the formation of the observed salt bridge: first, Zhao et
al.53 suggest a two step process in which the binding of a
neutral ligand is followed by a proton-transfer reaction, and
second, a direct binding of an anionic form of fidarestat by
the enzyme with a protonated His110. The second mecha-
nism cannot be ruled out because the estimated fidarestat
pKa is in the range of 7.9-8.5 pH units (estimation was made
using the data for phenytoin and analogs),54 which indicates
that at the pH ) 8, at which the ITC experiments were
done,52 the fraction of ionized fidarestat in solution is at least
30%. We used our entropy calculation method to evaluate
the binding entropy of the anionic form of fidarestat
according to the above two scenarios. First, we calculated
the entropy of a deprotonated fidarestat in the active site of
aldose reductase with positively charged His110. The result
of this calculation enabled us to estimate the entropy change
for a proton-transfer reaction:

where HL is a neutral form of fidarestat. The estimated value
of T∆S at room temperature for the above reaction is -6.7
kJ/mol, so the overall calculated entropy change upon binding
is (-13.1-6.7) ) -19.8 kJ/mol, much closer to the
experimental value of -28.8 kJ/mol. Second, the entropy
change for direct binding of anionic forms of both fidarestat
and sorbinil were calculated, and the results shown in Table
4. It is seen that the calculated values for the anionic form
of fidarestat are essentially identical for both mechanisms,

Table 4. Calculated and Experimental Values of -T∆S for
Several Binding Equilibria Protein + Ligandh Protein ·Liganda

protein compound -T∆Scal -T∆Sexp

renin I 12.6 8.4 ( 4.2
II 7.5 -1.0 ( 4.2

III 3.3 1.8 ( 4.2
aldose IV 11.7 13.9 ( 1.6
reductase V 13.1 28.8 ( 0.8

IVb 19.7
Vb 19.9

quinone VI 23.1 21.0 ( 2.6
reductase 2 VII 10.0 10.0 ( 0.5

a Reported experimental error for renin binding are from a
personal communication of R.W. Sarver. -T∆S in kJ/mol. b Anion
bound by a protein with protonated His110.

aldose_reductase(His110) · HL f

aldose_reductase(His110H
+) · L-
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so our method does not discriminate between the two possibili-
ties. For both mechanisms of fidarestat anion binding, the
calculated values are significantly more negative than in the
case of the neutral ligand. Still more negative by about 9 kJ/
mol, the experimental value probably reflects the restriction of
protonated His110 motion in the electrostatic field of the
negatively charged ligand, but as we mentioned earlier, our
current model is not able to capture any protein entropy change
contribution. The result for sorbinil suggests that the neutral
form of the latter is bound by aldose reductase.

Quinone Reductase 2-Resveratrol/Melatonin. Structures
of resveratrol, a natural polyphenol found in wine, and neuro-
hormone melatonin are depicted as compounds VI and VII. The
molecules bind in such a way that their aromatic rings are
positioned in parallel to the isoalloxazine ring of a cofactor FAD.
Initial positions of both ligands and the corresponding QR2
protein coordinates were taken from the PDB entries 1sg0 and
2qx4, respectively. Calculated and experimental values derived
from ITC experiments of Calamini et al.55 are shown in Table
4. Calculated values of -T∆S for both resveratrol and melatonin
are in very good agreement with experiment. Although given
the approximate model used in our calculations, the ideal
agreement for melatonin seems to be fortuitous.

Binding Entropy, Summary. Figure 7 shows the calculated
binding entropies vs experimental ITC data for all tested
protein-ligands complexes. The squared correlation coefficient
(R2 ) 0.81) is relatively high, however, its confidence limits
are large. In addition, considering that the calculated correlation
is based only on those binding modes for hexanol and heptanol,
which produce the closest agreement with experiment and
preselection of those protein-ligand complexes for which
protein contribution to the binding entropy is presumably
negligible or low, at this moment, we are not able to evaluate
the reliability of the method for binding entropy prediction.
Instead we are considering these preliminary results as encour-
aging for further improvement of a high-throughput method for
binding entropy prediction. Data for aldose reductase/fidarestat
show the importance of both ligand and protein charge states,

while data for MUP-I/hexanol and MUP-I/heptanol show the
necessity of considering multiple binding modes.

Given the correlation shown in Figure 7, it is tempting to
search for a dominant calculated entropy term standing behind
it. Figure 8 shows the configurational and the total solvation
entropy change upon binding for the same 12 protein-ligand
complexes which produced the correlation in Figure 7.

It is seen that both configurational and solvational entropy
components play equally important roles in the binding
entropy, so neither configurational entropy nor solvation
entropy change alone is reponsible for the correlation shown
in Figure 7. In some protein-ligand complexes (like in the
case of MUP-I complexed with alcohols), the loss of the
configurational entropy is significantly larger than the entropy
gain resulting from the solvation entropy change, while in

Figure 7. Calculated vs experimental binding entropies for
protein-ligand systems selected for current study: (MUP-I)-n-
alcohols (b), renin-diaminopyrimidines (9), aldose reduc-
tase-sorbinil/fidarestat (2), and quinone reductose-resveratrol/
melatonin ([). Straight line represent ideal agreement. R2 )
0.81, and its 95% confidence interval is (0.45-0.94). Points
in ovals represent calculated data for hexanol and heptanol
in binding mode I (structure I) and neutral form of fidarestat,
respectively, and are not included to correlation.

Figure 8. Calculated configurational entropy change (solid
bars) and total solvation entropy change (shaded bars) upon
binding. Empty bars show the -T∆Sbind values from Figure
7. Numbers on horizontal axis correspond to protein-ligand
complexes: MUP-I-pentanol (1), MUP-I-hexanol (2), MUP-
I-heptanol (3), MUP-I-octanol (4), MUP-I -nonanol (5),
aldose reductase-sorbinil (6), aldose reductase-fidarestat
(7), quinone reductase-resveratrol (8), quinone reductase-
melatonin (9), renin-compound I (10), renin-compound II
(11), and renin-compound III (12).
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other cases (renin complexed with diaminopyrimidines), both
components largely compensate for each other which results
in little or no entropy penalty upon binding.

The ultimate goal of this work is to provide an accurate
estimate of the entropy of binding of a small, drug-like molecule
to a protein. Such an estimate is either time-consuming and
difficult to calculate, for instance requiring the extensive
sampling available from molecular dynamics, or is provided
by very crude methods, such as penalty terms from the number
of rotatable bonds. What we attempt here is to explore whether
methods of intermediate speed and complexity can none the
less be accurate. If so, it will provide a significant component
of the long sought for computational approach to affinity
prediction and its application to drug discovery.

Conclusions

• The Hessian matrix generated by the quasi-Newton
optimizers of molecular structure with the use of
a good quality force field can be used to predict
vibrational entropy in the gas-phase, solution, and
protein receptor environments.

• The simplified analytical solvation model formu-
lated recently by Grant et al.18 can be used for
ligand entropy calculations in solution.

• Entropy of molecules containing rotatable bonds
is underestimated probably due to anharmonicity
of the low-frequency torsional movements.

• The use of scaled particle theory (SPT) for the
determination of the total solution entropies of
compounds is promising. It eliminates the uncer-
tainty associated with the value of surface tension
coeffiecient used in the surface area (SA) model
of hydrophobic solvation.

• Further work is required to address the anharmo-
nicity of the quasi-Newton frequencies, the still
unsatisfactory hydrophobic solvation model, and
the contribution of protein receptors structural
changes to the ligand binding entropy changes. This
includes the usage of more accurate potential (force
field, atomic charges on protein receptor, and
analysis of protein ionization states), and entropic
effects due to hydrogen bond and nonelectrostatic
(van der Waals) solute-solvent interactions. Es-
timation of protein entropy with the use of a quasi-
Newton Hessian matrix will require the usage of
more efficient optimization techniques, such as
limited memory Broyden-Fletcher-Goldfarb-
Shanno (BFGS) technique.

• Our results for aldose reductase-fidarestat system
strongly suggest that pKa analysis of both ligand
and protein receptor should be included in the
entropy estimation for protein-ligand binding.

Appendix

List of molecules which in addition to those listed in the
caption for Figure 1 were used to determine the frequency
scaling factor in entropy calculations.

Hydrocarbons.
Ethane, propane, n-butane, n-pentane, n-hexane, n-
heptane, n-octane, n-nonane, n-decane, 2-methylpro-
pane, 2-methylbutane, 2-methylpentane, 2-methylhex-
ane, 3-methylhexane, propylene, 2,2-dimethylpropane,
2,3-dimethylbutane, 2,2-dimethylbutane, 1-butene, 1-pen-
tene, trans-2-butene, cis-2-butene, trans-2-pentene, cis-
2-pentene, 1,2-butadiene, 1,3-butadiene, propyne, 1-bu-
tyne, 2-butyne, butadiyne, biphenyl, 1,2-dimethylbenzene,
1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, pen-
tamethylbenzene, and hexamethylbenzene.

Oxygen Compounds.
Ethanol, 2-propanol, n-propanol, n-butanol, tert-butyl
alcohol, cyclohexanol, allyl alcohol, 2-butanol, o-cresol,
m-cresol, p-cresol, dimethyl ether, diethyl ether, di-n-propyl
ether, di-n-butyl ether, methyl-ethyl ether, methyl-propyl
ether, tetrahydrofuran, 1,4-dioxan, acetaldehyde, propanal,
acetone, butanal, pentanal, methyl-ethyl ketone, methyl-
propyl ketone, diethyl ketone, cyclohexanone, acetic acid,
methyl formate, and ethyl acetate.

Sulfur Compounds.
Ethanethiol, 1-propanethiol, 1-butanethiol, 1-pentanethiol,
1-hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanethiol,
1-decanethiol, 2-propanethiol, 2-butanethiol, cyclopen-
tanethiol, 2-methyl-1-propanethiol, 2-methyl-2-propaneth-
iol, 2-methyl-2-butanethiol, benzenethiol, diethyl sulfide,
dimethyl sulfide, ethyl-methyl sulfide, isopropyl-
methyl sulfide, propyl-methyl sulfide, butyl-methyl
sulfide, propyl-ethyl sulfide, butyl-ethyl sulfide, diiso-
propyl sulfide, pentyl-methyl sulfide, dipropyl sulfide,
butyl-propyl sulfide, pentyl-ethyl sulfide, hexyl-
methyl sulfide, dibutyl-sulfide, hexyl-ethyl sulfide, heptyl-
methyl sulfide, dipentyl sulfide, t-butyl-methyl sulfide,
diethyl-disulfide, dimethyl-disulfide, dipropyl-disulfide,
dibutyl-disulfide, dimethyl-sulfoxide, dimethyl-sulfone,
thiacyclobutane, thiacyclopentane, thiacyclohexane, thia-
cycloheptane, 2-methylthio-phene, and 3-methylthiophene.

Nitrogen Compounds.
Methylamine, ethylamine, n-propylamine, n-butylamine,
n-pentylamine, n-hexylamine, ethylenediamine, 2-ami-
nobutan, t-butylamine, dimethylamine, diethylamine,
trimethylamine, triethylamine, aniline, propionitrile,
butyronitrile, acrylonitrile, hydrazine, pyrrolidine, 2-pi-
coline, nitroethane, nitropropane, nitrobutane, 2-nitro-
propane, 2-nitrobutane, ethyl nitrate, n-propyl-nitrate,
and isopropyl-nitrate.

Halogen Compounds.
Fluoroethane, 1-fluoropropane, 1,1-difluoroethane, 1,1,1-
trifluoroethane, hexafluoroethane, 1-chloropropane, chlo-
roethane, 1-chlorobutane, 1-chloropentane, 2-chloro-
propane, 2-chlorobutane, 1-chloro-3-methylbutane,
1-chloro-2-methylpropane, 2-chloro-2-methylpropane,
1,2-dichloropropane, 1,2-dichloroethane, 2-chloro-2-
methylbutane, 1,3-dichloropropane, 1,1-dichloroethane,
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1,1,2-trichloroethane, 2,2-dichloropropane, 1,2,3-trichlo-
ropropane, 1,1,2,2-tetrachloroethane, 3-chloro-1-pro-
pene, pentachloroethane, hexachloroethane, acetylchlo-
ride, bromoethane, 1-bromopropane, 1-bromobutane,
1-bromopentane, 2-bromopropane, 2-bromobutane, 2-bro-
mo-2-methylpropane, 1,2-dibromoethane, 1,2-dibro-
mopropane, 1,2-dibromobutane, 2,3-dibromobutane,
2,3-dibromo-2-methylbutane,3-bromo-1-propene,1-bromo-
propyne, iodoethane, 1-iodopropane, 2-iodo-2-methyl-
propane, 2-iodopropane, 1,2-diiodoethane, 1,2-diiodopro-
pane, 1,2-diiodobutane, and 3-iodo-1-propene.
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Abstract: Modeling systems that are governed by van der Waals (dispersion) interactions using
empirically corrected DFT methods is becoming increasingly popular due to the promise of a
CCSD(T) level accuracy at the computational cost of DFT. Although, DFT methods are
computationally efficient in comparison to the CCSD(T) method, currently, structural optimizations
using DFT methods are generally only feasible for systems of less than a few hundred atoms.
We seek a method applicable to macromolecular complexes. In order to model such large
systems, empirically corrected semiempirical methods appear to be an attractive alternative.
As with most common DFT methods, the popular semiempirical methods (e.g., AM1) also do
not model long-range dispersion (and therefore an empirical correction term is desirable), but
this is not their only shortcoming. For weakly interacting systems, hydrogen bonding also poses
a concern. A new empirically corrected AM1 method that uses two empirical correction terms,
one for dispersion and one for hydrogen bonding interactions, is presented and termed AM1-
FS1. This new empirically corrected AM1 method has been parametrized to a diverse training
set of 66 complexes that includes nonequilibrium structures and yields sub-kilocalorie accuracy
in the prediction of intermolecular interaction energies. More significantly, AM1-FS1 achieves
this result with substantially less parametrization than existing empirically corrected semiempirical
methods and without modification of the original AM1 parameters so that it retains both the
computational efficiency and predictive power for thermo-chemical quantities of the original AM1
Hamiltonian. The performance of AM1-FS1 is also tested on several carbon nanostructure
complexes and pseudorotaxanes and is found to produce results in very good agreement with
the best first-principles calculations.

1. Introduction

Accurately and efficiently modeling nonbonding interactions,
especially van der Waals interactions and hydrogen bonding,
is a difficult task, but essential for the correct description of
many systems of chemical and biological importance, such
as the structure of molecular crystals,1,2 the conformational
preference3-9 and folding of proteins, and the stability of
two strands of DNA in a double helix.3,10 These types of
interactions are also important in macromolecular host/guest
chemistry,11-14 which motivates this work.

Density functional theory (DFT) is the most widely used
quantum mechanical (QM) technique for chemical calcula-
tions due in part to its ability to accurately describe chemical
and physical properties for a diversity of systems, often at
modest computational expense. A major shortcoming with
DFT is the inability of most popular XC functionals (exchange-
correlation functionals) to accurately model long-range van
der Waals (dispersion) interactions. Therefore, these methods
predict systems like the benzene dimer to be unbound (Figure
1). Currently, an increasingly popular approach to overcome
this hurdle is to add an empirical correction to the DFT total
energy. Empirically corrected DFT methods for dispersion
interactions, coined DFT-D, have become popular due to* Corresponding author e-mail: kws24@drexel.edu.
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their success with essentially no added computational
expense. Figure 1 shows the dramatic improvement that is
achieved by adding an empirical correction term. Not only
is the complex now predicted to be bound but excellent
agreement with CCSD(T) results is achieved, the current
“gold standard” in computational chemistry. For relatively
small systems, DFT-D methods are computationally feasible
and should provide quite accurate results, but modeling
macromolecular host/guest complexes can be extremely
computationally expensive. Therefore, alternative methods
need to be explored.

Semiempirical (SE) techniques such as AM1,15 PM3,16

RM1,17 and PM618 are sufficiently computationally efficient
for modeling systems composed of hundreds or even thou-
sands of atoms but typically perform poorly for dispersion
and hydrogen bonding. These semiempirical methods are
essentially incapable of modeling dispersion bound com-
plexes because the form of the semiempirical wave function
completely neglects electron correlation. Even qualitatively
reliable modeling of dispersion-bound macromolecular sys-
tems, such as complexes of carbon nanostructures, is
therefore out of the question; SE methods predict such
complexes to be unbound. That is, the wrong sign of the
interaction is predicted. Again, considering the parallel
benzene dimer (Figure 1), which is a classic test case used
for predicting the likely accuracy of a method for modeling
complexes of carbon nanostructures, we see that the SE
methods fail.

The accuracy of SE methods in modeling dispersion-bound
systems can be dramatically improved by adding an empirical
correction term. McNamara and Hillier19 reported adding an
empirical correction term to the AM1 and PM3 methods to
incorporate dispersion interactions but found the overall
results to be unsatisfactory. Therefore, to gain further improve-
ments, in particular to improve the accuracy with which
hydrogen-bonding is modeled, they reoptimized 18 of the
original AM1 parameters, using the S22 database20 as a
training set. The resulting method, with both reoptimized
semiempirical parameters and an empirical correction term,

is referred to as AM1-D. (They have also produced an
analogous PM3-D.) These empirically corrected methods
show a substantial improvement in accuracy (over the
corresponding original SE methods) for predicting intermo-
lecular interaction energies, but at a significant cost. As
detailed below, AM1-D is nearly 25-fold less accurate in
the prediction of heats of formation than the original AM1
method. We seek a method that leads to good accuracy in
the prediction of structures and interaction energies for
macromolecular complexes, without sacrificing predictive
power for the heat of formation.

More recently Řezáč and colleagues21 published an em-
pirically corrected PM6 method for modeling dispersion and
hydrogen-bonding interactions, named PM6-DH. To incor-
porate dispersion interactions, the group used the empirical
correction described by Jurecka et al.,22 which is also
discussed here in section 2.1. To improve the PM6 method
for H-bonding, they included a second correction term
involving three parameters. The correction term is applied
to H-bonding situations, but not all types of H bonds are
modeled with the same term. The group identified eight types
of H bonds and used a different set of three parameters for
each type, for a total of 24 H-bonding parameters. In their
defense, it should be noted that they did use a relatively large
training set to determine these H-bonding parameters. The
major shortcoming of this method, as they acknowledge, is
that knowledge of atom connectivity is required. One of the
major benefits of QM techniques is that atom connectivity
is not required, allowing bond formation/deformation to be
modeled. Although, Řezáč and colleagues have obtained
good results, for a method to be widely used, atom con-
ductivity information should not be required. In addition to
the limitations introduced, input of atom connectivity
information is sufficiently burdensome to deter routine use,
especially for macromolecular complexes where there may
be thousands of atom-atom interactions that must be
distinguished.

Herein, we present an empirical correction for the AM1
method that is suitable for modeling macromolecular com-
plexes and avoids the above-noted shortcomings of existing
techniques. We have chosen to apply separate empirical
correction terms for dispersion and hydrogen bonding. Our
method requires significantly less parametrization than the
AM1-D and PM3-D methods of McNamara and Hillier19

and also the PM6-DH method of Řezáč et al.21 Additionally,
it is important to note that we have not altered any of the
original AM1 parameters. Such changes can have deleterious
effects on predictions of properties not based strictly on the
total energy or its derivatives, such as heats of formation,
ionization potentials, and dipole moments, if these quantities
are not taken into consideration during reparameterization.
Our method also does not require knowledge of atom
connectivity. We will henceforth refer to our new method
as “AM1-FS1”. AM1-FS1 achieves results that are compa-
rable to (and in many cases better than) those of other
empirically corrected SE methods, with significantly less
parametrization and with no reparameterization of the AM1
method. The main objective of AM1-FS1 is to accurately
model macromolecular host/guest systems that are currently

Figure 1. Potential energy curves for the parallel benzene
dimer determined with various quantum mechanical methods.
Superscript a refers to ref 23.
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out of reach of DFT-D techniques. AM1-FS1 aims to not
only accurately predict energies but also reasonable structures
upon geometry optimization, since structural optimization
is one of the main uses for such a technique. Herein, the
accuracy of AM1-FS1 is tested by comparing interaction
energies and distances to CCSD(T) and SAPT results;
comparisons are also made with other empirically corrected
semiempirical techniques.

2. Theory

2.1. Dispersion Correction. To correct the AM1 method
for dispersion interactions, we have employed a method used
by Grimme24 with a slight modification suggested by Jurečka
et al.22 The resulting dispersion correction is of the form

where rij is the atom-atom separation, C6
ij is the dispersion

coefficient, and fdamp is a damping function of the form

This damping function depends on the equilibrium van der
Waals separation (Rvdw) and the pairwise atom separation
(rij). The damping function also depends on two unitless
parameters, SR and d, which have been optimized to a training
set as discussed at length in section 2.3. The damping
function operates as a switching function, turning off the
dispersion term at short range. This is required because the
SE wave function already models short-range repulsive
interactions. Thus, the popular 6-12 Lennard-Jones (LJ)
potential is not suitable for use as a dispersion correction
since a repulsive term is involved (see ref 25 for a more
detailed discussion and graphical representations).

It should be noted that we tried employing the global
scaling factor, used by Grimme,24,26 instead of scaling the
equilibrium van der Waals separation (SR); however, a
smaller root-mean-square error (RMSE) was obtained on our
training set using SR (discussed in section 2.3). Scaling RVdw

seems theoretically well motivated, since this allows only
the short-range interactions to be tailored and leaves un-
touched the long-range interactions for which the correct
functional form of the interaction is known to follow r-6

(see ref 25 for a more detailed discussion and graphical
representations).

Another decision concerns the choice of combination rules
used for obtaining C6

ij and Rvdw. We have chosen to employ
the geometric mean and simple average combination rules
for determining C6

ij and Rvdw, respectively:

The dispersion coefficients (C6
i and C6

j) and van der Waals
radii (Ri and Rj) for the different atoms were obtained from
Grimme’s 2006 publication.24 The decision of using these
particular combination rules was not made without consider-

ing other options. For C6
ij, both the harmonic mean26 and

the combination rule suggested by Wu and Yang,27 which
uses the Slater-Kirkwood effective number of electrons,
were considered. For Rvdw, the cubic mean suggested by
Halgren28 was also considered. We have also considered all
possible combinations and found that the parameters (SR and
d) seemed to adjust to accommodate the different combina-
tion rules. The combination rules employed yielded the
lowest RMSE for our training set. It should be noted that
only Grimme’s 2006 published dispersion coefficients and
van der Waals radii values were considered. This dispersion
correction scheme to the AM1 method has been implemented
into a locally modified version of GAMESS.29

2.2. Hydrogen-Bonding Correction. Correcting the AM1
method for hydrogen bonding is a more difficult task than
correcting for its neglect of dispersion since hydrogen-
bonding interactions are already in part considered, given
their partial electrostatic nature. It can be seen by looking at
the H-bonded systems (1-7) in the S22 database (Table 1)
that the AM1 method severely underbinds such complexes.
The AM1 method does, however, produce more reasonable
interaction energies for hydrogen-bonded systems upon
geometry optimizations (Table 2); this is because AM1
generally predicts dispersion-bound complexes to be un-
bound, while for H-bonded complexes it predicts some
binding, but generally with an unphysically large equilibrium
separation (see Table 3). Thus, to improve the AM1 method
for predicting H-bonding systems, the strength of these
interactions needs to be increased at medium-to-short range.
We have achieved this by adding a post-SCF pseudoelec-
trostatic term of the form

where R1 is a global scaling factor, Qi and Qj are the AM1
Coulson charges30 (which are referred to as MOPAC charges
in GAMESS29), rij is the H---Y separation, θ is the XH---Y
angle, and fdamp2 is a damping function of the form

where R2, R3, and R4 are parameters and all other terms have
the same meanings as in the dispersion correction. In this
case, however, Rvdw is defined as the cubic mean

The cubic mean is used in this case because it yields a
slightly smaller RMSE for the F66 training set than using
the simple average combination rule.

The damping function is an asymmetric distribution
function (see Figure 2A) that turns the hydrogen-bonding
function on or off over an appropriate range for correcting
the AM1 method. To achieve an asymmetric distribution,
three parameters (R2, R3, R4) have been introduced, giving a
total of four parameters in the H-bonding correction. We
have optimized these four parameters to improve upon H

Edis ) -
C6

ij

r6
fdamp(rij) (1)

fdamp(rij) )
1

1 + exp(-d(
rij

SRRvdw
- 1))
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C6
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bonding for the AM1 method. A detailed discussion is
presented in the next section.

The H-bonding correction function also depends on the
square of the cosine of the XH---Y angle. This is motivated

Table 2. Geometry Optimized Energies (kcal/mol) for the Complexes in the S22 Databasea

no. molecule (symmetry) ref values AM1 PM3 AM1-D PM3-D PM6-DH AM1-FS1

Hydrogen-Bonded Complexes
1 (NH3)2 (C2h) -3.17 -1.39 -0.71 -3.03 -1.99 -3.92 -2.82
2 (H2O)2 (Cs) -5.02 -3.30 -3.55 -7.22 -6.53 -4.73 -5.59
3 formic acid dimer (C2h) -18.61 -6.62 -9.58 -12.45 -16.16 -19.11 -17.76
4 formamide dimer (C2h) -15.96 -2.06 -6.99 -14.64 -14.42 -15.01 -15.83
5 uracil dimer (C2h) -20.65 -10.48 -10.70 -17.80 -18.83 -19.55 -25.06
6 2-pyridoxine2-aminopyridine (C1) -16.71 -6.15 -7.06 -13.06 -18.32 -18.50 -15.16
7 adenine thymine WC (C1) -16.37 -5.06 -6.90 -12.66 -18.66 -19.12 -21.10

Complexes with Predominant Dispersion Contribution
8 (CH4)2 (D3d) -0.53 -0.21 -0.32 -4.10 -2.38 -0.73 -2.46
9 (C2H4)2 (D2d) -1.51 -0.13 -1.08 -4.85 -4.11 -1.53 -4.09
10 benzene CH4 (C3) -1.50 0.35 -0.20 -2.93 -2.88 -1.88 -2.84
11 benzene dimer (C2h) -2.73 0.01 -0.02 -3.10 -4.59 -3.59 -2.21
12 pyrazine dimer (Cs) -4.42 -0.34 -0.26 -4.87 -4.45 -5.74 -4.73
13 uracil dimer (C2) -10.12 -6.05 -4.26 -11.25 -7.59 -10.03 -9.99
14 indole benzene (C1) -5.22 -1.33 -1.65 -8.16 -6.26 -5.99 -6.51
15 adenine thymine stack (C1) -12.23 -5.15 -6.50 -15.13 -11.70 -13.61 -12.59

Mixed Complexes
16 ethene ethine (C2v) -1.53 -0.57 -1.23 -2.47 -2.58 -1.17 -1.50
17 benzene H2O (Cs) -3.28 -1.03 -1.63 -3.90 -4.46 -3.95 -3.38
18 benzene NH3 (Cs) -2.35 -0.80 -0.93 -4.04 -3.99 -3.82 -4.70
19 benzene HCN (Cs) -4.46 -0.92 -1.85 -4.28 -4.40 -3.21 -2.46
20 benzene dimer (C2v) -2.74 -0.09 -0.52 -4.22 -4.39 -2.85 -2.15
21 indole benzene T-shape (C1) -5.73 -1.24 -1.67 -7.74 -7.20 -5.22 -5.88
22 phenol dimer (C1) -7.05 -3.39 -4.33 -11.55 -8.95 -7.46 -8.87

RMSE (hydrogen bonded) 9.90 8.04 3.38 1.82 1.40 2.55
RMSE (dispersion bonded) 3.73 3.65 2.36 1.71 0.80 1.34
RMSE (mixed bonded) 2.96 2.40 2.09 1.40 0.82 1.37
RMSE 6.25 5.22 2.65 1.65 1.04 1.82
MUE 4.82 4.09 2.16 1.51 0.82 1.28

a The AM1-D and PM3-D results have been taken from ref 19 and the PM6-DH results from ref 21.

Table 1. Single-Point Interaction Energies (kcal/mol) at the S22 Geometriesa

no. molecule (symmetry) ref values AM1 PM3 AM1-D PM3-D PM6-DH AM1-FS1

Hydrogen-Bonded Complexes
1 (NH3)2 (C2h) -3.17 -0.78 0.77 -3.43 -1.77 -3.74 -1.60
2 (H2O)2 (Cs) -5.02 -2.89 -2.79 -7.29 -5.14 -4.67 -5.53
3 formic acid dimer (C2h) -18.61 1.54 -9.91 -15.45 -18.57 -17.39 -16.06
4 formamide dimer (C2h) -15.96 -12.02 -8.08 -17.16 -15.37 -15.39 -15.75
5 uracil dimer (C2h) -20.65 -5.79 -11.32 -20.15 -20.30 -18.84 -20.80
6 2-pyridoxine2-aminopyridine (C1) -16.71 -4.45 -7.46 -16.50 -17.52 -17.35 -14.73
7 adenine thymine WC (C1) -16.37 -4.28 -6.79 -16.58 -17.33 -17.83 -16.29

Complexes with Predominant Dispersion Contribution
8 (CH4)2 (D3d) -0.53 0.21 -0.25 -0.94 -1.24 -0.73 -0.61
9 (C2H4)2 (D2d) -1.51 -0.13 -1.11 -3.31 -3.60 -1.52 -2.27
10 benzene CH4 (C3) -1.50 0.40 -0.19 -2.12 -2.42 -1.75 -1.79
11 benzene dimer (C2h) -2.73 3.52 2.38 -2.90 -4.30 -3.62 -2.23
12 pyrazine dimer (Cs) -4.42 2.49 3.90 -4.57 -4.20 -5.41 -3.81
13 uracil dimer (C2) -10.12 0.12 5.80 -10.56 -6.78 -9.70 -8.47
14 indole benzene (C1) -5.22 5.39 4.04 -4.04 -6.09 -5.20 -3.23
15 adenine thymine stack (C1) -12.23 2.91 7.37 -12.20 -10.63 -12.78 -9.87

Mixed Complexes
16 ethene ethine (C2v) -1.53 -0.35 -0.82 -1.61 -1.85 -1.11 -1.36
17 benzene H2O (Cs) -3.28 -0.69 -1.47 -3.43 -3.65 -3.41 -2.78
18 benzene NH3 (Cs) -2.35 -0.33 -0.59 -3.00 -2.96 -2.77 -2.65
19 benzene HCN (Cs) -4.46 -0.81 -1.63 -4.44 -4.43 -3.20 -3.17
20 benzene dimer (C2v) -2.74 0.37 -0.43 -3.85 -4.15 -2.84 -3.36
21 indole benzene T-shape (C1) -5.73 -1.05 -1.25 -7.10 -6.65 -5.30 -4.63
22 phenol dimer (C1) -7.05 -1.36 -1.37 -9.76 -7.52 -6.73 -6.91

RMSE (hydrogen bonded) 11.64 7.77 1.56 0.76 1.07 1.37
RMSE (dispersion bonded) 8.21 10.13 0.82 1.68 0.54 1.30
RMSE (mixed bonded) 3.57 3.22 1.25 0.72 0.57 0.72
RMSE 8.47 7.73 1.23 1.18 0.76 1.18
MUE 6.54 5.94 0.85 0.90 0.59 0.88

a The AM1-D and PM3-D results have been taken from ref 19, and the PM6-DH results from ref 21.
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by the observation that H-bonding interactions are direc-
tionally dependent.31 The cosine squared function was used
instead of the cosine function because it approaches zero
smoothly. We have also chosen to make the function zero
for all angles less than 90°. This helps exclude cases that
are not H-bonding, such as an R-H atom in a carboxylic acid
interacting with the adjacent carboxylate O atom. By using
an appropriate summing scheme, we are able to identify
highly likely H-bonding scenarios without knowledge of
atom connectivity. This is done by first identifying H atoms
for which the nearest nieghbor is an N, O, or F atom. These
H atoms are then allowed to interact with other N, O, or F
atoms.

The overall function (eq 4) is shown graphically in
Figure 2B, where it can be seen that the function is only
turned on over a short-range, peaking at approximately
2.8 bohr (1.5 Å; for the specific bonding scenario
depicted). This is the behavior that is needed to improve
the AM1 method for H-bonding, since these interactions
only need to be increased over a short range and only at
short distances. The nature of the charges (MOPAC) of
the atoms involved in H-bonding, insures that eq 4 is
negative, resulting in an attractive contribution. The
charges are updated every optimization step. The optimi-
zation procedure also requires the gradient, which is
determined by numerical differentiation. This correction

Table 3. Interaction Distances (Ångstroms) for the Complexes in the S22 Databasea

no. molecule (symmetry) ref values AM1 PM3 AM1-D PM3-D AM1-FS1

Hydrogen-Bonded Complexes
1 (NH3)2 (C2h) 2.504 2.784 3.241 2.646 2.726 2.668
2 (H2O)2 (Cs) 1.952 2.094 1.809 1.911 1.769 1.932
3 formic acid dimer (C2h) 1.670 2.101 1.776 1.925 1.737 1.567
4 formamide dimer (C2h) 1.841 2.072 1.807 1.981 1.763 1.916
5 uracil dimer (C2h) 1.775 2.044 1.787 1.946 1.744 1.563
6 2-pyridoxine-2-aminopyridine (C1) 1.859, 1.874 2.511, 2.107 1.798, 1.815 1.980, 1.981 1.722,1.768 1.760, 1.878
7 adenine thymine WC (C1) 1.819, 1.929 2.476, 2.101 1.780, 1.821 1.807,2.018 1.708, 1.769 1.597, 1.893

Complexes with Predominant Dispersion Contribution
8 (CH4)2 (D3d) 3.718 3.721 3.447 2.881 3.160 2.899
10 benzene CH4 (C3) 3.716 3.746 3.718 3.315 3.450 3.457
11 benzene dimer (C2h) 3.765 6.952 6.096 3.643 3.499 3.753
12 pyrazine dimer (Cs) 3.479 4.848 4.760 3.695 3.437 3.681
13 uracil dimer (C2) 3.166 5.805 6.732 3.097 3.406 3.007
14 indole benzene (C1) 3.498 5.572 5.520 4.448 3.415 4.378
15 adenine thymine stack (C1) 3.172 6.202 5.788 4.320 3.280 3.099

Mixed Complexes
16 ethene ethine (C2v) 2.752 2.468 2.429 2.319 2.366 2.374
18 benzene NH3 (Cs) 3.592 4.092 4.025 2.995 3.069 3.014
19 benzene HCN (Cs) 3.387 3.472 3.694 3.228 3.343 3.303
20 benzene dimer (C2v) 3.513 5.225 3.606 3.253 3.370 3.351
21 indole benzene T-shape (C1) 3.210 3.811 3.807 3.010 3.233 3.208
22 phenol dimer (C1) 1.937, 4.921 2.174, 5.925 1.829, 5.712 2.001, 5.040 1.778,5.265 2.016, 4.937

RMSE (hydrogen bonded) 0.387 0.257 0.137 0.134 0.129
RMSE (dispersion bonded) 2.015 1.962 0.644 0.272 0.473
RMSE (mixed bonded) 0.929 0.598 0.336 0.315 0.301
RMSE 1.277 1.171 0.419 0.249 0.326
MUE 0.853 0.691 0.301 0.199 0.222

a The AM1-D and PM3-D results have been taken from ref 19.

Figure 2. Graphical representation of the H-bonding damping function (A), the entire correction term (solid-line), and the
electrostatic attractive portion (dotted-line) (B) used in the AM1-FS1 method. This model is for the case of the R-hydrogen atom
(connected to the nitrogen atom) interacting with the parallel oxygen atom on the second monomer of the uracil dimer in the
hydrogen bonding conformation. The MOPAC charges used correspond to the minimum energy structure (O---H, R ) 1.77);
this simplification has little effect on the functional form. This simplification has been used for graphical convenience.
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scheme to the AM1 method has been implemented into a
locally modified version of GAMESS.29

The hydrogen bonding correction scheme as described
above is continuous for proton transfer under most condi-
tions. In most cases, the correction term effectively turns
off (i.e., is essentially equal to zero) before the proton reaches
the halfway point in a proton transfer. For example, when a
proton transfers between two formic acid molecules, the
intercomponent oxygen-oxygen separation is about 2.7 Å;
therefore, when the proton reaches the halfway point, the
H---Y distance is about 1.35 Å (2.55 bohr) and the H-bonding
correction term is approximately zero (see Figure 2B). The
function is also continuous when the molecules are separated
by a greater distance even though there is a nonzero
correction at the halfway point because at this point the
function is identical in both directions (H---Y equals
X---H). When the proton passes the halfway point, the
H-bonding correction term corrects in the opposite direction.
If a proton is transferring across an asymmetric system,
however, a discontinuity can occur since the charges on the
X and Y atoms may not be the same. This discontinuity can
be eliminated by evaluating eq 4 in both directions at all
times and taking the correction to be a weighted sum of the
two. This correction has been implemented into AM1-FS1
and has no effect on any of the binding energies reported in
this manuscript, since evaluating the function in the opposite
direction (considering the X---H bond to be H-bonding) leads
to no correction because the X---H distance is essentially
always less than 1 Å (1.9 bohr). In summary, the switching
transition from one H-bonding situation to another is
effectively continuous during a proton transfer. We currently
cannot recommend AM1-FS1 for modeling proton transfers,
since it has not been tested and more importantly because
our training set does not contain data to parametrize for such
situations. Nevertheless, this correction scheme does not
produce discontinuities. High-quality (CCSD(T) and DFT-
SAPT) proton transfer potential energy curves are scarce,
rendering such a parametrization difficult at this time. We
plan to explore this avenue in the future.

2.3. Parameter Optimization. To improve the AM1
method for dispersion and hydrogen-bonding interactions,
two empirical correction terms have been added as discussed
above. These two correction terms involve a total of six
parameters: two for the dispersion term (eq 1) and four for
the H-bonding term (eq 4). These six parameters have been
mathematically optimized to the RMSE of the interaction
energies of 66 complexes (the F66 training set, see Table
S1, Supporting Information). All of the interaction energies
in the training set are CCSD(T) or SAPT quality. The training
set consists of complexes not only at their minimum energy
structures but also at greater and lesser separation than the
potential minimum. Inclusion of these nonequilibrium struc-
tures is intended to increase the reliability of geometry
optimization with AM1-FS1.

Our F66 training set includes the complexes in the S22
database,20 which has been used by others for similar
parametrization purposes.19,22,32 We have also included the
four additional H-bonded complexes33 that were later
introduced to the S22 database, now termed the S26 database.

The additional interaction energies are also CCSD(T) quality.
In our F66 training set, the water dimer, T-shaped benzene
dimer, and both uracil dimer structures from the S22 database
have been replaced by five points on their respective
interaction potential energy curves. Five-point sampling of
the potential energy curves has also been added for the
nitromethane dimer,34 parallel23 and M135 benzene dimer,
and three different benzene-acetylene36 conformations. For
a detailed list of complexes in the training set, refer to Table
S1 in the Supporting Information. It would be desirable to
have more potential energy curves in the training set, but
there is limited high quality data available. For training set
proposes, we have restricted ourselves to using only CCS-
D(T) or SAPT results, and only at or near the complete basis
set limit.

Upon optimization of the parameters, the damping coef-
ficient (d) in eq 2 optimized to infinity. This is because the
AM1 method, as well as other semiempirical methods,
inaccurately models repulsive interactions at close range for
dispersion bound complexes. This can be observed by
comparing DFT and semiempirical (AM1, PM3, RM1, and
PM6) potential energy curves for the parallel benzene dimer,
as shown in Figure 1. The figure clearly shows that at close
separation the semiempirical methods (AM1, PM3, RM1,
and PM6) differ significantly from the DFT (BLYP/6-
311G(d,p)) results, severely underestimating the repulsion
at close separations. The inaccurate repulsive inner wall of
the potential is a consequence of the minimal basis set and
parametrization of the SE methods.25 This inaccuracy is the
origin of d optimizing to infinity. As d becomes larger, the
dispersion correction is turned off more rapidly; however,
the function cannot become positive as needed to correct
for underestimation of the repulsion at short range by the
SE method. This problem could potentially be improved if
a 6-12 LJ potential was used and only intercomponent atom
pairs were considered; however, this introduces the require-
ment of atom connectivity information. It would also
introduce a discontinuity in the potential and/or its derivative
during bond breaking and formation processes (not to
mention that intracomponent dispersion interactions would
be neglected completely, thereby rendering the method
ineffective for modeling conformational preference in mac-
romolecules). We have therefore chosen to set d equal to
1000 and fully optimize the other five parameters. The
damping coefficient was chosen to be 1000, because this is
at the computational limit for evaluating the derivative of
eq 1 within double precision. (Derivative information is
needed for structural optimizations.) The other five param-
eters optimized to the following values: S6 ) 1.1059, R1 )
0.4882, R2 ) 0.6211, R3 ) 0.3344, and R4 ) 1.5451.

2.4. Why Begin with AM1? AM1 has long been accepted
as one of the most robust semiempirical methods. This
method has been used many times with success for modeling
large systems, but this is not the only reason for choosing
AM1. We applied the same correction scheme described
above to the RM1 method, which is a reparameterized
version of AM1. The “corrected” RM1 method was actually
less successful, on the basis of the RMSE for the F66 training
set. Upon further investigation, we found that the RM1
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method (as well as the PM3 and PM6 methods) performs
worse than the AM1 method for the benzene dimer when
compared to the DFT results that neglect dispersion interac-
tions, as discussed above. Thus, if the same dispersion
correction is applied to these mentioned SE methods, the
AM1 method will produce the best result, even though other
uncorrected SE methods produce potential energy curves
closer to the CCSD(T) results. This is because the AM1
method has the strongest repulsive wall, therefore, producing
a potential energy curve closest to the DFT result (see Figure
1). The functional form of the dispersion correction (eq 1)
does not allow the term to become positive as is needed in
some cases. This can be easily seen for the PM6 results in
Figure 1. At close range, the CCSD(T) results are more
repulsive then the PM6 results; thus to make the PM6 curve
identical to the CCSD(T) curve, a repulsive correction would
be needed. This problem is less severe for the AM1 method,
rendering it more suitable for modeling dispersion interac-
tions at close range. Note that these findings again might
lead one to believe that using a function like the LJ potential
would be beneficial, since a repulsive term is included. In
fact, the LJ potential was among our many attempts to
improve the AM1 method, but without success. This was
due to the fact that we were/are unwilling to add the burden
of requiring atom connectivity information. We believe such
a burden outweighs the potential added benefit.

3. Validation Studies

3.1. Single-Point Energies. In Table 1, the single-point
interaction energies for the structures in the S22 database20

are compared for various corrected and uncorrected SE
methods. First, note that the interaction energies for the
uncorrected AM1 and PM3 methods deviate significantly
from the CCSD(T) reference values. The root-mean-square
error (RMSE) for the AM1 and PM3 methods are 8.47 and
7.73 kcal/mol, respectively. Not only are these errors very
large, but in many cases the sign of the interaction is
predicted incorrectly. That is, the interactions are predicted
to be repulsive not attractive. The addition of an empirical
correction term(s) can drastically improve these methods.
Our AM1-FS1 method reduces the RMSE to 1.18 kcal/mol,
with the correct sign being predicted in all cases.

The results from McNamara and Hillier’s19 AM1-D and
PM3-D methods and the PM6-DH method of Řezáč et al.21

are also reported in Table 1. AM1-FS1 shows a slight
improvement over the AM1-D method in two of the three
subcategories and overall has a lower RMSE. AM1-FS1
achieves comparable accuracy to the PM3-D method for
intermolecular interaction energies; the RMSEs are both 1.18
kcal/mol, with AM1-FS1 achieving a slightly lower MUE.
While the overall improvement achieved by AM1-FS1 in
the accuracy with which intermolecular binding energies are
predicted is minor, we note that this has been achieved with
significantly less parametrization and no modification of the
original AM1 parameters.

The recently published PM6-DH method21 slightly out-
performs AM1-FS1 on the basis of the single-point energies
for the S22 database. Looking at the hydrogen bonded

complexes, the RMSEs are 1.07 and 1.37 kcal/mol for the
PM6-DH and AM1-FS1 methods, respectively. Given that
PM6-DH requires different parameters for each type of
hydrogen bond, the 0.3 kcal/mol improvement in RMSE
shown by PM6-DH is not especially significant. The group
has identified eight H-bonding scenarios resulting in a total
of 24 parameters for their H-bond correction term (three
parameters for each H-bonding type). AM1-FS1 only uses
four parameters; AM1-FS1 also does not introduce the
requirement of knowing atom conductivity. The PM6-DH
method does show significant improvement for many disper-
sion bonded cases, but it performs poorly for modeling the
potential energy surface of the benzene dimer. This is
discussed below and shown graphically in section 3.4. It
should be noted that Řezáč et al.21 only used complexes
8-22 of the S22 database for determining the dispersion
parameters for PM6-DH. Thus, it is not unexpected that good
agreement was achieved for the eight dispersion bound
complexes.

3.2. F66 Results. Many of the other empirically corrected
SE methods discussed have been parametrized to the S22
database, thus they should achieve accurate results for those
complexes. AM1-FS1 has been parametrized to a larger
training set consisting of 66 complexes. Parameterizing to
this larger training set has led to an increase in RMSE for
the S22 database. This is not unexpected and, in our opinion,
is a worthwhile sacrifice that should make AM1-FS1 more
versatile. (In fact, we tried optimizing AM1-FS1 solely to
the S22 database and achieved near DFT-D level accuracy,
but when the method was subsequently tested on the F66
training set, a larger RMSE resulted.) AM1-FS1 is param-
etrized to the F66 training set and achieves a sub-kilocalorie
RMSE (0.99 kcal/mol) and MUE (0.69 kcal/mol). The
individual results are reported in Table S1 in the Supporting
Information. Both AM1-D and PM3-D were parametrized
solely to the S22 database, so high accuracy is not surprising
when the S22 database is used as the “test set”. We have
performed calculations on the 66 complexes of the F66 set
using McNamara and Hillier’s AM1-D method for compari-
son. This provides for a much more comprehensive test of
the method than the S22 database because it contains a wider
variety of structures and nonequilibrium structures. AM1-D
produces a RMSE and MUE of 1.49 and 1.02 kcal/mol
respectively, approximately 50% less accurate than AM1-
FS1. Upon close inspection of Table S1, it can be seen that
AM1-FS1 significantly outperforms AM1-D on the repulsive
wall, an issue we will look at more closely in section 3.4.

3.3. Optimized Energies and Structures. This section
considers the effect of geometry optimization on interaction
energy and structural distortion for systems in the S22
database. The ability of an empirically corrected SE method
to perform accurately in this role is crucial because one of
the principal uses of SE methodology is structural optimiza-
tion of systems that are too large for optimization with first-
principles methods. The ability of a method to reproduce
interaction energies at reference geometries is not very useful,
because if we know the CCSD(T) geometry, and therefore
its energy, there is little value in knowing the SE energy for
that structure. In Table 2, the interaction energies for the
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geometry optimized complexes are reported for a variety of
corrected and uncorrected SE methods. Again, the uncor-
rected AM1 and PM3 methods perform poorly. Upon
applying our correction scheme to the AM1 method, the
RMSE is lowered from 6.25 to 1.80 kcal/mol. AM1-FS1 is
also an improvement over AM1-D; AM1-FS1 outperforms
AM1-D in all subcategories by about 1 kcal/mol. This
increase in performance for optimization, compared to the
AM1-D method, presumably results from our use of a
substantially larger training set that includes nonequilibrium
structures.

The performance of McNamara and Hillier’s PM3-D
method is comparable to our AM1-FS1 method. Depending
of the statistical metric selected, either may be said to
outperform the other for predicting interaction energies upon
geometry optimization of the structure in the S22 database.
AM1-FS1 does perform better in two of the three categories,
the dispersion and mixed bounded complexes. The PM6-
DH method outperforms all the other methods. However,
structural distortion should also be considered, but unfortu-
nately, data for such a comparison are not available. Again,
this aspect of a SE method is especially important since such
a method will likely be used for optimization purposes.

To gauge the degree of structural distortion upon geometry
optimization, select interaction distances are compared and
are shown in Table 3. The interaction distances are defined
as the center-of-mass separation and/or atom-atom dis-
tance(s) between the two monomers depending on the system
(see Figure S1 of ref 19 for the specific interaction distances).
Comparing the different empirically corrected SE methods,
we find that AM1-FS1 outperforms AM1-D in every
category. Our method is generally comparable to PM3-D on
the basis of interaction distance. AM1-FS1 performs better
in two of the three categories. This time, AM1-FS1 outper-
forms PM3-D for the H-bonded complexes on the basis of
interaction distances, but not for the dispersion bound
complexes. Based solely on the total RMSE for the S22
database would be difficult to choose which method, AM1-
FS1 or PM3-D, is better; however, AM1-FS1 does not
require reoptimization of the AM1 parameters thereby

preserving the predictive power of AM1 for calculation of
heats of formation, discussed below. As noted above,
interaction distances and/or structural geometries were not
made available for the PM6-DH method preventing structural
comparisons upon optimization of the S22 complexes.

To further test the ability of AM1-FS1 to model H-bonding
complexes, 16 additional hydrogen bonded DNA base pairs
have been considered. The 16 additional complexes were
chosen from ref 20 since these are the only complexes from
the H-bonding subsection that have CCSD(T) quality binding
energies. The geometries of these complexes, however, are
from MP2 optimizations or experimental data. Therefore,
these structures do not correspond to the CCSD(T) potential
minimum; this is also the case for most of the S22 database
structures. We have computed the binding energies for these
complexes on the basis of the reference geometries and also
AM1-FS1 optimized geometries. The RMSEs for the binding
energies are 1.78 and 2.18 kcal/mol, respectively. This error
is consistent with the error associated with the hydrogen
bonding complexes in the S22 database, which were used
for parametrization. The 16 complexes as well as the
reference CCSD(T), single point, and optimized AM1-FS1
binding energies are reported in Table S2 of the Supporting
Information.

3.4. Potential Energy Curves. The value of a computa-
tional method is significantly enhanced if it is able to
accurately describe the potential energy surface apart from
the minimum. A given method could accurately predict the
interaction energy at a specific molecular geometry yet yield
a very inaccurate picture of the remainder of the potential
energy surface. (See ref 25 for a detailed discussion.) In this
section, potential energy curves will be compared for various
empirically corrected SE methods.

In Figure 3, potential energy curves for two different
benzene dimer conformations are shown. Figure 3A shows
the interaction energy for the parallel dimer as a function of
monomer separation. The parallel dimer is not the lowest
energy conformation, but it is important to be able to model
a variety of geometries correctly for the correct description
of π-π interactions involved in large systems, and the

Figure 3. Parallel and M1 benzene dimer potential energy curves determined with various computational methods. Superscript
a refers to ref 23 and b to ref 35.
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parallel dimer represents a widely used test case, probably
owing to the simplicity of its construction. The M1 benzene
dimer, according to ref 35, is the lowest energy structure
known. Compared to the CCSD(T) and DFT(SAPT) refer-
ence values, among the empirically corrected SE methods
PM6-DH performs the worst for these systems. The PM6-
DH method seems to overbind π-π interactions. This is due
to the fact that the PM6 method performs poorly for
dispersion bound complexes compared to DFT-BLYP results
as discussed earlier and shown in Figure 1 (further discussion
is presented in ref 25). McNamara and Hillier’s AM1-D
method performs very well for the M1 dimer, however, not
so well for the parallel dimer. On average, AM1-FS1
performs the best for these two systems. AM1-FS1 has a
very steep potential wall at close separation (Figure 3A);
this is an artifact of using a large damping parameter (d) in
the dispersion correction term (eq 2). Again, the large term
is required because of the inability of the AM1 method to
properly capture short-range repulsive interactions.

In Figures 4 and 5, potential energy curves for the water
dimer and the nitromethane dimer are shown, respectively.
The water dimer is a classic hydrogen bonding system. The
potential energy curves in Figure 4 are shown as a function
of O---O separation. The figure shows that AM1-FS1
dramatically improves upon the AM1 method and outper-
forms McNamara and Hillier’s AM1-D method. The cor-
relation to SCF-SAPT results37 again shows that the hydro-
gen bonding correction term (eq 4) is a worthwhile addition
to the AM1 method. The AM1-D method also performs
relatively well for the water dimer. This means that the
changes they have made to the AM1 parameters improve
the results for this particular system; however, the same is
not observed if we consider the nitromethane dimer. In Figure
5, we see that AM1-D performs poorly for the nitromethane
dimer. The SCF-SAPT curve34 is for the so-called “double
hydrogen bond” configuration; however, nitromethane is not
a classical H-bonding system. It lacks a hydrogen atom
attached to a highly electronegative atom (N, O, or F);
nevertheless, this system is said to form weak H bonds.34

As shown (Figure 5), the AM1 method performs relatively

well for this system, whereas McNamara and Hiller’s
modification of the AM1 parameters has caused the AM1-D
method to inadequately model this system. AM1-FS1, on
the other hand, does not consider this a H-bonding case.
Therefore, the H-bonding correction term is not turned on
for this system. Consequently, AM1-FS1 performs well for
this system by applying only the dispersion correction. This
potential energy curve demonstrates that the AM1 parameters
should not be changed in all cases. It should be noted that
the AM1-D training set does not contain this system, whereas
the training set for AM1-FS1 does. (We have not compared
the PM6-DH method of Řezáč et al.21 in H-bonding cases
because we do not have code for their elaborate H-bonding
correction scheme.)

3.5. Heat of Formation. As mentioned earlier, modifying
the original semiempirical parameters can have deleterious
effects, especially for thermodynamic properties. For ex-
ample, the experimental heat of formation of benzene is 19.8
kcal/mol38 and is predicted to be 22.0 kcal/mol by the AM1
method.15 The AM1-D method, however, predicts a value
of -12.9 kcal/mol. (PM3-D performs even more poorly,
yielding -21.8 kcal/mol.) Reparameterization has rendered
AM1-D (and PM3-D) unreliable for predicting thermody-
namic properties. On the other hand, AM1-FS1 does not
change any of the original AM1 parameters and predicts the
heat of formation of benzene to be 20.0 kcal/mol, in good
agreement with experimental results and, serendipitously,
even a slight improvement over AM1. The AM1-FS1
empirical correction is designed to have little effect on
quantities that are already predicted relatively well by the
AM1 method. Table 4 collects results for calculations of heat
of formation on 53 test molecules. Note that the RMSE in
predictions of heat of formation with AM1-FS1 is compa-
rable to that of the original AM1 method, but AM1-D is 24
times (2400%) less accurate. Reparameterization of the
original PM3 method in the development of PM3-D has also
seriously degraded its predictive power for heats of formation
(see Table 4). This clearly shows the negative consequences
of changing the original semiempirical parameters without

Figure 4. Water dimer potential energy curves as a function
of O---O separation, as determined with various computational
methods. Superscript a refers to ref 37.

Figure 5. Nitromethane dimer potential energy curve in the
“double hydrogen bond” configuration, as determined with
various computational methods. Superscript a refers to ref 34.
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the consideration of such quantities during optimization of
the parameters.

While the original AM1 parameters have not been altered
in AM1-FS1, the FS1 correction terms do influence the
predicted heat of formation. This occurs because the heat of
formation is in part determined from the total energy of the
complex, which now contains the empirical correction
energy, but also in part from the energies of the isolated
atoms. The isolated atom energies do not include any
empirical correction energy since; by design, the correction
terms are not implemented for a single atom. Therefore, the
difference between the heat of formation as computed with
AM1 and AM1-FS1 will generally become larger as the
correction term(s) contribution increases. This will also be
the case for DFT-D methods when the total energy is used
in the determination of the heat of formation. The influence
of the FS1 correction on the predicted heat of formation can
have both undesirable and desirable consequences. For
example, in Table 4, it can be seen that as the number of
methylene units in the aliphatic hydrocarbons increases
(methane f ethane f propane f etc.), the error in the
predicted heat of formation increases. Fortunately, since the
original AM1 parameters have not been altered, the AM1
heat of formation can be easily obtained by subtracting out
the empirical correction energy from the AM1-FS1 heat of
formation. This approach of subtracting the correction energy
will also be effective for DFT-D methods when the total
energy is used in the determination of the heat of formation.
On the other hand, the correction to the total energy
sometimes has a beneficial impact on the predicted heat of
formation. For example, the experimental heat of formation
of the benzene dimer is 30.4 kcal/mol39 and is predicted to
be 37.9 and 44.1 kcal/mol on the basis of structures optimized
with the AM1-FS1 and AM1 methods, respectively. Note
that these structures are significantly different upon optimiza-
tion because the AM1 method does not consider dispersion
interactions. If we determine the heat of formation of the
AM1-FS1 optimized geometry with the AM1 method, the
error is even larger; the heat of formation is predicted to be
46.7 kcal/mol. Since the original AM1 parameters were
optimized to give reliable predictions of the heat of formation
at AM1-optimized geometries, it seems reasonable to con-
clude that, in general, if the heat of formation of some large
multicomponent carbon structure is desired, the AM1-FS1
method will likely produce a more accurate result at the
AM1-FS1 geometry. Certainly, the AM1-FS1 structure will
be more accurate since the dominant intercomponent interac-
tion will be incorporated. This situation is much less
complicated when a heat of reaction is of interest since the
correction term(s) are applied to both the reactants and
products.

4. Application to Macromolecular Complexes

The ultimate goal of AM1-FS1 is to be able to efficiently
and accurately model large weakly bound systems, such as
complexes of carbon nanostructures and molecular devices.
Such large systems are currently out of reach for CCSD(T),
and extremely computationally demanding for DFT methods.
Furthermore, most DFT functionals are incapable of model-

Table 4. Heat of Formation (kcal/mol)a

heat of formation (kcal/mol)

molecule expt AM1 AM1-D PM3-D AM1-FS1

methane -17.8 -8.8 -78.4 -6.6 -8.8
ethane -20.0 -17.4 -114.1 -12.2 -18.3
ethylene 12.5 16.5 -39.4 -11.0 16.1
acetylene 54.5 54.8 38.6 -9.8 54.8
propane -25.0 -24.3 -148.4 -17.7 -27.1
propene 4.8 6.6 -75.6 -16.5 5.3
propyne 44.2 43.4 3.4 -15.3 43.0
allene 45.5 46.1 6.6 -15.3 45.7
n-butane -30.0 -31.1 -182.7 -23.2 -36.1
isobutane -32.0 -29.4 -181.1 -23.2 -35.3
but-1-ene -0.1 0.4 -109.2 -22.0 -2.6
trans-2-butene -2.8 -3.3 -111.8 -22.0 -5.6
cis-2-butene -1.7 -2.2 -110.9 -22.0 -4.8
isobutene -4.0 -1.2 -109.8 -22.0 -4.3
1,2-butadiene 38.8 37.1 -28.5 -20.8 35.9
trans-1,3-butadiene 26.3 29.9 -38.2 -20.8 28.3
1-butyne 39.5 37.5 -29.8 -20.8 35.6
2-butyne 34.8 32.0 -31.8 -20.8 31.1
vinylacetylene 72.8 67.9 42.1 -19.6 66.9
diacetylene 113.0 106.1 122.4 -18.4 105.8
n-pentane -35.1 -37.9 -216.9 -28.7 -45.1
neopentane -40.2 -32.8 -212.3 -28.7 -42.8
benzene 19.8 22.0 -12.9 -29.6 20.0
toluene 12.0 14.5 -46.6 -35.1 10.7
ammonia -11.0 -7.3 -154.0 -7.7 -7.3
methylamine -5.5 -7.4 -165.2 -13.3 -8.2
dimethylamine -4.4 -5.6 -175.1 -18.8 -7.5
trimethylamine -5.7 -1.7 -183.3 -24.3 -5.1
ethylamine -11.3 -15.1 -200.4 -18.8 -17.5
n-propylamine -16.8 -22.1 -234.7 -24.3 -26.5
isopropylamine -20.0 -19.2 -231.9 -24.3 -23.9
tert-butylamine -28.9 -21.2 -261.6 -29.8 -29.3
pyrrole 25.9 39.9 -56.0 -26.3 38.5
pyridine 34.6 32.1 -29.5 -30.7 30.6
pyridazine 66.5 55.3 -33.6 -31.8 54.2
water -57.8 -59.2 -200.8 -12.0 -59.2
methanol -48.2 -57.0 -193.7 -17.5 -57.5
ethanol -56.2 -62.7 -225.8 -23.0 -64.4
1-propanol -61.0 -70.6 -261.9 -28.5 -74.7
2-propanol -65.2 -67.7 -258.2 -28.5 -71.8
t-butyl_alcohol -74.7 -71.6 -288.7 -34.0 -78.6
dimethyl_ether -44.0 -53.2 -185.7 -23.0 -53.8
diethyl_ether -60.3 -64.4 -249.6 -34.0 -67.8
oxirane -12.6 -8.9 -95.3 -21.8 -9.2
furan -8.3 3.0 -52.7 -30.5 2.1
phenol -23.0 -22.2 -120.0 -40.4 -24.9
anisole -16.2 -15.8 -110.1 -45.9 -19.8
benzaldehyde -8.8 -8.9 -58.5 -44.8 -12.1
formic_acid -90.5 -97.4 -222.7 -27.2 -97.4
acetic_acid -103.4 -103.0 -252.9 -32.7 -103.7
propionic_acid -108.4 -108.0 -285.5 -38.2 -111.1
oxalic_acid -173.0 -172.4 -370.9 -53.2 -172.8
benzoic_acid -70.3 -68.0 -181.4 -55.6 -71.0
RMSE 4.9 132.5 46.7 5.6
MUE 3.6 118.4 36.1 4.3

Binding Energies (kcal/mol) of Carbon
Nanostructure Complexesc

AM1-FS1 AM1-D
M06-2X/6-31+G(d,p)//

M06-L/MIDI

HMB@6CPPA -16.6 -17.6 -14.7
C60@6CPPA -26.9 -30.1 -28.0
C70@6CPPA -36.3 -41.0 -31.1
3,3@6CPPA -17.7 -22.1 -5.4
4,4@6CPPA -32.7 -42.0 -24.0
5,5@6CPPA -43.2 -46.4 -43.3
C60@BuckyCatcherb -29.3 -36.8 -26.4

C60@Coroanuleneb -13.4 -16.7 -12.4

a The experimental and AM1 results were obtained from ref 15. Note:
the AM1-D and PM3-D results were obtained by coding the method
outlined in ref 19; however, slight disagreements in the binding energies
were observed with PM3-D for compounds containing oxygen, sugges-
ting a misprint in the published PM3-D oxygen parameters. b Results
were obtained from ref 45. c The M06 results were obtained from ref 44.
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ing carbon nanostructure complexes due to the fact that these
systems are governed by van der Waals interactions.
Presumably, the current most accurate methods capable of
modeling such systems are DFT-D methods and the M05,40

M06,41 and M0842 family of functionals developed by Zhao
and Truhlar. Performing geometry optimizations with DFT-
based methods on systems larger than 100 atoms is currently
extremely computationally expensive, but such optimizations
can be routinely performed with semiempirical-based tech-
niques even on “PC”-class computers. This great computa-
tional efficiency of semiempirical methods provides the
central motivation for the present work.

4.1. Carbon Nanostructures. To test the performance of
AM1-FS1 on complexes of carbon nanostructures, we have
performed geometry optimizations and determined the bind-
ing energy of several inclusion complexes. The hosts
considered are corannulene (C20H10), a double-concave
hydrocarbon buckycatcher43 (C60H28), and cyclic[6]para-
phenylacetylene (6CPPA). The AM1-FS1 optimized struc-
tures are shown in Figure 6. (It is important to note that these
complexes would be predicted to be unbound if the standard
AM1 and most DFT methods were used.) To date, the best
binding energy values for these complexes are from DFT
calculations reported by Zhao and Truhlar,44,45 using the
M06-2X functional. The binding energies along with the
AM1-FS1 and AM1-D results are reported in Table 4. The
AM1-FS1 results are very comparable to the M06 values;
however, AM1-FS1 overestimates the binding energy for
3,3@[6]CPPA and 4,4@[6]CPPA in comparison to DFT-
M06-2X. This may be a result of the M06 functional
underestimating dispersion interactions at long range. This
hypothesis is supported by the potential energy curve for
the parallel benzene dimer shown in Figure 7, which clearly
shows that the M06 functional fails to accurately model
dispersion interactions in the long-range regime, where the
predicted interaction energy even becomes slightly positive.

This behavior might be easily overlooked since upon
optimization of the parallel benzene dimer, a reasonable
energy and structure will be produced. To show that this is
the case for 3,3@[6]CPPA, the binding energy was deter-
mined using the BLYP-D functional. The resulting binding
energy of 18.9 kcal/mol is in very good agreement with the
AM1-FS1 result. The M06-2X functional underestimates
binding for 3,3@[6]CPPA because the nearest intermolecular
interaction is 4.5 Å, a distance at which M06 underestimates
the interaction energy as exhibited by the benzene dimer
potential energy curve.

The AM1-FS1 method significantly outperforms AM1-D
in every case on the basis of the current benchmark M06
values. AM1-FS1 achieves this correlation with only two
added parameters (due to the nature of the systems only the

Figure 6. AM1-FS1 geometry optimized carbon nanostructure complexes.

Figure 7. Parallel benzene dimer potential energy curve
calculated with the M06-2X functional, using the 6-311G(d,p)
basis. CCSD(T) results were obtained from ref 23.
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dispersion correction term is “turned on” during the AM1-
FS1 calculations), whereas AM1-D utilizes 10 parameters.
We credit the success of AM1-FS1 to parametrizing to a
larger training set containing nonequilibrium complexes.

4.2. Pseudorotaxanes. We also tested the performance
of AM1-FS1 on six different pseudorotaxanes, since these
types of complexes are of central interest to our research
group. All of the systems considered incorporate cyclobis-
(paraquat-p-phenylene) (CBPQT+4), a tetracationic ring
structure. Six inclusion complexes with this ring have been
formed with dimethoxybenzene and benzenedimethanamine
in the ortho, meta, and para conformations. (AM1-FS1
optimized structures are shown in Figure 8.) We have
performed geometry optimizations and determined the bind-
ing energies of these complexes and compared them to
previously reported LMP2/6-311+G(d,p)//BHandHLYP/6-
31G(d) results.46 We also computed these binding energies
at the M06-2X/6-311G(d,p)//M06-L/MIDI level of theory for
additional comparisons. (All results are reported in Table
5.) On the basis of the results, the LMP2/6-311+G(d,p)//
BHandHLYP/6-31G(d) results appear to underestimate the
binding energy. This is likely a result of the geometry
produced by the BHandHLYP functional and not the LMP2

method. This conclusion is based on the binding energies
determined at the M06-2X/6-311G(d,p)//M06-L/MIDI level.
The differences in binding energies between the isomers are
sufficiently small that they may be taken to be insignificant
given the level of theory and the large conformational space
associated with these complexes. On the basis of these
results, we believe AM1-FS1 is a valuable tool for modeling
this class of macromolecular complexes.

5. Conclusions

AM1-FS1 is a new empirically corrected semiempirical
method suitable for performing geometry optimizations on
macromolecular complexes. AM1-FS1 displays considerable
improvement over the traditional AM1 method for nonbond-
ing interactions, yet it retains the computational efficiency
and predictive power for thermochemical quantities of the
original AM1 Hamiltonian. Validation testing shows that the
method reduces the RMSE for the popular S22 database from
8.47 to 1.18 kcal/mol. More impressively, this new method
has achieved kilocalorie accuracy on a training set of 66
complexes. This was accomplished with just six empirical
parameters (two for dispersion and four for hydrogen-
bonding) and no reparameterization of AM1 (which we show
here has led to serious consequences in existing empirically
corrected SE methods). This is a dramatic reduction in the
total number of adjustable parameters compared to other
previously published empirically corrected SE methods.
Validation testing shows that, while the existing PM6-DH
method does outperform AM1-FS1 on the basis of the S22
database, PM6-DH is shown to be inaccurate for reproducing
potential energy curves for the benzene dimer, a classic test
case used for predicting the likely accuracy of a method for
modeling complexes of carbon nanostructures. Moreover,
unlike PM6-DH, AM1-FS1 does not require knowledge of
atom connectivity. On the basis of the examples reported,

Figure 8. AM1-FS1 geometry optimized pseudorotaxane complexes.

Table 5. Binding Energies (kcal/mol) of Pseudorotaxane
Complexesa

Binding Energy (kcal/mol)

AM1-
FS1

M06-2X/6-
311G(d,p)//
M06-L/MIDI

LMP2/6-311+G(d,p)//
BHandHLYP/6-31G(d)

ortho-O@CBPQT+4 -32.1 -34.7 -21.0
meta-O@CBPQT+4 -31.7 -35.0 -16.1
para-O@CBPQT+4 -33.4 -34.7 -21.3
ortho-NH@CBPQT+4 -37.7 -41.7 -22.3
meta-NH@CBPQT+4 -38.2 -36.9 -22.5
para-NH@CBPQT+4 -38.5 -40.1 -23.9

a The LMP2 results were obtained from ref 46.

2164 J. Chem. Theory Comput., Vol. 6, No. 7, 2010 Foster and Sohlberg



on average, AM1-FS1 is also the most reliable empirically
corrected SE method for reproducing the potential energy
curve away from the global minimum. We credit this success
to using a training set that contains nonequilibrium complexes.

This new AM1-FS1 method has been shown to yield
results comparable in accuracy to the best available
calculations on complexes of carbon nanostructures and
carbohydrate pseudorotaxanes. We believe AM1-FS1 is
a useful computational tool for obtaining reliable results
for such systems at limited computational expense. It
should prove to be a valuable asset for routine modeling
of macromolecular complexes that are currently at (or
beyond) the limit of DFT based techniques, or out of reach
of higher levels of theory.
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Abstract: The monovalent ions Na+ and K+ and Cl- are present in any living organism. The
fundamental thermodynamic properties of solutions containing such ions is given as the excess
(electro-)chemical potential differences of single ions at finite ionic strength. This quantity is key for
many biological processes, including ion permeation in membrane ion channels and DNA-protein
interaction. It is given by a chemical contribution, related to the ion activity, and an electric contribution,
related to the Galvani potential of the water/air interface. Here we investigate molecular dynamics
based predictions of these quantities by using a variety of ion/water force fields commonly used in
biological simulation, namely the AMBER (the newly developed), CHARMM, OPLS, Dang95 with
TIP3P, and SPC/E water. Comparison with experiment is made with the corresponding values for
salts, for which data are available. The calculations based on the newly developed AMBER force
field with TIP3P water agrees well with experiment for both KCl and NaCl electrolytes in water
solutions, as previously reported. The simulations based on the CHARMM-TIP3P and Dang95-
SPC/E force fields agree well for the KCl and NaCl solutions, respectively. The other models are
not as accurate. Single cations excess (electro-)chemical potential differences turn out to be similar
for all the force fields considered here. In the case of KCl, the calculated electric contribution is
consistent with higher level calculations. Instead, such agreement is not found with NaCl. Finally,
we found that the calculated activities for single Cl- ions turn out to depend clearly on the type of
counterion used, with all the force fields investigated. The implications of these findings for
biomolecular systems are discussed.

1. Introduction

Monovalent ions, such as Na+ and K+ and Cl-, are essential
to life. For example, the name of the channel protein that

conducts these ions across the membranes of cells is often
given by its selectivity for singe ions (e.g., sodium, potas-
sium, and chloride channels). All living processes occur in
the presence of the electrolyte solution with finite ionic
strength: solutions outside cells are mostly Na+ (about 0.14
molal or m)1 and inside cells mostly K+ and Cl- (0.14 and
0.1 m, respectively).2 Ions move through selective channels,3

where local ionic strength can be as large as 5 m4,5 and
rearrange dramatically in the formation of protein-, DNA-,
and RNA-protein complexes.6-8 Therefore, the thermody-
namics of single ions in the electrolyte solution at finite ionic
strength I is of great interest for biological systems.
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As we know from experiments, thermodynamic properties
of electrolyte solutions at moderate I (say 0.2 m) differ
already from the ideal properties found at I ) 0. Indeed,
ions, like Na+ and K+, differ because they are nonideal. They
have even more dramatically nonideal behavior at m ionic
strength.9 The key quantity describing the nonideal behavior
of single ions in ionic solution is the difference in excess
(electro-) chemical potential (µX

ex, X ) Na+, K+, and Cl-)
between solutions at finite I and those at I ) 0. This
difference, which we write as ∆µX

I, ex, is given by two
contributions: (i) the chemical part, which accounts for the
change of intermolecular interactions between the solution
molecules/ions at finite I compared to that at I ) 0;10 and
(ii) the electrical part, which is due to the electrostatic
potential inside the solution generated at the interface
between air and any thermodynamically stable solution. This
is the so-called Galvani potential.11,12

The calculation and the experimental determination of
∆µX

I, ex at finite I are cumbersome. In fact, in molecular
simulations approaches, such as Monte Carlo or molecular
dynamics, one has to apply periodic boundary conditions to
mimic macroscopic solutions; in these conditions, the non-
negligible contribution due to the Galvani potential must be
added.13,14 Although this quantity is defined mathematically
unambiguously, it can be calculated only in an approximate
way because of the well-known limitations of sampling and
force field accuracy in molecular simulations.15,16 In addition,
approximations must be necessarily introduced in the cal-
culations of long-range electrostatics.17-19 Experimentally,
it is not possible to separate the contribution of an ion from
that of its counterion(s) because experiments are necessarily
carried out on neutral macroscopic systems. Extra thermo-
dynamic assumptions are then necessary.20-23 Indirect
estimates are obtained by an analysis of different salts.24

Further complications might arise from deviations from ideal
conditions, which are usually assumed.11,12 These consider
the ions as point particles, independent of size and chemical
types of the ions, and the solution-air interface independent
of boundary conditions.25 In fact, the Galvani potential is
likely to depend on the size and chemical nature of the
particle. This fact is important for both theoretical and
experimental estimates. Next, for the latter, the Galvani
potential may depend also on complex effects specific to the
setups. In particular, the thermodynamic properties of the
interface may depend on finite-size effects and the presence
of boundaries. Finally, in some experimental setups, non-
equilibrium effects might be involved if flows are too slow
to equilibrate on the time scale of experiments. The last two
issues would arise in molecular simulation of the same
setups.

Here we investigate the variance among force fields in
predictions of ∆µX

I, ex of KCl and NaCl in aqueous solution
as well as the dependence of the predicted properties of Cl-

ion on its Na+ or K+ counterions. To this end, we performed
molecular dynamics simulation of the ions in solutions based
on a variety of force fields commonly used in biomolecular
simulations. These include the AMBER26 (the newly devel-
oped), CHARMM,27,28 OPLS,29 and Dang9530 in combina-
tion with SPC/E31 and TIP3P32 water models.

Prior of the prediction of ∆µX
I, ex, we explore the domain

of applicability of these force fields. This is a nontrivial issue
as these potentials are commonly calibrated by fitting to
quantities like ion hydration free energy at I ) 0 or the first
peak of ion-water radial distribution functions, which are
not sensitive to I.33 This means that the nonideal effects of
ions at finite strength are not considered in the parametriza-
tion. Because this issue cannot be addressed by considering
∆µX

I, ex for the reasons outlined above, we resort here to a
comparison between the predicted and experimental values
for NaCl and KCl salts, ∆µNaCl

I, ex and ∆µKCl
I, ex. For these, the

contribution from the Galvani potential vanishes.14,23 There-
fore, the properties of the air/water interface are not involved
in the evaluation of electrostatics. This makes the calculation
straightforward. In addition, experimental values are available
for neutral salts solutions, such as KCl and NaCl solutions.34

So far, such comparison has been made with the newly
developed AMBER force field and TIP3P water solutions.26

It is extended here to the other force fields listed above.
Our paper is organized as follows. Section 2 reports the

thermodynamic quantities of interest in this work and the
computational details. Section 3.1 assesses the accuracy of
the force fields by a comparison of calculated and experi-
mental values for ∆µNaCl

I, ex and ∆µKCl
I, ex. Section 3.2 reports our

estimate of ∆µX
I, ex (X ) Na+, K+, and Cl-), while Section

3.3 reports the calculated electrical contributions to ∆µNa+
I, ex

and ∆µK+I, ex, for which corresponding values obtained by
higher level calculations are available. Section 3.4 describes
the dependence of the chemical contribution to ∆µCl-

I, ex from
the type of counterion. Section 4 discusses the implications
of our results for biological systems. Section 5 summarizes
the results.

2. Theory and Methods

2.1. Definition of Excess (Electro-)Chemical Poten-
tial Difference ∆µX

I, ex. The (electro-)chemical potential of
a monovalent ion X at finite I, µX

I , can be expressed as23,35

The reference chemical potential µX° is defined as the
chemical potential of the X ion (e.g., Na+) in an infinitely
diluted solution (i.e., its ionic strength I° f 0) of one of its
salts (e.g., NaCl) at room temperature and 1 atm pressure.

The activity coefficient of X is γX. It characterizes the
nonideal thermodynamic behavior of ions due to ion-ion
and ion-water interactions at at finite I. In the reference state,
γX is assumed to be 1. RT ln γX is usually referred to as the
chemical contribution to µX

I .
The Galvani potential at finite I is �I. It arises by bringing

an ion from an infinite distance into the interior of the liquid
phase.11 The charge number is z (e.g., z ) 1 for Na+). While
zF�I includes two parts: (i) the contribution of the Volta
potential, which vanishes if the solution bears no net charge
(as in our case);23 and (ii) the contribution due to the surface
potential generated by the specific dipole orientation of water
molecules and their quadrupole moments at the solution
interface.36-38 This provides a non-negligible contribution
to µX

I .14,23

µX
I ) µX

o + RTln
I

Io
+ RTln γX + zF�I (1)

2168 J. Chem. Theory Comput., Vol. 6, No. 7, 2010 Zhang et al.



The excess (electro-)chemical potential which accounts for
the intermolecular interaction between solution molecule/
ions, is defined as10

µX
°, ex is the excess (electro-)chemical potential of the reference

state or the hydration free energy of ions, whereas �° is the
Galvani potential of liquid water.

The excess (electro-)chemical potential difference is then
given by difference between µX

I, ex and µX
°, ex

The practical calculation of zF(�I - �°) poses some
challenges. It is presented in the next section, along with
the straightforward calculation of RT ln γX.

The excess (electro-)chemical potential of a salt (e.g.,
NaCl) is easily obtained from the arithmetic average of the
contributions from cations and anions:

Notice that the contribution due to the Galvani potential
to ∆µNaCl

I, ex and to ∆µKCl
I, ex is zero because the electrolyte itself

is neutral, even though its component ions are not. In fact
zF(�I - �°) of Na+ (or K+) has the opposite sign of zF(�I

- �°) of Cl-.
2.2. Calculation of the Chemical Contribution to

∆µX
I, ex. RT ln γX has been calculated here from the well-

known thermodynamic integration (TI) approach39-41 and
its replica-exchange variant.42-44

In the TI approach, the Hamiltonian of our initial systems
(e.g., the NaCl or KCl solutions at a given ionic strength I)
is gradually perturbed by inserting an ion X, and the free
energy difference between the initial and final systems is
then calculated. The perturbation is commonly divided into
smaller windows by varying the coupling parameter λ from
0 to 1 in the Hamiltonian. RT ln γX is then obtained by
numerical integration of each λ window.

Here, U is the binding energy of the ion with the initial
system. 〈U〉λ is the ensemble average of the thermodynamic
force in each λ window.

As expected,14,26 the calculation of ∫0
1dλ〈U°〉°, λ converges

very well, and ∼1 ns of dynamics was indeed sufficient to
obtain excellent convergence. Instead, the calculation of
∫0

1dλ〈UI〉I, λ turned out not to converge on the same time scale.
This slow convergence may be caused by many reasons,
including the fact that ion pairing is nonzero at finite I45

and that the diffusion of ions is slower at finite I.46,47 Thus,
starting with different initial locations of the ion may give
different results. Because of these difficulties in convergence
and stability of simulations, we adopted the replica-exchange
variant of TI.42-44 This is expected to converge much more
efficiently.43,44 In fact, this was the case here (see Supporting
Information).

2.3. Calculation of the Electrical Contribution to
∆µX

I, ex. In molecular simulations with periodic boundary
conditions, the air-liquid interface is absent. The contribu-
tion zF(�I - �°) due to this interface potential is expected
to be significant48,49 and must be added. The magnitude of
the interface potential depends on the details of the way long-
range electrostatic calculations are calculated13,50 In the
conditions used here (P-sum or particle-based PME),51 the
interface potential can be estimated by molecular dynamics
simulations of a liquid slab with vacuum interface52-54 (See
Section 2.5 for details).

2.4. Finite Size Correction to ∆µX
I, ex. Additionally, one

should consider the finite size correction on the electrostatic
energy to the free energy calculations:17-19

where q is the testing ion charge, ε(0) is the static dielectric
constant, and �Ew ) -2.837297/L3, which comes from the
Madelung constant for a simple cubic lattice. This correction
is expected to be much smaller than the previous one for
aqueous solutions.55 Indeed, for our box size (about 6 nm,
see the next section, Section 2.5), it is expected to be 0.5
kJ/mol or smaller.56

2.5. Computational Details. All classical molecular
dynamics simulations were performed using the GROMACS
package.57,58 Parameters and references are listed in Table
1.

Simulations were performed at the following ionic strength:
0.01, 0.15, 0.67, 1.39, 3.27, 4.28, and 4.80 m for KCl aqueous
solution and 0.01, 0.15, 0.67, 1.39, 3.27, 4.80, and 5.56 m
for the NaCl aqueous solution. The composition of the
systems is listed in Table 2. An edge of 6.0 nm was chosen
for the initial (cubic) simulation cell. The cell proved to be
large enough to yield good statistics for ion pairs at low-
ionic strength and to correct estimates of the bulk properties
of water, such as the dielectric constant61 (also see Supporting
Information). Ions were randomly placed inside a water box
with separation longer than 0.45 nm. Each system was
equilibrated for 1 ns with a time step of 2 fs in a
Nośe-Hoover thermostat62,63 at 298 K and with a Parrinello-
Rahman barostat64 at 1 bar. The PME method51 was used
to treat the long-range electrostatic interaction in the periodic
system. Medium-high accuracy settings for PME were
adopted,65 in which the number of grid points for the
reciprocal space calculation of the electrostatic energy
calculation was 0.01 nm, a sixth degree B-spline interpolation
was used, and the width of the screening Gaussian charge η
was set to be 3.4 nm-1. The van der Waals and short-range
Coulomb interaction cutoff was 0.1 nm. The dispersion
correction term was applied to the energy and pressure.66

The SETTLE algorithm67 was used for the rigid water
models (namely TIP3P and SPC/E).

Free energy calculations were carried out in the NVT
ensemble with a Nośe-Hoover thermostat62,63 at 298 K,
staring from the last frame of the equilibration run. A two-
stage69 replica-exchange TI42-44 was used to calculate the
excess chemical potential. In the first stage, the ion was
gradually neutralized, whereas in the second stage, the van

µX
I,ex ) µX

o,ex + RTln γX + zF(�I - �o) (2)

∆µX
I,ex ) RTln γX + zF(�I - �o) (3)

∆µNaCl
I,ex ) (∆µNa+

I,ex + ∆µCl-
I,ex)/2 (4)

RTln γX ) -1
�

ln∫0

1
dλ〈UI〉I,λ + 1

�
ln∫0

1
dλ〈Uo〉o,λ (5)

1
2

q2(1 - 1
ε(0))�Ew (6)
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der Waals interaction was slowly switched off. A soft-core
potential was used to avoid singularity of force when testing
whether an ion appeared or disappeared.70 At each stage,
10 equispaced λ windows were sampled. For each λ window,
simulations were started from uncorrelated configurations.
Exchanges between neighboring λ configurations were at-
tempted every 3 ps. The first ps of each of these 3 ps
simulations was discarded. A total of 2 ns long trajectories
were collected for each replica-exchange TI stage. The
trapezoid rule was used to integrate the averaged thermo-
dynamics force profile. The statistical error of each window
was estimated by block averaging,71 and the final error of
the free energy difference was calculated by error propagation.

The calculation of the surface potential was carried out in
an orthorhombic cell in a 8.4 nm thick slab containing water
and ions in the same composition as used in the free energy
calculation. The spacing along the z-axis was large enough
to create two vapor-liquid interfaces and three-dimensional
(3D) periodic boundary conditions were applied. The box
size was chosen around 2.8 × 2.8 × 8.4 nm, as is usual in
simulations of the surface potential of an air-liquid
interface.48,49,52-54 Each simulation was performed for 10
ns in NVT ensemble with a Nośe-Hoover thermostat at
298K.62,63 Electrostatic potential was evaluated from the
averaged charge density profile along the z-axis. The density
was calculated on a 0.02 nm grid.72

3. Result and Discussions

3.1. ∆µKCl
I, ex and ∆µNaCl

I, ex : Comparison between Cal-
culated Values and Experiment. Our calculation for salts
∆µKCl

I, ex and ∆µNaCl
I, ex using the newly developed AMBER-TIP3P

force field26 reproduces quantitatively the experimental data

(Figure 1), as previously reported.73,74 The CHARMM-
TIP3P and Dang95-SPC/E force field-based calculations
predict accurately the values for the KCl and NaCl solutions,
respectively (Figure 2). All the other potential models are
not as good (Figure 2). It is of interest to notice that a recent
study75 showed that the CHARMM parameters for Na-Cl
interactions generated from the Lorentz-Berthelot combina-
tion rule lead to a larger underestimation of osmotic
pressuresa probe for ions activitys12 than the corresponding
one for K-Cl interactions.

3.2. Calculation of ∆µX
I, ex. The calculated values for

individual ions ∆µX
I, ex (X ) Na+, K+, and Cl-) are as

scattered at finite I as the corresponding ones for the KCl

Table 1. L-J Parameters of Ion Models and the Mixing Rules

model atom σ (nm) ε (kJ/mol) q (e) mixing rule

Na+ 0.21595 1.47545 1.0
AMBER26 (SPC/E) K+ 0.28384 1.79789 1.0 Lorentz-Berthelot

Cl- 0.48305 0.05349 -1.0
Na+ 0.24393 0.36585 1.0

AMBER26 (TIP3P) K+ 0.30380 0.81041 1.0 Lorentz-Berthelot
Cl- 0.44776 0.14891 -1.0
Na+ 0.24299 0.19623 1.0

CHARMM27,28 K+ 0.31426 0.36401 1.0 Lorentz-Berthelot
Cl- 0.40447 0.62760 -1.0
Na+ 0.33304 0.01160 1.0

OPLS29 K+ 0.49346 0.00137 1.0 geometric
Cl- 0.44172 0.49283 -1.0
Na+ 0.25840 0.41840 1.0

Dang9530 K+ 0.33320 0.41840 1.0 Lorentz-Berthelot
Cl- 0.44010 0.41840 -1.0

SPC/E31 O 0.31660 0.65060 -0.8476
H 0.00 0.00 0.4238

TIP3P32 O 0.31510 0.63640 -0.834
H 0.00 0.00 0.417
H59,60 0.04000 0.19246 0.417

Table 2. Numbers of Water Nwater and Ion Pairs Nion pair in
the Simulation System

ionic strength (m)

0.01 0.15 0.67 1.39 3.27 4.28 4.80 5.56

Nwater
68 7804 7764 7624 7436 6986 6766 6656 6504

Nion pair 0 20 90 184 409 519 574 650

Figure 1. Calculated excess (electro-)chemical potential
differences for KCl ∆µKCl

I, ex and NaCl ∆µNaCl
I, ex, based on the newly

developed AMBER-TIP3P force field,26 plotted as a function
of the square root of the m ionic strength. Comparing is made
with experimental data.34
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and NaCl salts (Figure 3). This hints that thermodynamics
of ions using different force fields differ from each other at
finite I.

The magnitude of these values for ∆µX
I, ex is comparable

with that of the available experimentally derived data.24

However, the calculated ∆µK+I, ex increases with I more than
∆µNa+

I, ex. The opposite trend is found in the experimental
estimates.76 Similarly, the calculated ∆µCl-

I, ex decreases with
I more in the KCl solution than it does in the NaCl solution.

The opposite occurs for the experimentally derived values.
These significant discrepancies may arise from several errors
and assumptions from both theory and experiments, as
discussed in the Introduction Section.

To provide some hints of the origin of errors specific to
the calculations, we focus here on comparisons against results
obtained using higher level calculations. These are available
only for the electrical contribution zF(�I - �°).

3.3. Some Considerations on the Electrical Contri-
bution zF(�I - �°). In this section, we report our calculated
values for zF(�I - �°) at finite I and compare with previous
calculations, based on polarizable force fields.48,49 Notice
that also the latter results, even though they are expected to
be much more accurate than those based on a nonpolarizable
force field, still cannot present the exact Galvani potential.
This is because they do not fully take into account the
contribution due to the molecular quadrupoles.36,37

The calculated electrical contribution zF(�I - �°) to
∆µK+I, ex increases linearly with I for all the force fields used
here, ranging from 0 to 16 kJ/mol (Figure 4).77,78 The range
of the calculated values of zF(�I - �°) is comparable to
that obtained by polarizable ion/water force field-based
calculations at I ) 1 m (from 1 to 4 kJ/mol versus 3.4
kJ/mol).48,79

The overall values of calculated zF(�I - �°) for a Na+

range is from -3 to 3 kJ/mol. Thus, the values of zF(�I -
�°) at I ) 1 m range from -1 to 0.5 kJ/mol, to be compared
with the value obtained with a polarizable force field of 3.5
kJ/mol.49,79 We conclude that nonpolarizable models for the
NaCl solution are not able to reproduce the results of
polarizable models.

The experiments estimated an increase of the Galvani
potential in both KCl and NaCl electrolyte solutions at finite
I.37,80,81 However the quantities are all much smaller (about

Figure 2. Deviations ε of calculated excess (electro-)chemical
potential differences for KCl ∆µKCl

I, ex and NaCl ∆µNaCl
I, ex from

experimental data34 plotted as a function of the m ionic
strength. The shadow area covers the deviation ε within (0.5
kJ/mol. The results obtained with all the force fields considered
in this work are presented.

Figure 3. Calculated excess (electro-)chemical potential
differences for single ions ∆µX

I, ex (X ) Na+, K+, and Cl-) in
KCl and NaCl solutions, plotted as a function of the m ionic
strength. The results obtained with all the force fields con-
sidered in this work are presented. Experimentally derived
estimates are also reported.24

Figure 4. Calculated electrical contribution zF(�I - �°) to
∆µX

I, ex for K+ and Na+ in KCl and NaCl, respectively (z ) 1),
plotted as a function of the m ionic strength I. The results
obtained with all the force fields considered in this work are
presented.
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0.2 and 0.3 kJ/mol for KCl80,82 and NaCl, respectively, at I
) 1 m).80,82 The very large discrepancies between theory
and experiment reflect the difficulties in experimental
measurement of the Galvani potential (see Introduction
Section) as well as limitations of the molecular simulation
methods outlined in the Introduction.

3.4. RT ln γCl-: Dependence from the Types of Coun-
terions. The chemical contribution RT ln γCl- as a function
of I depends on the type of counterion for all the force fields
used here (Figure 5).

As mentioned before, RT ln γCl- reflects the change of
intermolecular interactions between Cl--ion and Cl--water
at finite I. This change in electrolyte solution is often
attributed to the electrostatic interactions as a first ap-
proximation.83 We find the Cl--ion electrostatic contribution
to RT ln γX of the NaCl solution is dramatically different
from that of the KCl solution, obtained from a calculation
based on the newly developed AMBER-SPC/E force field26,84

(inset in Figure 5). Similar conclusions can be drawn for
Cl--water electrostatic contributions in the two salt solutions
(data not shown).

4. Implication for Biological Systems

The success of predicting the values for salts is gratifying with
some of the force fields considered here, especially considering
their very simple functional form. The success testifies to the
care with which force fields have been developed. However,
the challenges reported previously,13,20-22,55,85 and addressed
here, do remain in the prediction of ∆µX

I, ex (X ) Na+, K+, and
Cl-) and in particular of the electric contribution to it (see
Sections 2.3 and 3.3). These difficulties may be even larger
when modeling biological systems. Such difficulties do not
come without consequence. Consider the simple identification
of an ion channel, as done by (literally) thousands of laboratories

every day. That identification depends on the measurement and
identity of the (so-called) reversal potential,86,87 which is the
experimental estimator of the gradient of chemical potential or
the equilibrium potential, as it was called by Hodgkin and
Huxley.88,89 The name of the channel is often determined by
its selectivity90-93(e.g., sodium, potassium, or chloride chan-
nels), and that in turn depends on the identification of the
reversal potential with the gradient of chemical potential of one
ion. If in fact ∆µX

I, ex is not accurately included94-98 in the
calculation of the gradient of chemical potential (when using
concentration of ions as inputs), then the channel identification
may be askew.97

The selectivity properties of ion channels are crucially
important to their function. Ions that differ in their nonideal
properties, like Na+ and K+, carry different ‘messages’ (i.e.,
signals) to different systems of the cell, and so there is enormous
literature trying to measure, understand, simulate, control, and
even synthesize99-101 the selectivity of different types of
channels. Estimates and computations of selectivity depend
critically on estimates of ∆µX

I, ex, because many types of ions
differ only because they are nonideal. Similar considera-
tions87,102-113 are likely to apply to a myriad of other biological
events. Many important biological properties arise because of
the nonideal properties of individual types of ions.

5. Conclusion
We have established the quality of a variety of standard ion/
water force fields commonly used in biological simulation, for
the calculation of the excess (electro-)chemical potential for KCl
∆µKCl

I, ex and for NaCl ∆µNaCl
I, ex. Specifically, the AMBER26 (the

newly developed), CHARMM,27,28 OPLS,29 and Dang9530

were considered in combination with SPC/E31 and TIP3P32

water models. The calculation based on the newly developed
AMBER-TIP3P agrees well with the experimental values for
both KCl and NaCl solutions, as previously reported.73 Instead
the CHARMM-TIP3P potential agrees well with the KCl salt,
whereas the Dang95-SPC/E potential agrees well with the NaCl
salt. The other potential models do not give good results for
either of the two aqueous solutions studied. Hence, care should
be taken in biomolecular simulations when using these force
fields at physiological I.

The calculated ∆µNa+
I, ex values are similar to those of ∆µK+I, ex.

The calculated values are as scattered at finite I as the
corresponding ones for the KCl and NaCl salts. Only the
calculated electric contribution zF(�I - �°) of K+ is consistent
with reported higher level calculations with polarizable ion/
water force fields.48

The calculated chemical contribution RT ln γCl- to ∆µCl-
I, ex

depends on the type of counterions present. This result may
be of interest for force field calculations of Cl--dependent
biological systems (such as chloride channels).114

Acknowledgment. The author (C. Z.) thanks F. Marinel-
li for helpful discussion on the replica-exchange method. We
thank the reviewers for their highly valuable comments on
the manuscript.

Supporting Information Available: Tests of the
convergence of free-energy calculation, calculated dielectric
constants as a function of ionic strength, estimates of the

Figure 5. Calculated chemical contribution RT ln γCl- in KCl
and NaCl aqueous solutions, plotted as a function of the m
ionic strength. The results obtained with all the force fields
considered in this work are presented. Inset: Cl--ion elec-
trostatic contribution to RT ln γCl- based on the newly devel-
oped AMBER-SPC/E force field.26
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Galvani potential of pure water as well as the density profiles
of concentrated salt solutions. This material is available free
of charge via the Internet at http://pubs.acs.org.
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(62) Nośe, S. J. Chem. Phys. 1984, 81, 511.

(63) Hoover, W. G. Phys. ReV. A: At., Mol., Opt. Phys. 1985,
31, 1695.

(64) Parrinello, M.; Rahman, A. Phys. ReV. Lett. 1980, 45, 1196.

(65) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee,
H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.

(66) Allen, M. P.; Tildesley, D. J. Computer Simulation of
Liquids: Oxford Science Publications: Oxford, U.K., 1987;
pp 64-68.

(67) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13,
952.

(68) Exact number depends on the water model and the salt type.

(69) Kollman, P. Chem. ReV. 1993, 93, 2395.

(70) Beutler, T. C.; Mark, A. E.; Van Schaik, R. C.; Gerber, P. R.;
Van Gunsteren, W. F. Chem. Phys. Lett. 1994, 222, 529.

(71) Hess, B. J. Chem. Phys. 2002, 116, 209.

(72) Note that it is also possible to obtain the Galvani potential
by creating a virtual air-solution interface with those
snapshots from simulations of bulk solutions under PBC and
then integrating the charge density.

(73) Joung, I. S.; Cheatham, T. E. J. Phys. Chem. B 2009, 113,
13279.

(74) Notice that the time-scale of our simulation is shorter than
that of these authors.73 They use straightforward TI instead
of replica-exchange TI. The latter converges faster, See
Figure S1 in Supporting Information..

(75) Luo, Y.; Roux, B. J. Phys. Chem. Lett. 2010, 1, 183.

(76) Similar trends were also founded experimentally24 in the
presence of an anion other than Cl-.

(77) Table S1 in Supporting Information presents a comparison
of �° values, which is not crucial for the ∆µX

I, ex but may be
relevant as a reference.

(78) We only observed a slight preference of the anions at the
interface than cations in the simulations (See Figure S3 in
Supporting Information).

(79) The actual values reported in refs48 and 49 are (�I-�°).
For the sake of clarity, here we report zF(�I-�°), which is
the quantity of interest here.

(80) Randles, J. E. Phys. Chem. Liq. 1977, 7, 107.

(81) Jungwirth, P.; Tobias, D. J. Chem. ReV. 2006, 106, 1259.

(82) Jarvis, N. J.; Scheiman, M. A. J. Phys. Chem. 1968, 72,
74.

(83) Wright, M. R. An Introduction to Aqueous Electrolyte
Solutions; Wiley: Chichester, U.K., 2007.

(84) We expect similar results for all the other force fields as
they have the same trend in Figure 5. However, free energy
decomposition is force field and path dependent.

(85) Harder, E.; Roux, B. J. Chem. Phys. 2008, 129, 234706.

(86) Hille, B. Ionic Channels of Excitable Membranes, 3rd ed.;
Sinauer Associates Inc.: Sunderland, MA, 2001; pp 1-19.

(87) Zuhlke, R. D.; Pitt, G. S.; Deisseroth, K.; Tsien, R. W.;
Reuter, H. Nature 1999, 399, 159.

(88) Hodgkin, A.; Huxley, A.; Katz, B. Arch. Sci. Physiol. 1949,
3, 129.

(89) Hodgkin, A. J. Physiol. 1976, 263, 1.

(90) Conley, E. C. The Ion Channel Facts Book. I. Extracellular
Ligand-gated Channels; Academic Press: New York, 1996;
pp 3-11.

(91) Conley, E. C. The Ion Channel Facts Book. II. Intracellular
Ligand-gated Channels; Academic Press: New York, 1996;
pp 3-20.

(92) Conley, E. C.; Brammar, W. The Ion Channel Facts Book
III: Inward Rectifier and Intercellular Channels; Academic
Press: New York2000; pp 3-21.

(93) Conley, E. C.; Brammar, W. The Ion Channel Facts Book
IV: Voltage Gated Channels; Academic Press: New York,
1999; pp 3-21.

(94) Barry, P. H. Am. J. Physiol. 1990, 259, S15.

(95) Barry, P. H. Ann. Biomed. Eng. 1994, 22, 218.

(96) Barry, P. H. J. Neurosci. Methods 1994, 51, 107.

(97) Barry, P. H. Cell Biochem. Biophys. 2006, 46, 143.

(98) Ng, B.; Barry, P. H. J. Neurosci. Methods 1995, 56, 37.

(99) Miedema, H.; Meter-Arkema, A.; Wieregna, J.; Tang, J.;
Eisenberg, B.; Nonner, W.; Hektor, H.; Gillespie, D.;
Meijberg, W. Biophys. J. 2004, 87, 3137.

(100) Miedema, H.; Vrouenraets, M.; Wieregna, J.; Eisenberg, B.;
Gillespie, D.; Meijberg, W.; Nonner, W. Biophys. J. 2006,
91, 4392.

(101) Vrouenraets, M.; Wieregna, J.; Meijberg, W.; Miedema, H.
Biophys. J. 2006, 90, 1202.

(102) Berg, J. M. Annu. ReV. Biophys. Biophys. Chem. 1990,
19, 405.

(103) Berg, J. M. J. Biol. Chem. 1990, 265, 6513.

(104) Cantwell, M. A.; Di Cera, E. J. Biol. Chem. 2000, 275,
39827.

(105) Berg, J. M.; Godwin, H. A. Annu. ReV. Biophys. Biomol.
Struct. 1997, 26, 357.

(106) Carnell, C. J.; Bush, L. A.; Mathews, F. S.; Di Cera, E.
Biophys. Chem. 2006, 121, 177.

(107) De Gristofaro, R.; Fenton II, J. W.; Di Cera, E. J. Mol. Biol.
1992, 226, 263.

(108) Di Cera, E. Biopolymer 1994, 34, 1001.

(109) Doroshenko, P. A.; Kostyuk, P. G.; Lukyanetz, E. A.
Neurosci. 1998, 27, 1073.

(110) Eisenberg, R. S. J. Membr. Biol. 1990, 115, 1.

2174 J. Chem. Theory Comput., Vol. 6, No. 7, 2010 Zhang et al.



(111) Lambers, T. T.; Mahieu, F.; Oancea, E.; Hoofd, L.; de Lange,
F.; Mensenkamp, A. R.; Voets, T.; Nilinus, B.; Clapham,
D. E.; Hoenderop, J. G.; Bindels, R. J. EMBO J. 2006, 25,
2978.

(112) Tripathy, A.; Xu, L.; Mann, G.; Meissner, G. Biophys. J.
1995, 69, 106.

(113) Vescovi, E. G.; Ayala, Y. M.; Di Cera, E.; Groisman, E. A.
J. Biol. Chem. 1997, 272, 1440.

(114) Suzuki, M.; Morita, T.; Iwamoto, T. Cell. Mol. Life Sci.
2006, 63, 12.

CT9006579

Molecular Dynamics in Physiological Solutions J. Chem. Theory Comput., Vol. 6, No. 7, 2010 2175



Starting-Condition Dependence of Order Parameters
Derived from Molecular Dynamics Simulations

Samuel Genheden,† Carl Diehl,‡ Mikael Akke,‡ and Ulf Ryde*,†

Department of Theoretical Chemistry, Lund UniVersity, Chemical Centre, P.O. Box
124, SE-221 00 Lund, Sweden and Center for Molecular Protein Science, Biophysical

Chemistry, Lund UniVersity, P.O. Box 124, SE-221 00 Lund, Sweden

Received December 28, 2009

Abstract: We have studied how backbone N-H S2 order parameters calculated from molecular
dynamics simulations depend on the method used to calculate them, the starting conditions,
and the length of the simulations. Using the carbohydrate binding domain of galectin-3 in the
free and lactose-bound states as a test case, we compared the calculated order parameters
with experimental data from NMR relaxation. The results indicate that the sampling can be
improved by using several starting structures, taking into account conformational heterogeneity
reported in crystal structures. However, the improvement is rather limited, and for 93% of the
dihedrals that have alternative conformations in the crystal structures, the conformational space
is well sampled even if a single conformation is used as the starting structure. Moreover, the
agreement with experimental data is improved when using several short simulations, rather
than a single long simulation. In the present case, we find that ∼10 independent simulations
provide sufficient sampling, and the ideal length of the simulations is ∼10 ns, which is ∼25%
longer than the global correlation time for rotational diffusion. On the other hand, the equilibration
time appears to be less important, and our results suggest that an equilibration time of 0.25 ns
is sufficient. We have also compared four different methods to extract the order parameters
from the simulations, namely, the autocorrelation function and isotropic reorientational eigenmode
dynamics using three different window sizes. Overall, the four methods yield comparable results,
but large differences between the methods may serve to pinpoint cases for which the calculated
parameters are unreliable.

Introduction

Nuclear spin relaxation is a powerful experimental technique
that provides site-specific information on dynamics and
conformational entropy.1-3 Such measurements are normally
interpreted in the context of the model-free approach,4-6

yielding a generalized order parameter (S2) for each studied
bond vector. Typically, NMR spectroscopic investigations
of conformational dynamics focus on a relatively limited
subset of bond vectors, although continuous method develop-
ment aims to expand this set.7-11 Thus, investigations based

solely on experimental data inevitably undersample the
conformational entropy of the system, although recent results
suggest that order parameters for selected subsets of bond
vectors actually capture conformational entropy quite well.12

Therefore, NMR spin relaxation experiments can favorably
be combined with molecular dynamics (MD) simulations to
augment the information content of experimental order
parameters.13,14 MD simulations provide a detailed picture
of the motions of all atoms considered, with an accuracy
and precision similar to that of NMR experiments.15 Thus,
MD simulations offer a route to interpret in greater detail
the results from spin relaxation experiments, provided that
the two techniques yield commensurate results.16 In particu-
lar, MD simulations can provide the probability distribution
of the conformational substates, including those degrees of
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freedom that are not probed by spin relaxation measurements.
Once an MD-generated conformational ensemble has been
validated by experimental NMR data, it is therefore possible
to calculate the total conformational entropy of the system
and to address other issues such as the degree of coupling
between bond vector motions. In addition, MD simulations
offer a high-resolution view of the motional mechanisms that
cannot be determined directly from the NMR relaxation data.
Conversely, comparisons of order parameters obtained with
MD and NMR have frequently been used to judge and
improve the quality of MD force fields.13,17-19

A major issue for the calculation of generalized S2 order
parameters20 from MD simulations is the convergences
typically quite long simulations are needed to reach conver-
gence. Related to this issue is how the results depend on the
starting conditions of the MD simulations. Several studies
have shown that results of MD simulations, e.g., order
parameters, strongly depend on the starting structure.21-23

It has been much discussed whether it is more favorable to
run a single long simulation or several shorter ones.24-26

In this paper, we examine a related problem: Many crystal
structures, especially those obtained at a high resolution,
show residues with multiple conformations. This provides a
practical problem for MD simulations, because only a single
structure is normally treated in the simulations. Which of
these conformations should be selected as the starting
structure, and how do the results depend on this selection?
Is it necessary to start from many different conformations
to cover the conformational space appropriately? Can we
use this information to speed up the convergence of
calculated properties? In this paper, we provide a systematic
investigation of these issues. In particular, we study how the
calculated order parameters vary and how they compare to
experimental NMR data.

As a model system, we have studied the carbohydrate-
recognition domain of galectin-3 (Gal3), for which high-
resolution X-ray structures are available.27 Galectins repre-
sent a family of proteins that preferentially bind �-galactoside-
containing glycans composed of N-acetyllactosamine.28,29

They are involved in a wide variety of extracellular and
intracellular processes, e.g., cancer,30,31 immunity, inflamma-
tion,32,33 and RNA splicing.34,35 The Gal3 structure consists
of two antiparallel � sheets of six and five strands (Figure
1).27,28 The saccharide-binding site is defined by a shallow
groove formed by the six-stranded � sheet and surrounding
loops. Galectin-monosaccharide interactions are relatively
weak, with dissociation constants on the order of 0.1-1 mM.
The binding free energy is in general dominated by enthalpic
contributions and has a minor unfavorable entropic contribu-
tion.36 Typically, two to five hydrogen bonds are formed
between the carbohydrate ligand and Gal3, in addition to
favorable van der Waals interactions.

Methods

MD Simulations. The carbohydrate-recognition domain
of the protein galectin-3 (Gal3) was studied both in the
unbound form (Gal3-apo) and in complex with lactose (Gal3-
Lac). The simulations were based on an unpublished 1.08

Å structure of Gal3-apo and on a 1.35 Å structure of Gal3-
Lac (PDB code 2nn8).27 The two structures are very similar,
with a backbone RMSD of 0.22 Å. In both crystals, several
residues are reported with two conformations (27 for Gal3-
apo and 16 for Gal3-Lac), all with an occupancy of 0.5. In
the MD simulations, we need to select one of those
conformations for the starting structure, but the choice is
totally arbitrary and might possibly bias the final results. To
investigate the effect of the selected conformation, residues
were divided into five groups of nearby residues, and the 32
possible permutations of these groups were prepared in which
residues in the same group had the same conformation, A
or B. The groups are specified in Tables S1 and S2 in the
Supporting Information. For about a third of the residues
with alternative conformations, there is a change in the
hydrogen-bond pattern around that residue, as is also
specified in Tables S1 and S2.

All simulations were run using the Amber 10 sander
module.37 The lactose molecule was described with the
glycam06 force field and the protein with the Amber99SB
force field.17 Protons were added with the leap module of
Amber, and the protonation states were as described previ-
ously.38 The systems were solvated in an octahedral box of
TIP4P-Ewald waters,39 extending at least 9 Å from the
protein. The SHAKE algorithm40 was used to constrain
bonds involving hydrogen atoms, making a 2 fs time step

Figure 1. Structure of Gal3 with important residues indicated:
(top) the side with the binding site, (bottom) the back side.
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possible. The temperature was kept constant at 300 K using
Langevin dynamics41 with a collision frequency of 2.0 ps-1.
The pressure was kept at 1 atm using a weak-coupling
approach,42 with isotropic position rescaling and a relaxation
time of 1 ps. Long-range electrostatics were treated with the
particle-mesh Ewald approach43 with a fourth-order B-spline
interpolation and a tolerance of 10-5. The nonbonded cutoff
was 8 Å, and the nonbonded pair list was updated every 50
fs.

The systems were energy minimized for 1000 steps,
restraining all water molecules and heavy atoms to their start
positions with a force constant of 418 kJ mol-1 Å-2. This
was followed by a 20 ps equilibration with the same restraints
and constant pressure, 50 ps equilibration without any
restraints at constant pressure, and 200 ps equilibration at
constant volume and no restraints. Finally, a 20 ns production
run was performed, still at a constant volume. Coordinates
were saved every 1 ps for the calculation of order parameters.
On the basis of the stability of the backbone RMSD, the
first 5 ns were discarded from subsequent analysis, unless
otherwise stated.

We also performed 10 independent simulations of the
proteins, started with all residues in the A conformation. The
simulation protocol was as described above, but the produc-
tion simulation was extended to 40 ns. The independent
simulations were generated by using different random starting
velocities.

Thus, we have run 32 simulations of 20 ns length, starting
from different conformations, and 10 simulations of 40 ns
length, starting from the same A conformation, but with
different velocities. In the following, we will discuss the
results obtained from different subsets of these simulations.
These subsets will be referred to by the number of simula-
tions, followed by the letter M for mixed conformations or
A for the A conformation and then by the length of the
simulation in nanoseconds, preceded by “×”. For example,
10 simulations of 5 ns length, started from different
conformations will be denoted 10M×5.

MD-Derived Order Parameters. Two different methods
were used to calculate order parameters from the MD
simulations. In the first, order parameters were estimated
from the plateau value (lim(t f∞) C2 (t)) of the following
time autocorrelation function (ACF):

where A is a constant (including the length of the N-H
vector) and the average was calculated over the trajectory.44

The unit vectors µ(τ) and µ(τ + t) describe the orientation
of the N-H vector of interest at times τ and τ + t in relation
to a fixed reference frame. This ACF was calculated using
the Amber 10 ptraj module, and the overall tumbling was
removed by fitting the backbone heavy atoms to the first
snapshot. It is not fully straightforward to determine the
plateau value of C2, because C2 becomes noisy at large values
of the time delay, t, owing to the finite sampling time.
Therefore, C2 was only calculated for t up to ∼1/10 of the
total simulation time.45-47 The order parameters were then
obtained by fitting C2(t) to an exponential function of the
form

where A, B, C, D, and E are fitted coefficients20 and the order
parameter can be identified with A.44,13 Statistical errors of
the order parameters were estimated using a bootstrap
procedure on the residuals from the exponential fit, using
1000 samples.48

Alternatively, order parameters were extracted using the
isotropic reorientational eigenmode dynamics (iRED) ap-
proach.49 In this approach, the following covariance matrix

of µ(τ) for different N-H vectors was calculated using the
Amber 10 ptraj module. The eigenvalues, λm, and eigenvec-
tors mb were then obtained by diagonalization, and the order
parameters for residue i were calculated from

where the sum runs over all internal modes, i.e., all except
those with the five largest eigenvalues, and mi is the ith
element of mb. Order parameters were calculated either by
using the entire trajectory or by averaging over 1 or 5 ns
windows. The latter was tested because, if the length of a
simulation exceeds the overall tumbling correlation time of the
protein, S2 parameters computed over the whole trajectory can
include motions that would not be reflected in the experimental
S2 values, leading to a bias in the computed S2 values.16,50

Dihedral Distributions. To identify the distribution of
dihedral angles of interest, we employed a Gaussian-mixture
model (GMM).51 This approach models the total distribution
as a sum of Gaussian (normal) distributions. Each of these
distributions will be referred to as a state. In this study, we
are only interested in one-dimensional distributions, and
hence we employ univariate Gaussian distributions. The
probability that a data point (a dihedral angle, denoted y in
the following formulas) comes from state k is denoted πk,
and the distribution of each class is

where µk and σk
2 are the mean and variance of state k. The

total distribution is

To determine which state each data point belongs to and
the values of the parameters πk, µk, and σk

2, we use an
expectation-maximization algorithm.52 This is an iterative
algorithm that starts with an initial guess of the parameters
and then iteratively updates the parameters until convergence.
Initially, we assume that there are four states that are
uniformly distributed between -180 and +180, and that all
states have equal probability. If the probability of a state in
any iteration falls below 0.001, that state is discarded. In
each iteration, the parameters are updated as follows:

C2(t) ) A〈3(µf(τ)µf(τ + t))2 - 1〉 (1)

A + B e-Ct + D e-Et (2)

Mij )
1
2

〈3(µfi µfj)
2 - 1〉 (3)

Si
2 ) 1 - ∑

m)6

n

λm|mi|
2 (4)

p(y| from class k, µk, σk) )
1

√2πσk
2

exp(-(y - µk)
2

2σk
2 ) (5)

p(y|π, µ, σ) ) ∑
k

πkp(y| from class k, µk, σk) (6)
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where the weight wik is determined from the data and the
values of the parameters in the previous iteration (old)

Statistical Analysis. Twelve quality measures were em-
ployed to judge how well the calculated order parameters
(SMD

2 ) reproduce the measured ones (SNMR
2 ), viz., the median,

the correlation coefficient (r2), the root mean squared
deviation (RMSD), the mean signed deviation (MSD), the
mean absolute deviation (MAD), the mean absolute deviation
with systematic error removed (MADtr, i.e., after subtraction
of the MSD), the mean quote (MQ; SMD

2 /SNMR
2 ), and the Q

value (Q ) (∑i(Si,MD
2 - Si,NMR

2 )2)/(∑i(Si,NMR
2 )2)).53 We also

calculated how many of the experimental order parameters
fall outside the range of the calculated order parameters
among the set of simulations of the same type. This measure
was also calculated when the range was extended by 0.01,
0.05, and 0.1 in each direction.

Errors in the various qualities were estimated from the
standard deviations in SMD

2 and SNMR
2 by performing a random

simulation: SMD
2 and SNMR

2 for each residue was assigned a
random number from a normal distribution, with the mean
and standard deviation obtained in the MD simulations or
NMR measurements. Then, we calculated all the quality
measures and repeated this procedure 10 000 times. The
standard deviations within these sets are reported as the
standard error of the quality estimates.

For the comparison of various methods or simulation
protocols, we estimate the significance of each prediction
by calculating the probability that a certain method will be
best the observed number of times or more, using a binomial
distribution, assuming equal probability for all methods or
simulations. In this calculation, quality measures that give
the same results for all methods were omitted.

NMR Relaxation Data. The acquisition and analysis of
the NMR relaxation data for the backbone N-H groups have
been described.38 In comparing order parameters from NMR
and MD, it should be kept in mind that the former depends
on assumptions regarding the N-H bond length and chemical
shift anisotropy of the 15N nucleus.13 Residue-specific
variations in these parameters are not captured by the present
approach. Furthermore, for the purposes of the present
comparisons, we have also considered the potential effects
of additional systematic errors, as follows.

Accurate interpretation of relaxation rates in terms of order
parameters requires high-resolution structural information if
the protein exhibits anisotropic global rotational diffusion,
because the relaxation rates depend on the orientation of the

N-H bond vector in the molecular frame. In the case of
Gal3-apo, the loops surrounding the saccharide-binding site
have different conformations in the low-resolution NMR
structure54 and the high-resolution X-ray structure, which
can be attributed to intermolecular contacts in the crystal.27

In principle, this discrepancy suggests that the experimental
S2 values determined for the loop residues in question might
suffer from systematic errors. However, Gal3-apo has a
modest anisotropy of 1.07, indicating that the potential errors
in S2 should be less than 3%.

The presence of conformational exchange contributions
to R2 requires that the model-free optimization includes an
exchange term, Rex. Deviation of the fitted Rex from the actual
exchange contribution leads to inaccuracy of the fitted S2

values. To account for this, in some cases, we have omitted
those residues that have been fitted with Rex terms. However,
in the case of Gal3, the model-free optimizations appear to
be robust. Using reduced data sets excluding R2, we obtain
nearly identical order parameters for both Gal3-apo and Gal3-
lac, with a weighted RMSD versus the full data sets
(including R2) of 0.007 in both cases.

Result and Discussion

Method to Calculate Order Parameters. Before studying
the starting-condition dependence, we addressed which
method to use to calculate order parameters. As described
in the Methods section, we tested both the ACF and iRED
approaches. In the latter case, order parameters were
calculated either by using the entire trajectory or by averaging
over 1 or 5 ns windows (these methods will be called iRED-
full, iRED-1, and iRED-5 in the following). To compare the
four methods, we used the 12 quality measures described in
the Methods section to judge how well the calculated order
parameters (SMD

2 ) reproduce the measured ones (SNMR
2 ), taken

from our previous investigations of Gal3.38 These compari-
sons were done both for Gal3-apo and Gal3-Lac. We also
studied the difference in order parameters between Gal3-
apo and Gal3-Lac, ∆S2. All the results are collected in Tables
S3-S5, in the Supporting Information.

Unfortunately, the various quality measures give different
results, as do the simulations on different proteins. The
correlation coefficient is in general highest with the iRED-5
method, but the correlation is rather poor for all methods,
up to 0.35 and 0.43 for Gal3-apo and Gal3-Lac, respectively,
and less than 0.07 for ∆S2. Such a correlation is worse than
what has been observed in most previous studies, in which
SNMR

2 and SMD
2 have been compared, 0.22-0.93.17,18,23,55-60

The reason for this is that r2 for Gal3 strongly depends on
a few residues with a low S2, which often are poorly
determined by NMR (as will be discussed more below). On
the other hand, the RMSD, median, and MAD are actually
better than observed in the great majority of previous studies:
The RMSD is 0.04-0.06, compared to 0.02-0.26, in the
previous studies, with an average of 0.09. In fact, only one
investigation in our survey gave an RMSD lower than in
the present comparison, 0.02-0.04.58 Likewise, both the
median (-0.02 to 0.03) and the MAD (0.03-0.04) are lower
than in previous studies (0.04 and 0.06-0.11,55,56 respec-
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tively). Thus, the accuracy of the present investigation seems
to be similar or better than in previous studies.

The number of NMR values outside the simulated range
is typically lowest for the ACF method, but this criterion
may favor methods with a poor precision. For the other
quality measures, the iRED-1 method gives the best results,
at least for the Gal3-apo simulation and the difference. For
RMSD, which gives a high weight to outliers, the iRED-
full method works better for Gal3-Lac, and for the median,
MSD, and MQ, which give a low weight to outliers, ACF
performs better for Gal3-Lac. For MAD and MADtr, which
give an intermediate weight to outliers, iRED-1 is always
best. On the basis of these results, it is hard to point out a
single method as the best. In the following, we will use iRED
with 1 ns windows, simply because it had the best average
performance.

Most importantly, the four different methods give closely
similar results for most of the order parameters. In fact, only
for seven residues (out of 127), the largest difference among
the four methods is larger than 0.05 in the 32 simulation
using different starting conformations (32M×20). These
residues are listed in Table 1. This shows that, for the great
majority of the residues, it does not matter what method is
used, whereas for a few residues, different methods give
differing results, indicating problems to accurately determine
SMD

2 . Thus, a large difference between the four methods can
be used as a criterion to decide what residues have a poorly
determined SMD

2 , and these could then be excluded from
comparisons. As the order parameters calculated with ACF
deviate most from those calculated with iRED-1, it is
sufficient to calculate order parameters with these two

methods to decide which residues have a poorly determined
SMD

2 . However, if the simulation time is short, many of the
ACFs will not be converged. Therefore, we recommend using
iRED without windowing as a second opinion. From Table
1 (sixth set of columns), it can be seen that this only slightly
changes the results.

Conformational Sampling. Next, we turn to simulations
started at different structures, based on the alternative conforma-
tions in the crystal structure. As detailed in the Methods section
and described in Tables S1 and S2 (Supporting Information),
we have run 32 simulations of 20 ns length for both Gal3-apo
and Gal3-Lac, based on a permutation of five groups of
alternative configurations observed in the crystal structure.

A natural question is whether the protein stays in the same
conformation during the simulations or if it moves between
the various conformations freely. To answer this question,
we defined a set of 30 dihedral angles that describe the
differences of most of the alternative conformations observed
in the crystal structure. They are shown in Table 2.

These dihedral angles were followed throughout the MD
simulations. We used a Gaussian-mixture model (GMM)51

to identify the number of maxima in the distribution function,
the dihedral angle at the maxima, and the percent of the time
the system spent in each conformation. A typical example
is shown in Figure 2.

All 30 dihedral angles describe rotations around a C-C
single bond. Therefore, three distinct conformations are
expected, rather than the two conformations modeled into
the crystal structures. This is confirmed by the simulations:
21 of the 30 angles showed three conformations with a
significant probability (>1%; the conformational states

Table 1. Residues for which the Four Methods to Calculate SMD
2 Give a Range Larger than 0.05 in the Different Simulations

simulation 32M×20a 10A×40a 10A×20a 1A×40a 1A×20a 32M×20b 10M×10b

residue Lac Apo Lac Apo Lac Apo Lac Apo Lac Apo Lac Apo Lac Apo

Ile115 0.13 0.12 0.18 0.16 0.13 0.13 0.26 0.11 0.16 0.13 0.13 0.12 0.16 0.25
Val116 0.12 0.07 0.12 0.11 0.11 0.09 0.12 0.09 0.12 0.06 0.12 0.07 0.15 0.15
Gly125 0.06 0.06 0.07 0.06 0.09 0.10 0.09 0.12 0.14 0.24
Val126 0.07 0.06 0.07
Ala142 0.09
Asp154 0.12
Val155 0.06 0.10 0.10 0.12 0.06 0.08 0.09 0.12 0.07 0.06 0.10 0.11 0.15
Arg168 0.06
Arg169 0.06 0.07 0.08
Leu177 0.09 0.08 0.10 0.16 0.09 0.14 0.13 0.23 0.09 0.08 0.18 0.16
Asn179 0.08
Asn180 0.06
Arg183 0.08
Glu184 0.06 0.12 0.06
Arg186 0.08
Val189 0.11 0.11 0.06 0.08
Phe192 0.06 0.06 0.08 0.07
Asp207 0.07
Val213 0.08
Ala216 0.06
Leu219 0.08
Arg224 0.07 0.06
Lys227 0.07 0.08 0.07 0.08 0.07
Leu228 0.06 0.07 0.06 0.00 0.06 0.13 0.09 0.06 0.06 0.06
Ile231 0.09
Ser232 0.10 0.14 0.16 0.15 0.11 0.12 0.24 0.15 0.17 0.13 0.09 0.14 0.18 0.18
Ser246 0.07
Ile250 0.10 0.10 0.09 0.18 0.07

a Results based on all four methods. b Results based only on the iRED-1 and iRED-full methods.
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identified with the GMM will be called S1-S3 in the
following, whereas the conformations observed in the crystal
structures are called A and B). Only for one residue, Gln150,
did we find a single significant state (Figure 1 shows the
location of important residues in the crystal structure of
Gal3). All conformations identified by the GMM are listed
in Table 2. It can be seen that most of the conformations
identified in the MD simulations are separated by ∼120°,

as expected for a 3-fold rotation. However, nine dihedrals
had rotamers that were closer than 100°, down to 41° for
S2 and S3 of Arg129.

In general, the dihedral angles with maximum probabilities
obtained from the MD simulations are fairly close to those
observed in the crystal structure. However, in ∼5 cases, the
difference is over 30°, and for Gln150 in Gal3-apo, crystal
conformation A was not observed in the MD simulation. In
nine cases, the difference between the two conformations
observed in the crystal structures is so small that they belong
to the same state in the MD simulations.

If we compare the results of simulations started with all
residues in either the A or B conformation, it can be seen that
there is a quite large difference between the average values for
the 30 dihedral angles in the two simulations, especially for
Gal3-apo (Tables S6 and S7, Supporting Information): The
averages differ by up to 121°, and the MADs are 30° and 17°
for Gal3-apo and Gal3-Lac, respectively. Apparently, the
estimated standard errors (∼1°) for a single simulation grossly
overestimate the precision of the averages.

The percentage of the time spent in the various conforma-
tions is more stable, but it still shows differences of up to
65% units, with MADs of 11-13 and 8-11% units for Gal3-
apo and Gal3-Lac, respectively. This shows that there are
significant differences between simulations started from
different structures. However, there are also significant
dynamics for the studied dihedrals. Only 2-5 dihedrals show
a single conformation in the simulations, and for 2-7

Table 2. Definition of Dihedral Angles Used to Characterize the Conformational Samplinga

Apo Lac

residue dihedral angle structure A B A B S1 S2 S3

Val 116 N-CA-CB-CG2 Apo -89 90 -57 -61 60
Pro 117 N-CA-CB-CG Apo -6 20 23 -23 27
Asn 119 N-CA-CB-CG Lac 178 -64 178 -171 -71 77
Arg 129 CA-CB-CG-CD Lac -167 175 -153 -180 13 53
Met 130 N-CA-CB-CG Apo -160 175 -172 -174 -88 83
Ile 134 CA-CB-CG1-CD1 both 96 172 -55 94 -62 89 170
Lys 139 CB-CG-CD-CE Apo -177 71 171 -67 68 179
Pro 140 N-CA-CB-CG Apo -28 25 -18 -21 25
Asn 143 CA-CB-CG-ND2 both -106 138 -121 132 -161 85
Gln 150 CA-CB-CG-CD both -95 146 -154 153 173
Arg 168 CB-CG-CD-NE both -168 176 -180 167 -69 69 180
Arg 169 CG-CD-NE-CZ Lac 164 170 -86 -167 -87 148
Val 170 N-CA-CB-CG2 Apo -175 69 -171 -168 -56 59
Ile 171 N-CA-CB-CG1 Apo -44 -76 -59 -57 68
Lys 176 CB-CG-CD-CE Lac -164 69 -162 -176 -64 70
Gln 187 CB-CG-CD-NE2 Apo -122 80 111 -88 96 182
Ser 188 C-CA-CB-OG both -70 138 -69 152 -69 174
Glu 193 CA-CB-CG-CD Apo -69 171 -175 -180 -65 59
Lys 196 CA-CB-CG-CD Lac -161 -152 171 -175 -64 69
His 208 CA-CB-CG-ND1 Lac -100 -99 82 -110 97
Lys 210 CB-CG-CD-CE Apo 71 -106 76 -66 66 178
Gln 220 C-CA-CB-CG both 173 -72 172 -61 -62 65 170
Asn 222 CA-CB-CG-ND2 Lac -71 66 172 -79 72 189
Lys 226 CA-CB-CG-CD Apo -64 -179 178 -179 -61 66
Lys 227 CA-CB-CG-CD Apo -167 163 166 -180 -67 70
Asn 229 CA-CB-CG-ND2 Apo -172 168 179 -90 88 162
Ser 232 C-CA-CB-OG Lac 173 -67 171 -69 179
Lys 233 C-CA-CB-CG Apo 165 -163 -145 -61 62 166
Ile 236 CA-CB-CG1-CD1 Apo 176 118 145 -72 91 175
Met 249 C-CA-CB-CG both -62 110 -60 -160 -69 71 177

a The table shows the residue and the atoms in each dihedral angle, the dihedral angles observed in the two conformations in the two
crystal structures, as well as the (up to) three conformations observed in the MD simulations, according to the Gaussian-mixture model.
Conformations in the crystal structures that belong to the same MD states are marked in bold face. All dihedral angles are in degrees.

Figure 2. A typical example of the Gaussian-mixture model
(GMM) fit for the dihedral angle in Met249. The underlying
distribution is shown as a histogram with a bin size of 72 and
the GMM is shown as a solid line.
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additional dihedrals, over 90% of the time is spent in a single
conformation. Thus, there is a decent sampling of at least
two conformations for most of the dihedrals.

Next, we consider the 32 simulations with the permutations
of different conformations. Again, the results (Tables S8 and
S9, Supporting Information) show that there is an extensive
variation in the results obtained with different starting
structures: There are simulations that give completely op-
posite results for the percentage of the various conformations
in the simulations (i.e., some simulations give 100% S1 and
others give 100% S2 or S3). This shows that it is mandatory
to run several independent simulations to obtain reliable
results (or use simulation times much longer than 20 ns).

Interestingly, there is little correlation between what
conformations are observed in the crystal structures and the
populations of the dihedrals sampled in the simulations. Only
in three cases does a residue that has a single conformation
in the crystal also populate primarily (>90%) the same
conformation in the simulations (Asn119 and His208 in Gal3-
apo and Ile171 in Gal3-Lac). For another three dihedrals,
MD samples only a single conformation, which essentially
covers the two states observed in the crystal structures (i.e.,
the two conformations observed in the crystal structures are
so close that they belong to the same MD conformation).
On the other hand, there are three residues that show almost
only one conformation in the simulations, but two conforma-
tions in the crystal structures (Val116 in Gal3-apo and
Asn119 and Asn222 in Gal3-Lac). All of the other residues
show two or three conformations in the MD simulations,
independently of the number of conformations observed in
the crystal structures. The reason for this may be that the
resolution of the structures is too low to discern several
conformations (some of which have a low occupancy), that
crystal packing effects may stabilize certain conformations,
or that the low temperature conditions during the X-ray
diffraction experiments (employing liquid nitrogen) restricts
the number of populated conformational states.

There are some conspicuous differences between Gal3-
apo and Gal-Lac. In particular, Asn222 is almost entirely in
the S3 state in the Lac simulation, whereas it is only 1% of
the time in that conformation for Gal3-apo. Glu193 and
His208 also show quite large differences. However, for most
of the dihedrals, the occupancy of the various conformations
is quite similar, with a MAD of only 8% units.

The prime question in this investigation is whether it is
necessary to use different starting structures to obtain a proper
sampling or if similar results can be obtained with different
means. To this end, we compare the 32 simulations started
from different conformations with 10 simulations started
from the same structure (all residues in the A conformation),
but with different starting velocities. The results in Tables
S8 and S9, Supporting Information, show that the 10
simulations started from the same conformation show a
slightly smaller sampling. For example, the average range
of the percentages (maximum - minimum) of the three states
of the dihedrals is 24-32% units for the 10 simulations, but
37-50% units for the 32 simulations. On the other hand,
the average standard deviation of the percentage of the three
conformations is similar or slightly larger for the 10

simulations, 2-3% units. However, the MAD between the
32 and 10 simulations is only ∼4% units for all three states
in both proteins, and these numbers are dominated by three
residues from each simulation, (Pro140, Glu193, and Asn222
for Gal3-apo and His208, Gln220, and Lys233 for Gal3-
Lac), which show differences of 14-30% units. Thus, there
is some advantage of starting the simulations from different
conformations, but the effect is rather small.

Another interesting question is how long simulations are
needed for converged results. In Tables S10 and S11
(Supporting Information), we compare the results obtained
for the 10 independent simulations after 20 and 40 ns of
simulation time. It can be seen that the results in general are
similar, with MADs of 2-3% units for both complexes, and
with maximum differences of up to 7-11% units. They also
give similar differences, compared to the 32 simulations.
Thus, we can conclude that the conformational sampling is
reasonably converged already after 20 ns.

Related to this issue is the time-scale of the conformational
changes studied. If it is short, compared to the simulation
time, the results should be converged, and then it should
also be possible to estimate the equilibrium constants from
the observed percentage and the activation barriers from the
time-scale. In Tables S12 and S13 (Supporting Information),
we therefore list how long it takes before the protein changes
the conformation of the various dihedrals. It can be seen that
the time varies from 4 ps for Ser188 to 2.8 ns for His208,
with an average of ∼0.7 ns for both systems. This indicates
that the sampling of 20-40 ns should be appropriate,
although the sampling of states with a low occupancy can
be worse. For most residues, the simulations starting from
10 different velocities or 32 different structures give a similar
result, but for 3-4 residues, the difference is large, up to 6
ns.

Starting-Condition Dependence of Order Parameters.
Next, we consider order parameters obtained from the 32 +
10 different simulations of Gal3-apo and Gal3-Lac. Our
prime question is how to perform simulations that give the
best results, compared to experiments. The results of the 12
different quality measures used to compare SNMR

2 to SMD
2 are

listed in Table 3 for five different sets of simulations, viz.,
the 32 simulations with different starting structures (20 ns
length; 32M×20), the 10 independent simulations starting
from the same structure (of either 40 or 20 ns length;
10A×40 and 10A×20), and a single simulation of either 40
or 20 ns length (1A×40 and 1A×20). Figure 3 shows the
ranking of the various simulations, i.e., the number of times
each of the simulations rank first, second, and so on, for the
various quality measures and systems.

From Figure 3, it clear that the 32M×20 simulation is
best: It gives the best results for all measures, except the
median, for both complexes, as well as for the difference. If
we take into consideration the uncertainties in the various
quality estimates (both from NMR and MD), the 32M×20
simulation gives significantly better results at the 95% level
(according to a Student’s t test) for 2-6 quality measures
compared to the other four simulations (Table S14, Sup-
porting Information).
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However, it is also notable how small the differences are:
If we instead use a single simulation of 20 ns length, the
RMSD increases by up to 0.006, the MAD by 0.004, the
MSD by 0.002, and Q by 0.001, whereas the median and
MQ hardly change. It is only the correlation coefficient that
increases by a larger amount, up to 0.08. Compared to the
10 independent simulations, the differences are even smaller,
and the main difference is seen for the total range of the
simulated values; that is, it is appreciably larger for the 32
different starting structures (illustrated by a decreased number
of SNMR

2 values outside the SMD
2 range).

Interestingly, there seems to be little gain in running the 10
independent simulations for a longer time (40 ns, rather than
20 ns): Only two quality measures are improved and two
become worse, in all cases by a minimal amount. Moreover,
the number of SNMR

2 values outside the range of the calculated
SMD

2 range increases, although this only illustrates that it is a
poor quality measure, favoring simulations with a poor preci-
sion. However, for the single simulation, most of the quality
measures are improved if the simulation is prolonged from 20
to 40 ns. Thus, we can conclude that there is small, but
consistent, improvement in the results as more simulations are
performed. It seems more favorable to run several shorter
simulations than one long one.

The analysis above is based on sets of simulations that
have different total simulation times. To make a more fair
comparison, we devised new sets of simulations, which have
a total simulation time of either 20 or 40 ns. Until now, we
have used an equilibration time of 5 ns, a decision that was
made on the basis of a rather qualitative analysis of the
backbone RMSD fluctuations. We therefore studied the effect
of equilibration times that ranged from 0 to 19 ns for the 32
simulations of mixed conformations. The results in Table 4
show that the SNMR

2 - SMD
2 differences are rather insensitive

to the equilibration time: Only the correlation coefficient (and
RMSD for ∆∆S2) show significant differences between 0
and 19 ns equilibration times. This is because the correlation
coefficient is very sensitive to the actual S2 value of a few
vectors (all except 1-4 order parameters are between 0.7
and 1.0 for both NMR and MD). For example, r2 for ∆∆S2

can increase from 0.04 to 0.24 upon a change of only 0.08
for a single residue in one of the simulations. On the basis
of these results, we decided to use an equilibration time of
0.25 ns.

Next, we created seven new sets of simulations, all using
an equilibration time of 0.25 ns: Three of them have a total

Table 3. Comparison of SMD
2 and SNMR

2 for Gal3-apo, Gal3-Lac, and the Difference between the Two Proteinsa

simulation RMSD r2 MAD MADtr MSD median MQ Q n ( 0 n ( 0.01 n ( 0.05 n ( 0.1

Gal3-apo
32M×20 0.038 0.28 0.029 0.029 -0.004 0.003 1.00 0.002 63 46 6 0
10A×40 0.039 0.24 0.030 0.031 -0.004 0.000 1.00 0.002 80 61 9 1
10A×20 0.039 0.26 0.030 0.030 -0.004 -0.001 1.00 0.002 79 57 8 0
1A×40 0.041 0.21 0.031 0.031 -0.004 0.000 1.00 0.002
1A×20 0.044 0.20 0.033 0.033 -0.004 0.003 1.00 0.003

Gal3-Lac
32M×20 0.062 0.35 0.041 0.036 0.028 0.026 1.04 0.005 76 59 15 2
10A×40 0.063 0.33 0.041 0.037 0.028 0.026 1.04 0.005 88 73 23 4
10A×20 0.063 0.33 0.041 0.037 0.028 0.025 1.04 0.006 83 70 20 4
1A×40 0.065 0.29 0.042 0.037 0.029 0.026 1.04 0.006
1A×20 0.066 0.28 0.043 0.038 0.030 0.025 1.04 0.006

difference
32M×20 0.054 0.05 0.036 0.027 0.032 0.025
10A×40 0.057 0.01 0.036 0.028 0.032 0.026
10A×20 0.057 0.01 0.036 0.028 0.032 0.026
1A×40 0.059 0.02 0.038 0.030 0.032 0.024
1A×20 0.062 0.02 0.040 0.031 0.034 0.026

a The 12 different quality measures listed are the root-mean-squared-deviation (RMSD), Pearson’s correlation coefficient (r2), the mean
absolute deviation (MAD), the mean absolute deviation when removing the systematic error (MADtr), the mean signed deviation (MSD), the
median, the mean quote (MQ; SMD

2 /SNMR
2 ), the Q value, and the number of residues for which the SNMR

2 value falls outside the range of the
SMD

2 values (when there are several simulations; n ( 0). The latter measure is also calculated when the MD range is extended by 0.01,
0.05, and 0.1 in each direction (n ( 0.01, n ( 0.05, and n ( 0.1). The best result for each quality measure for each system is marked in
bold face. The iRED method with 1 ns windows was used to obtain SMD

2 , and the equilibration time was 5 ns.

Figure 3. Ranking of the five simulations for the 12 quality
measures and three systems (Gal3-apo, Gal3-Lac, and the
difference between the two systems). The figure shows the
number of times each simulation ranks as number one, two,
three, four, or five (from left to right) for each quality measure
and simulation.
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simulation time of 20 ns. In the first, we take a single 20 ns
simulation, started with the all-A conformation (1A×20). In
the second, we instead take 10 independent simulations of 2
ns, all started from the A conformations (10A×2). In the
third set, we take 10 simulations of 2 ns, started from
different conformations (10M×2). These 10 simulations can
be selected in many ways from the 32 simulations we have
run with different starting conformations. We simply selected
10 simulations out of these 32 at random and repeated this
50 times to obtain a stable average. From the results in Table
5, it can be seen that the third set (10M×2) gives slightly
better results than the other two sets: It gives the best result
for 16 of the 22 quality criteria examined (we did not
consider here the number of residues for which the SNMR

2

value falls outside the range of the SMD
2 values because our

previous results indicated that it is a poor quality measure).
The probability that we would get such a result if the
distribution was completely random is less than 3%. The
other two sets were best only for seven or nine quality
measures. Thus, it is better to run 20 short simulations than
one long one, and it is also better to start from several
different conformations than a single one.

Likewise, we constructed four sets of simulations with a
total length of 40 ns. The first is a 40-ns simulation started
from a single conformation (1A×40). The second is 10
independent simulations of 4 ns, all started from the same
conformation (10A×4). The third is 32 simulations of 1.25
ns, started from different conformations, (32M×1), whereas
the fourth is 10 simulations of 4 ns length, started from
different conformations (10M×4; again an average over 50
different random selections of 10 simulations out of the
available 32 different simulations). The results in Table 5
indicate that there is a slight advantage to start with different
conformations: The 10M×4 simulations gave the best results
for 16 quality measures (89% significance), whereas the
second best methods 1A×40 and 32M×1.25 are best for 10
quality measures. The last method, 10A×4 is best for seven
quality measures. This also indicates that 1.25 ns is a too
short a time for the simulation of order parameterssthe 4
ns simulations give better results, even if fewer simulations
are run. This result is expected, because the experimentally
determined correlation time for the rotational diffusion is
7-8 ns for both proteins.38

Comparing the results with 20 or 40 ns total simulation time,
there is a clear improvement when using the longer simulation
time for 12 of the quality criteria, and only one becomes worse
(>99% significance). Likewise, there is a clear improvement
in the results going from the best set of simulations with a total
time of 40 ns and the 32M×20 simulations in Table 3: 11
quality criteria are improved, especially for the difference
between the two proteins, whereas only three become worse
(97% significance). This shows that the order parameters can
be improved by extending the simulations, although the
convergence is very slow.

This observation led us to continue the investigation with
simulations of a total length of 50, 100, 160, and 320 ns.
The results are also included in Table 5. It can be seen that,
for a total simulation time of 50 ns, it is better to run five 10
ns simulations than 10 5-ns simulations (95% significance),

irrespective of whether they are started from a single or many
different conformations, although the latter gives the best
results (89% significance). On the other hand, for a total
simulation time of 100 ns, it is better to run 10 10-ns
simulations than five 20 ns simulations (89-94% signifi-
cance). Again, simulations started from several conformations
give the best results (95% significance). These results are
confirmed for the even longer total simulation time: It is
better to run 16 simulations of a length of 10 ns than 32
simulations of 5 ns length (95% significance). Only for the
longest simulation time (320 ns) do the results become
inconclusivesthere is no significant difference between 32
simulations of 10 ns length or 16 simulations of 20 ns length.
However, the conclusion remains that there is no advantage
of running the longer simulations. Therefore, we can with
good confidence conclude that the optimum simulation
length, at least for Gal3, is ∼10 ns.

It can also be seen from Table 5 that we reach convergence
for the various quality measures. Between 50 and 100 ns
total simulation time, there is an improvement for 10 of the
quality measures, whereas only one is worse (for the two
best methods; 98% significance). However, going from 100
to 160 or 320 ns total simulation time, there is no longer
any clear improvement. In fact, by comparing the results in
Tables 3 and 5, it can be seen that the 10M×10 simulations
actually give better results than the full 32M×20 simulations
for six of the quality measures and only two of them give
worse results. This also confirms that we can use a short
equilibration time of 0.25 ns. Therefore, we conclude that,
for Gal3, the ideal simulation protocol involves 10 simula-
tions of 10 ns, starting from different conformations.

There is also a difference between the various types of
simulations with regard to the stability of the calculated SMD

2 ,
as estimated from the difference in results obtained with the
four methods to estimate SMD

2 . From Table 1, it can be seen
that, with a single 20 ns simulation, 24 residues have a range
larger than 0.05 between the various methods, and most of
them are only observed for one protein. This number is
decreased to 10 if the simulation is extended to 40 ns, and
a similar number is observed also for the 10 independent
simulations started from the same structure, irrespective of
whether they are 20 or 40 ns long. However, for the 32
simulations started from different conformations, only 6-7
residues have poorly determined SMD

2 ’s. Thus, starting from
several different conformations makes the results more stable
and well-determined. However, this also depends on the
length of the simulations. If we instead use only 10M×10
simulations (with 0.25 ns equilibration), there are 15 residues
with poorly determined SMD

2 ’s, although this set can be
reduced to something similar to the 32M×20 set by using a
threshold of ∼0.09 instead.

For seven residues, the range of SMD
2 obtained with

different methods is large in all simulation sets, viz., Ile115,
Val116, Gly125, Val155, Leu177, Leu228 (not in Gal3-Lac),
and Ser232 (cf. Figure 1). Only two of these, Val116 and
Ser232, have different conformations in the crystal structures,
but they both reside mainly in one conformation (S1) during
the MD simulations (74-91%).
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In Figure 4, we compare the calculated and measured order
parameters for Gal3-apo and Gal3-Lac. The maximum value
of each order parameter over the 32 simulations is always
close to the average, whereas the minimum shows a rather
large variation for some of the residues. The residues that
have the largest absolute difference between SMD

2 and SNMR
2

are Lys196, Met130, Asp207, Asp154, and Gly125 for Gal3-
apo and Ile115, Val225, Leu177, Ile145, and Met249 for
Gal3-Lac. As can be seen in Figure 5, large differences are
primarily observed in loops in the protein structure, whereas
the � sheets are well described. Three of the residues with
large deviations, Ile115, Gly125, and Leu177, have poorly
determined SMD

2 ’s, whereas the other residues with poorly
determined SMD

2 ’s do not show any conspicuous errors.
Interestingly, residues with large errors have a too high SMD

2

for Gal3-Lac, but a too low SMD
2 for Gal3-apo. The errors

are also larger for Gal3-Lac (up to 0.35) than for Gal3-apo
(up to 0.10).

If the residues with poorly determined SMD
2 ’s are removed

from the analysis, the results are significantly improved for
Gal3-Lac and for ∆∆S2, as can be seen in Table 6 (97%
significance). For example, the MADs decrease from 0.041
and 0.036 to 0.037 and 0.032. On the other hand, correlation
coefficients become worse, simply because the poorly

determined residues typically have low S2’s, contributing
strongly to the correlation coefficient. Further improvement
is seen if residues in loops surrounding the saccharide-
binding site are omitted or if residues that have been fitted
with a Rex term in the NMR experiments are omitted, as is
also seen in Table 6 (for example, r2 increases to 0.54-0.70),
but then, the number of considered residues becomes rather
small (41). We have also checked whether residues that have
two conformations in the crystal structure, or are located
close to such residues, give worse results when SMD

2 is
compared to SNMR

2 . However, we did not find any such trends.
Finally, we have also included in the table the results of

the simple contact model, suggested by Zhang and Brüsch-
weiler.61 It can be seen that it gives worse results for all
quality measures, except the RMSD, MSD, MQ, and median
for Gal3-Lac and r2 for ∆∆S2 (significance 97%). Thus, the
simulations provide significantly improved predictions of the
order parameters compared to the contact model.

Conclusions

In this paper, we have addressed a number of questions of
importance in the calculation of backbone N-H order param-
eters from MD simulations. First, we have compared four
different methods to extract the SMD

2 parameters, viz., ACF and
iRED with three different window sizes. Different quality
measures give different results, as do different simulated
systems, so we cannot reach any definite conclusions. ACF
seems to give the results with the largest spread; i.e., it seems
to be more sensitive to the convergence of the simulations than
the iRED approach. The iRED method with windows of 1 ns
seems to give the best precision and the smallest outliers on
average, but the median and correlation coefficient were
sometimes worse than for other variants of iRED. However,
the most important result was that the four methods gave similar
results for most of the studied SMD

2 parameters, indicating that
all methods give reliable results. In fact, if the four methods
differ significantly (e.g., by more than 0.05), it indicates that

Figure 4. SMD
2 parameters from the 32M×20 ns simulations

(average, minimum, and maximum over the 32 simulations),
compared to the corresponding SNMR

2 parameters for (top)
Gal3-apo and (bottom) Gal3-Lac. Only residues with SNMR

2

parameters in both states are shown.

Figure 5. Mapping of the SMD
2 - SNMR

2 difference onto the
crystal structure of Gal3. Two pictures are shown of each
Gal3-apo (top) and Gal3-Lac (bottom), related by a 180°
rotation. The scale runs from dark blue (SMD

2 < SNMR
2 ) via cyan

(SMD
2 ) SNMR

2 ) to magenta. Gray color indicates that data are
missing.
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there are problems with the convergence of the calculations;
consequently, we suggest that it is good practice to exclude the
affected residues from detailed interpretation.

Second, we have studied how the calculated SMD
2 param-

eters depend on the starting conditions of the MD simula-
tions. It is clearly inappropriate to base the calculations on
a single MD simulation. Better results are obtained if the
results of several independent simulations are averaged. They
can be obtained by simply using different starting velocities,
but it is advantageous to use several different conformations,
if present in the crystal structure.

Third, we have compared different lengths of the simula-
tions. Our calculations show that, at least for Gal3, the results
are better if the simulation length is increased from 5 to 10
ns, but there is no significant improvement if they are
extended to 20 or 40 ns (keeping the total simulation time
constant by running several independent simulations). More-
over, there is no significant improvement when extending
the total simulation time over 100 ns, except that a few order
parameters become better determined. Thus, our results
indicate that the ideal simulation protocol is 10 independent
simulationsof10nslength,startedfromdifferentconformations.

Fourth, even if the RMSD of the coordinates indicates that
an equilibration time of 5 ns is needed to reach stable results,
this has a small influence on the calculated SMD

2 parameters,
at least when averaged over several independent simulations.
In fact, 10 × 10 ns simulations with an equilibration time

of only 0.25 ns give as good results as 32 × 20 ns simulations
with 5 ns equilibration.

Fifth, it should be noted that, even after 400-640 ns
simulation time, the correspondence between calculated and
measured S2 parameters is rather poor, with a correlation
coefficient of less than 0.43, a MAD of over 0.029, and with
a maximum error of up to 0.35.

Finally, although this study has concentrated on a com-
parison of calculated and measured S2 order parameters, we
are confident that most of our conclusions are applicable also
to calculations of other properties from MD simulations, as
other investigations indicate.25

Supporting Information Available: Description of the
selection of alternative conformations; description of the
alternative conformations and their distinct hydrogen-bond
patterns; comparison of the four methods to obtain SMD

2 ;
description of the dihedral conformations observed in the
various simulations; transition times between the various
dihedral conformations; and comparison of the various
simulations in Table 3, taking into account the statistical
uncertainties in both SMD

2 and SNMR
2 . This information is

available free of charge via the Internet at http://pubs.acs.org/.
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Table 6. Comparison of SMD
2 and SNMR

2 for Gal3-apo, Gal3-Lac, and the Difference between the Two Proteins When Various
Residues Are Omitted from the Comparisona

simulation n RMSD r2 MAD MADtr MSD median MQ Q

Gal3-apo
32M×20 109b 0.038 0.28 0.029 0.029 -0.004 0.003 1.00 0.002

104c 0.038 0.34 0.029 0.029 -0.004 0.003 1.00 0.002
82d 0.029 0.60 0.023 0.023 -0.001 0.004 1.00 0.001
41b 0.030 0.68 0.023 0.023 -0.007 -0.004 0.99 0.001

10M×10 109b 0.038 0.41 0.029 0.029 -0.003 0.002 1.00 0.002
104c 0.037 0.34 0.029 0.029 -0.003 0.002 1.00 0.002
82d 0.029 0.59 0.023 0.023 0.000 0.004 1.00 0.001
41e 0.029 0.70 0.023 0.023 -0.006 -0.003 0.99 0.001

contact model 109b 0.073 0.17 0.049 0.046 -0.034 -0.018 0.96 0.007

Gal3-Lac
32M×20 109b 0.062 0.35 0.041 0.036 0.028 0.026 1.04 0.005

104c 0.050 0.31 0.037 0.032 0.025 0.026 1.03 0.003
82d 0.052 0.48 0.031 0.028 0.023 0.022 1.03 0.004
41e 0.066 0.50 0.035 0.034 0.025 0.022 1.04 0.006

10M×10 109b 0.061 0.37 0.041 0.036 0.029 0.026 1.04 0.005
104c 0.050 0.31 0.037 0.032 0.025 0.026 1.03 0.003
82d 0.052 0.49 0.032 0.027 0.024 0.022 1.03 0.004
41e 0.065 0.54 0.035 0.033 0.027 0.022 1.04 0.006

contact model 109b 0.058 0.31 0.041 0.040 0.003 0.005 1.01 0.005

difference
32M×20 109b 0.054 0.05 0.036 0.027 0.032 0.025

104c 0.042 0.00 0.032 0.022 0.028 0.025
82d 0.044 0.22 0.029 0.021 0.024 0.019
41e 0.057 0.23 0.035 0.025 0.032 0.023

10M×10 109b 0.055 0.04 0.036 0.027 0.032 0.025
104c 0.043 0.01 0.033 0.022 0.029 0.025
82d 0.045 0.17 0.029 0.021 0.024 0.021
41e 0.058 0.18 0.036 0.025 0.033 0.025

contact model 109b 0.075 0.09 0.042 0.034 0.037 0.025

a n is the number of residues included in the comparison. The quality measures are the same as in Table 3. b All residues are included.
c Five poorly determined SMD

2 ’s according to the 32M×20 simulations were omitted (cf. Table 1). d Residues in loops surrounding the
saccharide-binding site are omitted. e Residues that have been fitted with a Rex term are omitted.
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Abstract: The interactions between amino acid side chains in proteins are generally considered to be
the most important stabilizing factor controlling the precise arrangement of the polypeptide chain into a
well-defined spatial structure. We used the RI-DFT-D method to calculate the full 20 × 20 matrix of
interaction energies between all pairs of amino acid side chains. For each pair, we used a representative
3D conformation extracted from an analysis of known protein structures from Protein Data Bank (PDB).
The representative comes from the largest cluster of relative orientations of the two side chains. We find
that all of the calculated interaction energies between selected pairs of amino acids are attractive in the
gas phase with the exception of side chain pairs having the same total charge. We compared these
data with those calculated by the parm03 and OPLS-AA/L force fields to investigate the reliability of
simple methods in modeling biomolecules and their behavior. The force fields yield good overall interaction
energies for our set but have problems in evaluation of some particular interactions which could be of
principal importance for protein stability. We then looked in detail at the 20 side chain interactions involving
tryptophan. The histograms of interaction energies showed that the distributions of the interaction energies
are neither normal nor Boltzmann-like and that our representative geometries correspond mostly to the
minimum energy geometry which is rather poorly populated in the whole pairwise energy distribution.
We concluded that cluster representatives obtained by the clusterization algorithm based on geometry
criteria cannot be considered as a typical interaction for the whole side chain/side chain interaction
distribution. They seem to epitomize the strongest interactions in a protein and are often functionally or
structurally important.

Introduction

Proteins are built from 20 natural L-amino acids polymerized
into a linear chain of various lengths which, with the
exception of the “intrinsically unstructured proteins”, fold
into a specific and rigid 3D structure either spontaneously
or with the help of various factors (chaperones etc.).1

Anfisen’s postulate that protein structure is unambiguously

defined by the amino acid sequence is still, to a large extent,
valid.2 The polypeptide chain bears specific and heteroge-
neous chemical properties given by the different nature of
composing amino acids. There is a long history of the efforts
to collect and analyze the interactions between amino acid
side chains in protein structures s mostly determined
experimentally by X-ray crystallography or NMR methods.
In the past, Miyazawa and Jernigan3-5 and others6-8

attempted to rationalize the character of the contacts between
the side chains and to associate it with contact free energy.
Such pairwise contact free energies have proven to be useful
for scoring the native folds.9 As the number of solved protein
structures has become greater, the distance-dependent and
orientation statistical potentials have also been proposed.9-11

Side-chain/side-chain contacts are characterized geometri-
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cally and in detail in an online accessible database of side-
chain/side-chain interactions created by Laskowski et al.12

It is necessary to mention that the predicted free energies
calculated from the contact analysis data depend on several
approximations, which might not be fully valid for all
proteins, as was nicely reviewed by Thomas and Dill.13 They
examined a priori potentials based on a simple hydrophobic-
polar model. The calculated energies for all of the possible
structures in a two-dimensional lattice resulted in the minimal
“native” structure, which helped to construct a new potential
recursively. They found that the frequencies of the selected
pair of amino acids are not independent in terms of the
frequencies of the other amino acids in the context of a
sequence and that the extracted potential depends quite
remarkably on the chain length and the composition.

To be able to evaluate the free energy of a particular amino
acid in a pair interaction, one needs computational methods
covering both the enthalpy and entropy terms given by the
expression for the Gibbs free energy of association. The
achievement of this goal can be significantly complicated
by two principal difficulties. First is the level of accuracy
for the enthalpy term calculation. The empirical potentials
usually utilized are not of the required precision especially
when the effect of the solvent has to be taken into account.
Second, there is no rigorous and reliable theoretical method
to evaluate the entropy term at the same level of accuracy
as that for the enthalpy term. Most of the methods for the
calculation of the entropic contribution are based on the
positional variability determined by the NMR technique.14

There have been a few attempts to make a comparison of
the statistical potential and the ab initio calculation of the
interaction energy of amino acid side chains. Morozov et
al.15 reported remarkable correspondence between the knowl-
edge-based potential of the hydrogen-bond geometries
representing amino acid interactions in proteins and the ab
initio DFT and MP2 calculations of the hydrogen-bonding
energies for model systems. The same authors attempted to
evaluate the potential energy surface (PES) for the interaction
of aromatic residues at the MP2 and empirical potential
levels. The main conclusion of this work is that the
interaction is fairly well captured by the empirical potential
and “that interactions between cyclic side chains contribute
to the geometric distributions observed in protein struc-
tures”.16

Here, we present the results of our study in which we
describe and evaluate the interaction energies for all 20 ×
20 amino acid side-chain pairs using representative geom-
etries obtained from analysis of known 3D structures of
proteins. We use several force fields as well as quantum
chemistry methods both in the gas phase and in a protein/
water environment. The importance of the obtained energy
values for each interacting side chain pair is discussed in
the context of the total interaction energy distribution
between amino acid side chains.

Methods

Representative Set Selection. To obtain a representative
set of amino acid side-chain pairs, we extracted data from a

specially updated version of the Atlas of Protein Side-Chain
Interactions from October 2006 (http://www.ebi.ac.uk/
thornton-srv/databases/sidechains). The Web atlas is based
on the printed atlas published in 1992 by Singh and
Thornton.17 It analyzes the interaction geometries of all 20
× 20 amino acid side-chain pairs as derived from a
nonhomologous data set of 2548 3D structural models of
proteins solved by X-ray crystallography to a resolution of
2.0 Å or better. For each of the 20 × 20 pairs of side chain
types, each distance of side chain 2 interacting with side
chain 1 is transformed into a common reference frame
defined by side chain 1.

The preferred interaction geometries are determined from
the local clustering in 3D of the distribution of side chains
2 relative to side chain 1. For each cluster, the most
representative side chain 2 is selected, being the side chain
which has the minimum total root mean squared distance to
all of the other side chains in the cluster. A more detailed
description can be found in ref 18. In the work described
here, we used the cluster representative from the largest
cluster in each of the 20 × 20 distributions. Figure 1 shows
top clusters, and their representative side chains, for four
example distributions, each involving Trp as side chain 1.
Figure 1a and b show the top cluster geometries for Asp
and Ser, respectively. Here, the location of side chain 2 is
such that it can form a hydrogen bond with the nitrogen of
the tryptophan. In Figure 1c and d, the interacting side chains
are Leu and Lys. Here, the interactions are hydrophobic in
nature, and consequently less specific and less directional.

Geometry Preparation. Each residue was truncated at
the CR atom of the protein backbone, and hydrogen atoms
were added using a modified side-chain only force field18

implemented in the Gromacs molecular dynamics package.19

It means for example that glycine is approximated by CH4

and Alanine by C2H6 groups. All of the possible positions
of the polar hydrogens of the merkaptyl and hydroxyl groups
of Cys, Ser, Thr, and Tyr were generated along with two
neutral isomers of histidine. Proline was modeled as a cyclic
tetrahydropyrrole. This model captures all specific features
of proline interactions (pseudoplanarity, cyclic structure) as
was shown by Biedermannova et al.20 The positions of the
hydrogens were then optimized in complex geometry for each
pair using the SCC-DFTB-D method21 in the DFTB+
package.22 The hydrogens in the pairs containing at least
one charged residue were optimized separately. The most
stable pair determined by means of the benchmark method
(see below) was then used for further calculations.

Calculation of the Gas-Phase Interaction Energies. The
quantum mechanical energies were calculated using the RI-
DFT-D/TPSS|TZVP method.23 The RI-DFT-D energies were
calculated with the Turbomole 5.9 package.24 This BSSE-
free method has proved to be reasonably accurate and
computationally efficient on the subset of geometries cal-
culated previously.18

We also used two modified force fields parametrized
earlier - OPLS-AA/L25 and parm03.26 These force fields
contain only amino acids truncated at the CR atom. The
residual nonintegral charge is further distributed over added
hydrogen atoms attached to the CR atom. The noncovalent
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interactions were calculated as a sum of the electrostatic and
Lennard-Jones terms for the complexes of amino acid
fragments forming a particular pair. The force-field calcula-
tions were performed with the Gromacs 4.0 package.27

Solvent Effect. The effect of an environment was evalu-
ated by the RI-DFT-D method utilizing the COSMO model
implemented in the Turbomole package.28 Two dielectric
constants were used to model the effect of a protein/water
environment (ε ) 4, 80) on the interaction energies.

Results

Benchmark Energy CalculationssGas Phase Interac-
tion Energies. We have previously shown18 a correlation
between interaction energies for the selected set of side
chains evaluated by means of various theoretical methods

(CCSD(T)|CBS, DFT-D, RI-DFT-D, MP2, OPLS-AA/L,
and parm03 force field). We have found that RI-DFT-D
is a reasonable compromise between the accuracy and the
speed of the calculations, which supports our choice of
this method as the reference. In this paper, we expanded
the set to all of the possible combinations of 20 × 20
amino acid side-chain pairs. All of the geometries of the
calculated pairs were selected by the cluster analysis
described above to represent significantly populated
geometry arrangements of interacting amino acids. The
reference interaction energies for these pairs calculated
by the RI-DFT-D method thus represent a measure of
affinity based on the positions of the side chains deter-
mined experimentally and stored in the PDB database.29

The final numbers are presented in Table 1.

Figure 1. Some examples of side chain interactions in protein 3D structures. All examples involve interactions with tryptophan.
The side chains shown are (a) aspartic acid, (b) serine, (c) leucine, and (d) lysine. Each diagram consists of two parts. The
lower part shows the largest cluster of the interacting side chains, as extracted from a representative data set of protein structures
in the PDB. The “cluster representative” is shown with thicker bonds. This corresponds to the side chain with the lowest total
distance to all the other members of the cluster. In the upper part of each figure is shown just the Trp side chain and the cluster
representative, both labeled by their three-letter code. The figure was rendered using Raster3D.35
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The first of the important results is that all of the interaction
energies for structure representatives presented in Table 1
are attractive with only a few regular exceptionssthe pairs
containing amino acids with a similar charge. The result thus
reflects an important fact regarding the protein’s intramo-
lecular stabilization provided by the selective arrangement
of interacting amino acids. It must be stressed again that the
interaction energy of all of the amino acid pairs was
calculated exclusively for the most populated cluster repre-
sentative geometry, which most probably represents the local
distance minimum. The lack of destabilizing contributions
is then not so surprising. We can imagine the existence of
sterical barriers caused by a tight arrangement of secondary
structure elements which could include the studied amino
acids. Such an environment may sometimes push the amino
acids out of the attractive regime and could result in repulsive
behavior of the interacting amino acids. We do not report a
single case of such an interaction mode (with the above-
mentioned exceptions) for the studied set.

Asymmetry of the Interaction Energy Matrix. The
second of the important results which should be properly
explained is the asymmetry of the interaction energy matrix.
The asymmetry of the matrix is a consequence of the way
the clusters were calculated. Figure 2 shows the explanation
of the matrix feature. In Figure 2, a and b show two separate
interactions between side chains of type S and T: S1 with
T1 and S2 with T2. When these interactions are superposed
in the frame of reference of the S residues (c), the T residues
come close together and might fall in the same cluster.
However, when the interactions are superposed on the T
residues (d), the S residues are thrown apart and would be
unlikely to fall into the same cluster. For the side chain Atlas,
this is not a problem, as one is interested in the distribution
of side chain B around side chain A, and where the highest
concentrations of B are, relative to A (and vice versa). For
a symmetrical matrix, however, one would need to calculate

full distributions for each pair of amino acids. So, in Figure
2c, one would need to calculate the RMSD between T1 and
T2 and to add to it the RMSD between S1 and S2 when the
T side chains are superposed (as in d). We still think that
the definition used in the Atlas is a fair way to look at the
data and accept the asymmetry because we are interested,
in principle, about significant structure features which are
most probably based on certain geometry preferences
between interacting amino acids.

It is worth stressing here again that first we have calculated
the pairwise noncovalent interactions between amino acids
in the gas phase and that the influence of the environment
has not been taken into account. The fact that the system
exists in an environment can change the stabilization

Table 1. Gas Phase Interaction Energy Matrix for the Cluster Representatives for All of the 20 × 20 Possible Pairs between
Residues within Proteins Calculated with the RI-DFT-D/TPSS|TZVP Method (All energies are in kcal/mol)

Figure 2. (a and b) Two separate interactions between side
chains of type S and T: S1 with T1 and S2 with T2. When
these interactions are superposed in the frame of reference
of the S residues (c), the T residues come close together and
might fall in the same cluster. However, when the interactions
are superposed on the T residues (d), the S residues are
thrown apart and would be unlikely to fall into the same
cluster.
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proportions considerably is part of the latter chapter about
solvent effects.

We divided the interactions into several groups according
to the chemical properties of the compositional amino acids,
and in the following paragraphs we shall describe the results
separately.

Charge-Charge. The most attractive interactions in the
gas phase were obtained for salt bridges s approximately
100 kcal/mol. The interaction energies where Arg is in a
pair with a negatively charged carboxylic acid are slightly
stronger (up to 140 kcal/mol) in comparison with those
containing a Lys residue. This may be the effect of the
additional hydrogen bond from the second NH group
participating in the interaction or the influence of the electron
distribution of the guanidinium group.

Charge-Neutral. The interactions of the charged residues
are generally quite strong in the complexes with polar or
aromatic residues s around 10-20 kcal/mol for positively
charged and 20-30 kcal/mol for negatively charged residues.
This difference is more profound for the charged-aromatic
pairs. The geometry of the negatively charged-aromatic pairs
is different from that of those containing positively charged
side chains. The basic amino acids usually interact with
aromatics in a stacking-like manner, unlike the acidic
residues, which prefer more directional, mostly H-bond
interaction. We can find a further difference between Arg
and Lys which arises from the fact that Arg mostly stacks
above the plane of the ring of the aromatics, indicating clearly
a more dispersive character of interaction. Lys, on the other
hand, possesses its long aliphatic chain above the ring, so
the charged amine group is farther from the ideal contact
with the aromatic ring. Both negatively charged residues are
oriented in such a way that their carboxylic group is in the
plane of the ring with negligible electron contacts with the
aromatics. They interact either with the hydroxy group of
Tyr or with the amide group of Trp or His. In the case of
Glu, Asp-Phe interactions, the carboxylic group is to a
certain extent in an interaction with the main chain of the
aromatic and is not oriented above the highest electron
density on the aromatics.

Polar-Polar and Polar-Aromatics. The third class of
interactions is polar-polar and polar-aromatic contacts.
Their interaction energy is about 5 kcal/mol. As they are
mostly based on the formation of hydrogen bonds in an
orientation-dependent manner, the resulting interaction ener-
gies fluctuate in the largest range even for the same pairing
of amino acids. Good examples are the Thr-Ser pair, where
the interaction energy is only -1.7 kcal/mol, and the
Ser-Thr pair, which is much stronger, namely at -7.3 kcal/
mol. At this point, we have to stress that in both cases the
best combination of the rotamers and optimal position of
both of the hydroxyl groups was used.

Aromatics-Aromatics. It is well-known that the aromatic-
aromatic pairing is abundant in proteins and is also quite
homogeneous because of the similar character of the
interacting residues. Their interaction energies on average
are around 5 kcal/mol. The strongest interaction among
aromatic residues comes from pairs containing Trp, mostly
due to the aromatic character and size of its indole ring. The

Trp is followed by His, which interacts mostly through the
hydrogen bond. It should also be noted that the result is
dramatically influenced by the selection of an appropriate
isomer.

Aliphatics-Others. The largest group of interactions
comprises pairs containing aliphatic residues. Their interac-
tion energy with most of the residues is quite small (below
2 kcal/mol) with the exception of the aliphatic-charged and
the aliphatic-aromatic pairs, which are stronger. Polar
residues cannot create hydrogen bonds and are perceived
mainly by dispersion interactions. Proline exhibits special
features: it behaves similarly to an aliphatic residue of the
same size (Leu, Ile), but its interaction with the charged
residues is different.

Sulfurics-Others. A small group can also be derived from
sulfur-atom-containing residues, namely, Cys and Met. Their
interaction energy is similar to aliphatic residues but with
several notable deviations. The biggest difference is the
Cys-Cys pair, which is bound covalently and thus cannot
be compared to the other cases. However, its dissociation
energy for the disulfide bond is about 65 kcal/mol.30 Because
of the better polarizability of the sulfur atom, its interaction
with charged residues is approximately twice as strong as
in the case of the charged-aliphatic pairs.

Looking at each residue individually in terms of its total
interaction energy with all amino acids, we can create a
“stability line”. It runs from the residue of the highest
stabilization potential to the lowest. The energy differences
between adjacent residues in the stability line are not
constant, so they can be grouped into subclasses. The “>”
signifies an important change in the interaction energies:

The strongest stabilization not surprisingly comes from
interactions of charged residues even when we take into
account the repulsion between amino acids of the same
charges. The stability line continues with polar and aromatic
residues and ends with aliphatic residues according to their
size. It should be mentioned again here that these values are
gas phase interaction energies, and hence no effect of an
environment has been taken into account.

Parm03 and OPLS-AA/L Force Field Interaction
Energies. We evaluated the interaction matrix for the same
set of structures with two force fields typically used for the
protein study, i.e., Amber parm03 and OPLS-AA/L. We
aimed to provide a quantitative comparison between the
results obtained by the RI-DFT-D energies and the molec-
ular-mechanical force-field methods. One has to be aware
of the difference between the calculation of interaction
energies by empirical study and by the quantum chemical
approach. In the empirical potential case, the interaction
energy is calculated as a sum of the nonbonded interactions
between each atom in both residues. The interactions involve
a Coulombic term for electrostatics and the Lennard-Jones
6-12 term covering the van der Waals contributions. In the
case of RI-DFT-D, the interaction energy is calculated as
the difference between the total energy of the complex and
the energies of both subsystems.

D, E > R > K > N, Q > W, Y > H > S > T > F >
M, C > P, L > I, V > A > G
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The most notable differences between the force-field and
RI-DFT-D energies are substantially weaker interactions per
residue provided by empirical potential methods. In contrast
with the RI-DFT-D results, we detected additional repulsive
behavior of some interacting pairs with the exception of
the pairs with the same charges. One of the reasons may be
accounted for the Lennard-Jones repulsive term in the force
field being generally too steep. This can cause difficulties
arising from the fact that the positions of the hydrogens were
optimized at the RI-DFT-D level, which consequently
shortens the inter-residue distance. This usually leads to an
increase of the Coulombic term (repulsive for two hydrogen
atoms) and also to the enlargement of the repulsion coming
from the Lennard-Jones term in the force-field calculation.
Both these aspects can contribute to the overall repulsion
calculated energy computed by the force-field method for
the pairs which are still attractive in RI-DFT-D. We can also
rationalize a reason for a higher number of repulsions coming
from the Pro residue from the way we treated this amino
acid. The simplification of Pro alters the hybridization state
of the N atom from sp2 (planar) to sp3 (tetrahedral). This
situation improved the interaction energy in quantum chemi-
cal methods in contrast with force fields, which lacks proper
parameters for such a state.

Last but not least, the partial charges on the amino acids
in the force field are generally adjusted for the solvent
environment. Depending on the geometry of the interacting
amino acid in the structural context of the protein, these
interactions are sometimes under/overestimated, which also
strengthens the difference in comparison with the quantum
chemical interaction calculations in the gas phase.

The previously defined “stability line” can be further
subdivided into “families” of amino acids according to their
physical-chemical similarities (Figure 3). We define the
families as follows: charged residues (DERK), polar residues
with peptide-bond motifs (NQ), aromatic residues with at
least one polar atom (WYH), hydroxyl-containing polar
residues (ST), polarizable residues with electron-rich regions
(FMC), unique proline ring (P), and aliphatic residues sorted
by their respective size (LIVAG). As is apparent from Figure
3, the amino acids in families behave similarly in all of the
methods used.

Both interaction matrices are similar (data not shown), with
their correlation coefficients being higher than 0.95. The
differences in the results can be seen at the level of the
average interaction energies in comparison with the RI-
DFT-D values. Both force fields have lower average values
of interaction energies (parm03, -3.8 kcal/mol; OPLS, -4.5
kcal/mol; while RI-DFT-D, -6.2 kcal/mol) as well as median
values (parm03, -1.6 kcal/mol; OPLS, -1.6 kcal/mol; while

RI-DFT-D, -2.5 kcal/mol). Particularly, the median values
demonstrate that the force fields have a high level of
similarity and that the energies are weaker than those
obtained by the RI-DFT-D method. An important detail
contributing to the difference between the RI-DFT-D and
empirical potential results arises from the fact that force-
field parameters in both utilized empirical methods are
optimized for molecules in a solvent environment.

The Effect of Environment on the Interaction Ener-
gies in the Matrix. While all of the interactions in the gas
phase can be calculated explicitly and in principle with
reasonable accuracy, most of the interactions of biomolecules
and their complexes are realized in a protein or water
environment, which makes a precise evaluation of the
interaction energy complicated if not impossible because of
the heterogeneous conditions around the interacting residues.
In order to take the environment roughly into account, we
used solvent-implicit models. We used two dielectric con-
stants: ε ) 4, mimicking the effect of a protein environment,
and ε ) 80, for the effect of water. We calculated the
interaction energies by the RI-DFT-D method with the
COSMO implicit-solvent model.

The results presented in Tables 2 and 3 show that the
higher the dielectric constant of the surrounding, the smaller
the differences between the interaction energies for all of
the interacting pairs of amino acids. The apparent reason
is the dielectric screening of the dominant electrostatic
interaction. The consequence of this effect is a decrease of
the average and the median of the interaction energy. In
comparison with the gas phase interaction energy median
(-2.5 kcal/mol), the value in a protein-like environment
(ε ) 4) is -1.4 kcal/mol and in a water-like environment
(ε ) 80) is only -0.9 kcal/mol.

Charge-Charge. Charged pairs lose most of their interac-
tion energies upon the introduction of the solvent in
comparison with other pairs. This is caused by the screening
of a substantial part of their interaction energy being
dominated by electrostatics. On the basis of the values
presented in Tables 1-3, we observed that the like-charged
pairs dropped more in their repulsive interaction energy
(33%, 4.4% of interaction in gas phase for ε ) 4, 80) than
the salt-bridge pairs (37%, 7.7% for ε ) 4, 80 of the gas-
phase values). The repulsion existing in the gas phase can
even be surpassed, and the pairs of like-charge residues show
an attractive character in a water environment (Arg-Arg).
This behavior has recently been reported by Vondrášek el
al.31 on Arg-Arg as a potential stabilizing factor in proteins.

Charge-Neutral. Also, charge-neutral pairs are quite
weakened by the presence of a solvent. However, the
weakening of the interaction energies is smaller than in the

Figure 3. Amino acid families sorted by their summed interaction energy for RI-DFT-D, parm03, and OPLS calculations.
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case of charge-charge pairs (43%, 28% for ε ) 4, 80 of
the gas-phase values). This fact is in concord with the smaller
total interaction energies, not as dominated by electrostatics
as is the case of charge-charge pairs.

Polar-Polar or Aromatics. A solvent has a smaller effect
on these pairs in comparison with the previous cases. While
pairs with a mixed character of polar and aromatic residues
are more sensitive to the effect of a water environment (64%,
41% for ε ) 4, 80), the polar-polar contacts surprisingly
are less affected (65%, 54% for ε ) 4, 80).

Aromatics-Aromatics. The decreasing sensitivity of these
interacting pairs to the effect of the environment is demon-
strated by a moderate decrease of the interaction strength
(79%, 68% for ε ) 4, 80). The reason for such insensibility
is the different nature of their interaction as reported in Berka
et al.32

Aliphatics-Others. Aliphatic residues are the least sensi-
tive to the effect of the environment. Their interaction
energies are almost constant for aliphatic-aliphatic pairs
(95%, 91% for ε ) 4, 80). Their interactions with polar or

Table 2. Interaction-Energy Matrix for the Cluster Representatives for All of the 20 × 20 Possible Pairs between Residues
Calculated with the RI-DFT-D/TPSS|TZVP Method with the COSMO Model in a Protein-Like Environment (ε ) 4)
(All energies are in kcal/mol)

Table 3. Interaction-Energy Matrix for the Cluster Representatives for All of the 20 × 20 Possible Pairs between Residues
Calculated with the RI-DFT-D/TPSS|TZVP Method with the COSMO Model in a Water Environment (ε ) 80) (All energies
are in kcal/mol)
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aromatic residues are slightly more sensitive (polar: 70%,
59%; aromatic: 79%, 67%), reflecting the different propor-
tionality of the stabilizing forces.

Sulfurics-Others. Sulfur-containing residues act similarly
in an environment to the polar residues (62%, 58% for ε )
4, 80).

The pair interaction energies between the residues are
influenced differently by the solvent depending on their
characteristics. Charged residues are the most sensitive
to the effect of their environment, followed by polar and
sulfur-containing residues. Aromatic and aliphatic residues
sustain most of their interaction energy despite the
significant environment change. This different sensitivity
to the environment changes the positions of amino acids
and families in the stability line quite significantly, as can
be seen in Figure 4.

The strongest effect of the environment is a change of the
relative positions of residues in the stability line. The
environment promotes the interaction between the residues
of an aromatic or aliphatic character (mainly Trp, Tyr, Leu,
Ile, and Val). On the other hand, the strength of the
interactions involving charged residues is lowered signifi-
cantly by a water environment, with the only exception being
Arg, whose guanidinium group also has a strong dispersion
interaction. The polar and sulfuric groups are shifted toward
lower stability, whereas the smaller residues of the same kind
are moved more (Asn more than Gln, Ser more than Thr,
and Cys more than Met). This can be accounted for by the
less extensive dispersion interactions.

Interaction Energy Distributions in the Gas Phase. A
major question of this study is how the selected cluster
representatives are relevant to the overall energy distribution
for all of the interacting residues with a particular amino
acid, or better said how representative these interactions are.
We have shown previously that the interaction energy of the
cluster representative is a reasonable approximation of the
interaction energy of the whole selected cluster for one
particular pair.18

The calculation of the 20 × 20 interaction matrix of
the cluster representatives shows that some interactions
are not symmetrical in terms of their energies. This is more
profound for the polar amino acid side chains, namely,
Ser-Thr and Thr-Ser. They differ significantly in their
interaction energies for cluster representatives (-7.3 vs
-1.7 kcal/mol). While the total number of interactions is
the same for both pairs, the clustering algorithm apparently
provided two different geometries for the cluster repre-
sentatives. One can expect a symmetry of the interaction

energy values if the ensemble of structures is large enough
to result in the same geometry for both representatives
obtained by the cluster-analysis algorithm.

Our aim was to describe the cluster representative in
the context of the overall geometry distribution for the
selected pair of amino acids appearing in proteins. To see
just how representative it is of the whole distribution
required computing all interaction energies for a given
side chain/side chain distribution and comparing with the
energy of the representative conformation. The only way
to achieve this in a reasonable time was to use the parm03
force field. We chose tryptophan (Trp) as our side chain
1 and calculated its interactions with all 20 amino acid
side chains. Trp was chosen because of the reasonable
level of agreement between the ab initio and force-field
results for the calculations involving Trp. Moreover, the
interactions with this residue do not show any repulsive
interaction energy values in any of the methods used.

The results for the gas phase are presented in Figures 5
as histograms of the calculated interaction energies with
parm03 force field. Most of the histograms have one peak
slightly below the zero value. Only the interactions of Trp
with negatively charged residues have clear two-peak
distributions. Most of the distributions of interaction
energies seem to be limited by zero on one side and by
the cluster representative value at the other extreme. To
confirm the behavior by a higher level of methodology,
we recalculated the distribution for 100 randomly selected
pairs for every 20 amino acids interacting with Trp by
RI-DFT-D for the optimized structures. As follows from
our analysis (see Figure 6; Figure 7 shows those with the
OPLS-AA force field), both distributions are very similar,
and the energy limit at the zero value is clearly more
distinct for the histograms of the RI-DFT-D energies.

One important conclusion can be made on the basis of
the obtained results. The cluster representative values are
mostly extreme cases of the side-chain/side-chain interac-
tions and cannot serve as a measure of the interaction-
energy distribution or its typical value. Particularly in the
case of side chains involved in hydrogen bonds with the
Trp (eg Asp, Glu, Ser, and Thr), the representatives tend
to correspond to low-energy conformations. Where inter-
actions are less directional, as in interactions involving
hydrophobic contacts, the representative does not neces-
sarily have a low energy conformation. The results are
summarized in Table 4. We cannot relate the data obtained

Figure 4. Amino acid families in the environment sorted by their total interaction energy provided by the RI-DFT-D calculations.
The dispersion-bound residues are generally shifted upward unlike the electrostatic ones.
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for the representative interactions of a particular amino
acid to any of the phenomenological matrices published.4,7,11

Discussion

It is not a simple task to establish properly the meaning of
the calculated interaction energies between the amino acid
side chains, especially if we take only one particular
interaction as the representative. As described earlier, there
are two extreme views of the side-chain interactions in
proteins. The first extreme is that their arrangement is
completely random and mostly the backbone properties
dictate the fold; the second view is that these interactions
are the basis of intramolecular stabilization of the fold and
their positions are energy tuned. On the basis of our results
presented here, we see the protein stabilization and fold in
proportion to the specific and nonspecific interactions
depends on the structural and sequential contexts of the
protein in question.

The complete interaction energy matrix for all of the amino
acids in proteins supports the view that the cluster repre-
sentatives describe the important spatial but mostly local
interactions selected by the character of the residue to
maximize the interaction strength in a well-defined spatial

arrangement. This view is supported by our previous analysis
of the cluster representative, which is a maximum of the
distribution of the interaction energy for a certain cluster.

Additionally, all of the calculated interaction energies in
the matrix were attractive. This is not a trivial finding, even
if valid for cluster representatives. The common way of
interpreting side-chain/side-chain interactions in proteins is
that the resulting interaction is a balance between stabilization
and repulsion. Some side chains are displaced in nonfavor-
able orientations (in extreme cases, they can be repulsive)
caused by a much greater influence of the adjacent residues
or the secondary structural elements. Our data suggest that
this is not the case s at least not for such geometrically
exclusive interactions as the calculated set constitutes. A
general explanation for protein folding can be attributed to
the fact that the sharp character of repulsion does not allow
side chains to occupy unfavorable positions and the typical
pair geometry in proteins is always adjusted to prevent such
an interaction mode.

We are aware of the fact that the benchmark RI-DFT-D
values slightly overestimate the interaction energies (by 0.3
kcal/mol on average) for the weakly bound pairs of aliphatic
residues such as Ala-Leu as we have proven in a previous
paper,18 and therefore the values are generally higher than

Figure 5. Histograms of the interaction energies of the side chain/side chain interactions of tryptophan with all of the other
residues calculated with the parm03 force field in the gas phase. Energies on the x axis are in kcal/mol.
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those obtained by empirical potentials. Another fact con-
tributing to this difference is that both force fields are
parametrized for a solvent in which the interactions are
screened by the environment, namely, the partial charges for
the parm03 force field have been parametrized for the
dielectric continuum model26 with a dielectric constant equal
to 4. Furthermore, the atomic charges for the OPLS-AA/L
force field were derived from the parm94 force field. Finally,
the non-negligible problem in the utilization of the force field
in this study and the interaction energy’s accuracy is caused
by the addition and optimization of hydrogen atoms. The
SCC-DF-TB-D optimization makes them too near the atoms
of the other interacting residue. While the optimization of
hydrogens had a stabilization effect in the quantum chemical
calculations, the opposite is true for the force-field interaction
energies.

Although the correlation between the calculated interaction
energy matrices is high, especially for the gas phase energies
(r ) 0.98 and 0.95 for OPLS and parm03 in comparison
with the RI-DFT-D energies, respectively), the particular
differences are not negligible. Fortunately, the interaction
energies as a whole are parametrized quite successfully in
force fields, but they can vary quite significantly in specific
cases.

Unfortunately, some of these specific interactions could
be quite important, which is a major problem in the utilization
of force fields for the issues addressed by structural biology.
One of the reasons for the problematic behavior of the force
fields seems to be the repulsive term in the force-field
potential form.

Our initial intention was to provide a complete interaction
energy matrix for amino acid side-chains and compare it to
some extent with the previously published data by Miyazawa
and Jernigan and others.4,7,11,33,34 This comparison is not
possible based solely on the results of our calculations for
cluster representatives. We have found that the cluster
representatives are not statistically significant for the whole
ensemble of interactions. And because we limited our
analysis to gas-phase interaction energy as the first ap-
proximation, we could only attempt to adjust a significance
of the representative values by a calculation of the interaction
energy distribution for the complete side-chain interactions
of tryptophan.

This comparison, i.e., the interaction energies for the
representative geometries and the overall distribution of the
interaction energies, showed the significance of cluster
representative geometries in the context of the protein and
investigated the importance of such interactions. Our results

Figure 6. Histograms of the interaction energies of the side chain/side chain interaction of tryptophan with all of the other
residues calculated with the RI-DFT-D method in the gas phase. Energies on the x axis are in kcal/mol.
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led to the conclusion that the optimum-energy side-chain
interactions are not the most abundant ones in proteins. They
are strong enough to be geometrically as well as energetically
distinguishable from the mostly random (and mostly attractive)
interactions of the majority of side-chain/side-chain pairs. It is
therefore plausible to suggest that the interactions represented
by cluster representatives are of crucial importance for protein
stability or protein function because of their selectivity and
strength.

The distributions of the interaction energies also suggest that
the approximations lying behind the phenomenological poten-
tials might simply be wrong, as the distributions are not
Boltzmann-like. Therefore, the simple calculation of the free

energies from the detected contacts is not easily connected to
the real energies, as has already been indicated by Thomas and
Dill.13

Conclusions

We have calculated the matrix of interaction energies by
means of the RI-DFT-D method as a benchmark and
compared it to the same matrix calculated by the parm03
and OPLS-AA/L force fields in the gas phase while utilizing
a simple model of different environments. We have further
calculated the distributions of the interaction energies for
several pairs to discover the meaning of such interactions.

Figure 7. Histograms of all interaction energies of the side chain/side chain interactions of tryptophan with all of the other
residues calculated with the OPLS-AA force field in the gas phase. Energies on the x axis are in kcal/mol.

Table 4. Comparison between the Interaction Energies for the Cluster Representatives and the Energetically Most
Populated Pairs for All of the Pairs of the Trp Residue

system WG WA WV WI WL WF WY WW WH WP

IE cluster representative -1.49 -2.08 -4.01 -2.33 -2.27 -4.72 -4.63 -4.26 -4.37 -2.82
most populated IE -0.55 -0.85 -1.15 -1.15 -1.35 -1.35 -1.45 -1.35 -2.25 -1.45

system WT WS WN WQ WC WM WK WR WD WE

IE cluster representative -6.02 -5.23 -4.78 -5.73 -3.20 -5.39 -5.00 -10.78 -14.86 -17.55
most populated IE -1.05 -1.15 -1.25 -1.25 -0.75 -1.35 -2.15 -2.35 -1.15 -0.35
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• All of the interaction energies in the gas phase are
attractive with the exception of the ones for pairs with the
same charges.

• Force fields generally yield good overall interaction
energies for the set, but they can have problems in calcula-
tions of specific representative interactions.

• Interaction energies are generally lowered by solvent
dielectric screening s the lowest difference between the gas
phase and environment goes from aliphatics to aromatics and
polars, and the biggest difference can be detected for charged
residues.

• The histograms of the interaction energies showed that
distributions of interaction energies are neither normal nor
Boltzmann-like.

• Geometrically chosen cluster representatives are not
representatives for the entire side-chain/side-chain interaction
distribution. Most probably, they are representatives of the
strongest interactions in a protein, often being functionally
or structurally important.
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Abstract: Current understanding of the collagenolytic activity performed by the matrix metal-
loproteinases (MMPs) assumes some degree of relative motion between their catalytic and
hemopexin-like domains, according to evidence from low-resolution techniques for some of the
MMP family members. Herein, we employ protein-protein docking calculations to investigate
the structure in aqueous solution of the full-length MMP-2 enzyme in its active form, for which
there is not yet experimental evidence of interdomain movement. After docking the domains as
free rigid-body subunits, the linker region connecting the catalytic and hemopexin-like domains
is taken into account a posteriori by merely adding an empiric energy term computed from
expected end-to-end distance to the scoring function. Finally, full-length MMP-2 structures are
generated by model building the linker residues in the most stable docking poses. The results
add support to the hypothesis that the interdomain dynamics of a single MMP-2 molecule in
aqueous solution can result in a manifold of conformations, with some preferred orientations.
Globally, this structural information could be helpful in future experimental or computational
studies aimed to elucidate the dynamical behavior of the MMP-2 enzyme in solution.

Introduction

Matrix metalloproteinases (MMPs) are an important family
of zinc- and calcium-dependent peptidases involved in the
proteolytic processing of the pericellular environment. The
MMPs can cleave virtually all structural matrix proteins
(collagen, aggrecan, laminin, etc.), but they also process
adhesion molecules (integrins) and biologically active mol-
ecules like growth factors, cytokines, and growth factor
receptors, contributing thus to the regulation of cellular
behavior.1,2 Accordingly, they play a central role in different
physiological processes, and their expression is also known
to increase in various inflammatory, malignant, and degen-
erative diseases.3,4

All of the MMPs share a significant sequence homology
and, in most cases, a common multidomain structure formed
by an N-terminal prodomain, a catalytic domain, and a
C-terminal hemopexin-like domain joined to the catalytic
domain through a linker region (LK) of variable length
(14-68 residues).5,6 The N-terminal pro-peptide blocks the
access to the active site cleft in the catalytic domain and is
removed upon activation. The catalytic domain (CAT, about
170 residues), which holds the proteolytic activity, displays
a twisted five-stranded � sheet, three R helices, and several
bridging loops. In the gelatinases (MMP-2 and MMP-9), this
domain has an additional 175 amino acid residue insert
comprising three fibronectin-related type II modules
(FIB1-3) conferring gelatin and collagen binding properties
(see Figure S1 in the Supporting Information). The C-
terminal hemopexin-like (HPX) domain, which is important
in regulating the MMP activation, localization, and inhibition,
presents a four-bladed propeller structure. The MMPs also
contain a catalytic zinc ion (Zn1), a second zinc ion (Zn2),
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and a number of calcium ions that, according to previous
studies, play a structural role in stabilizing several loop
regions and fine-tuning the access to the binding site cleft.7

To date, X-ray structures of the full-length enzymes have
been only reported for MMP-1,8,9 MMP-2,10,11 and MMP-
12.12 The structures of MMP-1 and MMP-2 display a similar
compact arrangement of the catalytic and hemopexin do-
mains, which may suggest the presence of stable interdomain
contacts. In contrast, the solid state structure of MMP-12
displays the two domains in a different orientation character-
ized by a less compact arrangement and a smaller interdo-
main contact area. Interestingly, some degree of relative
motion between the CAT and the HPX domains of the
MMPs has been invoked to explain the collagenolytic activity
performed by these enzymes.13 This hypothesis has been
experimentally confirmed for MMP-1, MMP-9, and MMP-
12. Thus, small-angle X-ray scattering and atomic force
microscopy experiments have shown that significant inter-
domain motions occur for MMP-9 in solution.14 In addition,
nuclear magnetic resonance measurements performed for the
MMP-1 and MMP-12 enzymes have also revealed that the
CAT and HPX domains experience conformational freedom
with respect to each other on the nanosecond time scale.12,15

For MMP-2, an important enzyme in angiogenesis, there
is no experimental evidence of interdomain movement yet.
The tridimensional structures currently available correspond
to the latent pro-enzyme (PDB codes: 1CK7 and 1GXD),
where a number of contacts have been observed between
the different domains.10 Thus, the propeptide contacts the
CAT and FIB3 domains while remaining close to the first
propeller blade of HPX (see Figure 1). A larger patch of
molecular surface, which amounts to 310 Å2 in terms of the
reduction of the solvent excluded molecular surface of the

two domains, is covered by the packing of 12 linker residues
against the Ω loop of the catalytic domain, resulting in
several interdomain H bonds (e.g., Gln435-NH · · ·Pro463-O,
Asp416-Oδ · · ·Thr465-OγH) and hydrophobic interactions
(e.g., Pro417 · · ·Thr465). Finally, the smallest interdomain
contact region is formed between the second blade of the
HPX domain and the first of the three existing FIB domains.
The only interaction existing in this particular region is a
solvent-exposed salt-bridge (Glu243 · · ·Arg550). Similarly, in
the 1CK7 structure, the propeptide domain only interacts with
HPX through a salt bridge (Glu95 · · ·Arg495). In addition to
these interdomain contacts, which are present in every single
MMP-2 molecule in the crystal state, the unit cell of the
X-ray structure contains six MMP-2 molecules among which
several intermolecular contacts between the HPX domains
of different MMP-2 molecules exist. Interestingly, the most
important intermolecular interaction involves the hydrophobic
clustering of residues situated at the fourth blade propeller
of two different HPX domains (Tyr636, Leu638, Val648, Phe650,
...), covering 453 Å2 of solvent-excluded molecular surface,
which is clearly larger than the CAT-HPX interdomain
contact (see Figure 1). In other words, the HPX domain
contains different areas (patches), some of which are involved
in intramolecular interactions and others in intermolecular
protein-protein interactions. On the other hand, we have
found in a previous computational work that the CAT-HPX
interdomain contact observed in the initial X-ray structure
is lost after a 100 ns MD simulation of a fully hydrated
MMP-2 molecule, resulting in a quite remarkable rearrange-
ment of the HPX domain with respect to the CAT and FIB
domains that adopt an extended conformation during the
simulation.16

Assuming that relatively ample interdomain motions can
occur in solution and, as seen above, the HPX domain
exhibits different regions favorable for protein-protein
interactions, it would not be misconceived to think that along
with the X-ray structure other conformations could be
accessible for a single MMP-2 molecule in solution. Thus,
our aim in the present work has been to explore the
conformational landscape of the full-length MMP-2 in its
active form (i.e., without the pro-peptide), aiming to find
feasible conformations that are an alternative to the solid
state structure reported experimentally. Clearly, an intensive
conformational search using unbiased MD simulations in
explicit solvent is computationally too expensive in the case
of multidomain proteins like MMP-2, and therefore, other
computational techniques should be considered. In this sense,
there are several reported computational protein-protein
docking methods that are able to efficiently sample alternative
orientations between interacting proteins, with the goal of
predicting the binding mode of the association.17 One of the
most successful rigid-body docking and scoring schemes,
pyDock,18 has been recently adapted to predict the binding
mode of two domains joined by a flexible linker with the
addition of end-to-end linker distance restraints, implemented
in the module pyDockTET.19 As an example, the structure
of a two-domain protein was proposed to be predicted from
homologues of each individual domain in the blind test
CAPRI (target 35; http://www.ebi.ac.uk/msd-srv/capri/), and

Figure 1. Intermolecular interactions between HPX domains
of two different molecules in the 1CK7 structure. The second
molecule (purple) is only partially represented by the HPX
domain.
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the only successful prediction among all participants was
generated by pyDockTET.

Hence, we have used the docking program pyDock, with
the module pyDockTET19 specifically developed to study
domain-domain interactions, which has been customized for
the present study in order to obtain new models of the
MMP-2 enzyme in which the HPX domain explores alterna-
tive contact regions with the CAT and FIB domains.

Methods and Computational Details

pyDock Methodology. The first stage of our computa-
tional study applied the pyDock docking protocol,18 which
is written in python and uses the MMTK set of python
libraries20 for parsing PDB files, calculating united atom
AMBER 94 charges, and for other geometry manipulation
tasks.

The pyDock docking protocol consists of four steps. In
the first one, all the PDB files containing the macromolecules
to be docked are preprocessed. This means that only the
ATOM records of the 20 standard residues are kept, whereas
everything else is removed. In other words, cofactors,
hydrogens, and OXT along with HET records are systemati-
cally erased. These output PDB files become then the input
files for the FTDock21 algorithm executed in the second step.
FTDock is an algorithm within the 3D-Dock suite of
programs designed to enable computational prediction of
protein-protein conformations. The FTDock algorithm is
based on that of Katchalski-Katzir et al.22 It discretizes the
two molecules onto orthogonal grids and performs a global
scan of translational and rotational space of possible positions
of the two molecules, limited by surface complementarity
and an electrostatic filter (optional). The latter is mainly used
to discriminate, according to electrostatic favorability, be-
tween those complexes (poses) that have similar surface
complementarity. FTDock 2.0 was used here, including the
electrostatics filter to generate a total of 10 000 rigid-body
docking orientations. Those poses are stored in terms of
translational coordinates (x, y, z), expressed as integer grid
cell displacements of the mobile molecule’s center from the
center of the static molecule, and rotational angles (ztwist, θ,
Φ) expressed in degrees. In the third step, each individual
geometry of the previously generated 10 000 poses undergoes
a coordinate transformation into a suitable format for their
use in the fourth and final step (i.e., a rotation and translation
matrix for each pose is generated). Here, protein-protein
docking poses are scored in order to predict their preferred
binding geometry according to the following equation:

The first term of eq 1 stands for the Coulombic electrostat-
ics where the distance-dependent dielectric constant (ε )
4rij) has been explicitly calculated for all intermolecular atom
pairs, with q atomic charges from the AMBER 9423 force
field in elementary charge units and pairwise interaction
energy values truncated to a maximum and minimum of +1.0
and -1.0 kcal/mol, respectively, in order to avoid errors from
incorrect geometries from the rigid-body approach. Edesol

represents the effective water-to-interface desolvation

energy,24,25 and EvdW is the Lennard-Jones van der Waals
energy, also limited to a maximum of +1.0 kcal/mol to allow
some interatomic clashes. Typically, EvdW is weighted by a
factor of ωvdw ) 0.1 since the van der Waals term is
somehow already implicitly included during the FTDock
generation of docking poses.

Rigid-body docking poses of multiple domain proteins can
be scored by a pseudoenergy term based on restraints derived
from linker end-to-end distances.19 In this method, named
pyDockTET (tethered-docking), the scoring function uses the
average end-to-end distance, Xm, for a particular linker length
(previously derived from a structural database19) as a restraint
to select the correct docking poses. Then, the Xm value and
its corresponding standard deviation (σ) are used to develop
a function, Elinker, which is further incorporated (just by
summing it) into the pyDock energy function for the final
rescoring of domain-domain poses (for more details on the
calculation of Elinker, see Figure 8 in ref 19). Essentially,
pyDockTET evaluates the linker end-to-end distance for each
independent pose, compares it with Xm, and introduces the
corresponding energetic penalization according to it.

The conformation of the backbone chains in the rigid-
body docking solutions is not refined, as the pyDock protocol
has been extensively benchmarked for protein-protein
interaction predictions both using internal tests and through
the blind competition CAPRI, and the results have given top
success rates without needing any refinement. While there
have been successful attempts for backbone refinement,26

and the PyDock developing team is actually working on the
development of new refinement methods, their current
protocol does not seem to significantly improve with respect
to the rigid-body scoring.

Two additional tools used in the present work are the
Optimal Docking Area (ODA) and the normalized interface
propensity (NIP) analyses.24,25 The former is a method which
enables the examination of any protein surface looking for
areas with favorable energy change when buried upon
protein-protein association. For that purpose, surface patches
with optimal desolvation energy are identified. Such desol-
vation energy is based on atomic solvation parameters,
derived from octanol/water transfer experiments,24 adjusted
for protein-protein docking. The NIP method analyzes the
100 lowest-energy solutions (higher-energy solutions do not
have an impact on these results) to identify the residues that
are most often involved in the docking interfaces, and which
are probably involved in protein-protein interactions.

Setting up the pyDock Calculations on the MMP-2
System. Using the pyDockTET method, which as com-
mented above has been specifically developed to study
multiple domain proteins, implies that the multidomain
molecule has to be split into two subdomains that are
expected to be rigid. In the case of the MMPs, this rigid-
body approximation is supported by the fact that the
secondary structure of the CAT and HPX domains is very
similar in the different X-ray structures regardless of their
actual interdomain orientation. Thus, the RMS deviations of
the backbone atoms of the CAT domain in the 1SU3 (MMP-
1), 2CLT (MMP-1), and 3BA0 (MMP-12) structures with
respect to that in the 2CLT structure (MMP-2) are 0.62, 0.71,

E ) Eele + Edesol + EvdW (1)
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and 0.92 Å, respectively. The architecture of the HPX
domain is also well conserved in the same set of structures,
the corresponding RMSD values being 1.40, 1.34, and 1.34
Å. Therefore, we decided to formally divide the MMP-2
protein into molecule A, composed of the CAT and FIB
domains, and molecule B, corresponding to the HPX domain.
These two molecules need to be treated independently as if
they are two different proteins. At this stage, the linker region
was considered implicitly by adding the pyDockTET energy
term to the scoring function.

Another modification was carried out before processing
the MMP-2 PDB files. As discussed before, the MMP-2
system contains metallic ions that are already disregarded
in the first step of the pyDock protocol. Obviously, this
introduces a modification in the overall charge of the
molecules to be docked and may, in principle, affect the final
results. Indeed, the absence of metallic ions leaves free
charged residues in the active site region which turn out to
behave as “strong attractors”. Consequently, the docking
solutions can be biased to conformations where the HPX
domain is mostly interacting with the active site of the CAT
domain (see Figure S2 in the Supporting Information) but
that do not correspond to the active form of the MMP-2
enzyme. Then, we decided to modify the charge of some of
those critical residues in the CAT domain in order to
overcome this inconvenient. Thus, we mutated, where
necessary, glutamic acid into glutamine, histidine into
protonated histidine, and aspartic acid into asparagines. In
particular, we modified the following residues: (a) Glu404 and
His413, which are coordinated to Zn1; (b) Asp180 and His193

coordinated to Zn2; (c) Asp185 and Glu211 coordinated to Ca1;
and (d) Glu166 and Asp204 coordinated to Ca2. Finally, 10 000
rigid-body docking poses were generated by FTDock, and
they were further scored according to the pyDock and
pyDockTET equations, as above-described.

Building of the MMP-2 Linker. To estimate the influence
of the actual linker residues on the relative stability of the
most stable poses, as well as to further discriminate among
the family of complexes generated by the protein-protein
docking calculations, we decided to generate the complete
model from the docking solutions by rebuilding the linker
region comprising the Asp450-Ile468 residues that are not
taken into account during the pyDock calculations. In
addition, bad contacts among the CAT-FIB and HPX
interacting residues were also relaxed. The details of the
computational procedure, which are also summarized in
Figure S7 in the Supporting Information, are as follows:

1. First, we generated an ensemble of linker structures by
means of restrained MD simulations of the following peptide
sequence: Ace-Asp-Ile-Asp-Leu-Gly-Thr-Gly-Pro-
Thr-Pro-Leu-Gly-Pro-Val-Thr-Pro-Glu-Ile-Nme.
The AMBER03 force field,27 which has been used in our
previous simulations of the full-length MMP-2 enzyme,16

was coupled with the Hawkins-Cramer-Truhlar pairwise
Generalized-Born (GB) solvent model28 to carry out the MD
simulations using the SANDER program included in the
AMBER9 suite of programs.29 We defined an end-to-end
distance (Xm) as the distance between the CR carbons of the
terminal Ace and Nme residues. The value of Xm was

restrained to a specified value using a harmonic biasing
potential with a force constant of 10 kcal/mol/Å. We carried
out a series of simulation windows beginning at an extended
form which corresponds to Xm ) 36.0 Å. The restrained end-
to-end distance was then reduced by 0.25 Å steps down to
5.0 Å (125 windows). The end point of each window was
used as a starting point for the next, and each window
consisted of 200 ps of equilibration followed by 1.8 ns of
production dynamics. The value of the reaction coordinate
Xm was saved every 1.0 ps. The biased samplings obtained
were used to derive potentials of mean force (PMF) for the
end-to-end elongation of the peptide using the Weighted
Histogram Analysis method (WHAM).30

2. From each of the most stable pyDock poses (a total of
30 docking solutions), we built a family of full-length
MMP-2 structures. To this end, we extracted a set of 40
equally spaced snapshots from the MD simulation of the
isolated linker peptide, which were chosen in such way that
their reference distance Xm matched the actual CR atoms of
the last/first residues of the CAT/HPX domains in the
corresponding pyDock structures. Each one of the linker
structures is connected with the MMP-2 model by superpos-
ing the Ace/Nme heavy atoms of the linker peptide onto their
counterpart atoms in the terminal CAT/HPX residues, and
then removing the Ace/Nme coordinates. We also note that
in these model building operations, we employed a full
atomic representation of the CAT-FIB and HPX domains
including H atoms and metallic ions. At this stage, a total
of 30 × 40 ) 1200 full-length complexes were generated.

3. For every single full-length MMP-2 model, steric
clashes between the linker and the CAT/HPX atoms, or
between the CAT-FIB and HPX domains, were iteratively
identified and relaxed in the following manner. First, the
SCWRL4 program31 for prediction of protein side-chain
conformations was employed to rebuild the side chains of
the residues involved in the corresponding steric clash. Then,
the coordinates of the same residues were relaxed by carrying
out 1000 conjugate gradient steps followed by 25 ps of MD
using the AMBER03 force field and a distance dependent
dielectric constant (ε ) 4rij). A high temperature value (500
K) was used in the restricted MD simulations in order to
promote uphill moves of bulky side chains that can be
important for properly relaxing some steric collapses. Once
the loop over all the steric clashes was completed, the
coordinates of the linker atoms and those of the CAT-HPX-
FIB residues involved in the steric clashes were simulta-
neously optimized.

4. In principle, the total energy of the partially relaxed
full-length MMP-2 models is not useful in obtaining a
compensated energetic description because the number and
identity of the MMP-2 residues that are structurally relaxed
is different in each model. Hence, we combined the inter-
domain interaction energies (CAT-FIB · · ·HPX and
CAT-FIB-HPX · · ·LK) and the intrinsic stability of the
LK region (which is fully relaxed) to assess the stability of
the models, defining thus the following scoring function:

E ) ∆Eint
CAT-FIB· · ·HPX + ∆Eint

CAT-FIB-HPX· · ·LK + ELK (2)
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The required energies were obtained by using the Molec-
ular Mechanical (MM) Poisson-Boltzmann Surface Area
(MM-PBSA) approach, which has been applied to perform
many classes of approximate binding energy calculations,
including protein-protein complexes.32 Hence, we per-
formed single-point MM-PBSA energy calculations using
the SANDER program on the whole MMP-2 molecules and
on the separated CAT-FIB, HPX, and LK domains (capped
by Ace/Nme residues; the C-and N-terminal residues of CAT
and HPX are removed). These calculations were performed
for all 1200 models using the typical MM-PBSA settings in
AMBER9.

Finally, the structural quality information of the most stable
full-length MMP-2 models was analyzed by means of the
WHAT_CHECK program.33

Results and Discussion

We applied the pyDock protocol on two different sets of
MMP-2 coordinates. On one hand, we used the X-ray (1CK7)
structure reported experimentally.10 For this structure (XR_M-
MP-2), we deleted the coordinates of the propeptide residues,
as we want to model the MMP-2 enzyme in its active form
(Pro31-Asn109). For the same reasons, the N-terminal Tyr110

ammonium group was placed interacting with the Asp436 as
in the so-called “superactivated” form.34 On the other hand,
we selected one MD snapshot from our previous MD study
(MD_MMP-2), which corresponds to an extended config-
uration accessible for the full-length MMP-2 enzyme in
solution.16 By using two different sets of coordinates, we
can assess the sensitivity of the pyDock poses with respect
to minor changes in the placement of the residue side chains
and in the secondary structure of the protein domains.

For the two structures, XR_MMP-2 and MD_MMP-2,
we derived three series of docking solutions differing in the
value of the end-to-end average distance (Xm) that is used in
pyDockTET. Thus, the family of docking solutions labeled
with the lnk_10 suffix correspond to Xm ∼ 10 ( 3.2 Å.
Similarly, lnk_21 and lnk_25 stand for Xm ∼ 21 ( 5.0 Å
and Xm ∼ 25 ( 10 Å, respectively. These average values
and standard deviations were selected from the relation
between the length and frequency of linkers in a database
of 542 linker structures considered for the parametrization
of the pyDockTET treatment. Although the length (num-
ber of residues) of the MMP-2 linker is fixed, we note
that by using three different end-to-end Xm values, the
HPX domain is allowed to adopt many more poses beyond
those that are compatible with the relatively extended
conformation of the linker region in the crystallographic
1CK7 structure (Xm ∼ 36 Å). For example, the MMP-12
linker, which is only shorter by about three residues than
the MMP-2 one, is folded in a more compact arrangement
characterized by Xm ∼ 10 Å.

For each individual combination of Xm distance and initial
geometry (e.g., MD_MMP-2_lnk21), we analyzed in detail
the most stable docking solutions falling within an energy
interval of ∼10 kcal/mol. Typically, 10 different poses fall
within such an energy interval. Figure 2 collects the 10 most
stable docking solutions (according to the pyDockTET
scoring function) obtained for each individual linker restric-

tion imposed on the MD_MMP-2 system. Interestingly, quite
similar results were obtained for XR_MMP-2 (see Figure
S3 in the Supporting Information), and therefore, we
concluded that the pyDock protocol is quite robust and
predicts the same kinds of solutions for the MMP-2 system
regardless of the actual protein side chain conformations. In
what follows, we will present only the results obtained for
the MD_MMP-2 geometry.

Protein-Protein Contacts Favored by the pyDock
Calculations. The first observation we can make about the
results shown in Figure 2 is that none of the most stable
docking solutions predicts an orientation for the HPX domain
(structures shown in blue) similar to that observed in the
crystallographic structure (shown in red). Hence, there is a
chance that the CAT-FIB domains may have another patch
suitable for a favorable interaction with HPX; i.e., there may
exist alternative conformations of the activated and solvated
MMP-2 to that reported experimentally for the proenzyme
in the solid state. Such affirmation needs, however, a deeper
analysis of the data obtained. Inspection of Figure 2 also
shows that depending on the formal end-to-end distance of

Figure 2. The 10 most stable HPX orientations (blue)
according to the pyDockTET scoring function (MD_MMP2).
The position of HPX in the X-ray structure is colored in red.
Gray and yellow represent the CAT and FIBs domains,
respectively. The gradient of blue colors reflects the different
stability (the darker, the most stable) of the various docking
solutions. Front view refers to the standard orientation of the
MMP-2, whereas rear view results from rotating the frontal
view 180° along the y axis.
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the linker, the docking solutions explore two different areas
of the CAT-FIB domains: (a) the active site groove,
particularly in case of lnk_25, and (b) the rear of the CAT
and FIB domains (mostly for lnk_10 and lnk_21). No
docking solutions are placed in the front part of the FIB
domains.

Solutions where the HPX domain is interacting with the
active site cleft could be, in a sense, reasonable results
provided by the docking calculations given that the MMP-2
active site region actually binds and hydrolyzes other protein
systems. Certainly, if the linker adopts an extended confor-
mation with average end-to-end Xm values of 21-25 Å, then
the HPX domain may be placed in front of the active site
(circumstance not possible with a more compact conforma-
tion of the linker), but those solutions should be disregarded
in our analyses since we are mainly interested in analyzing
the active form of the enzyme. Focusing now on the solutions
placed in the rear of the FIB and CAT domains, the
following can be observed. In case of large Xm values
(lnk_21 and lnk_25), few solutions are placed in a position
where the HPX is interacting with the rear of the FIB
domains. More specifically, there are three solutions in the
case of lnk_21 and one solution in the case of lnk_25,
suggesting that such a region is a potential patch for
protein-protein interactions. The remaining solutions are all
placed in the rear of the CAT domain. This area constitutes
then another patch for protein-protein interactions, though
it is hard to be precise with a region within the rear of the
CAT domain where the interaction with HPX would be more
favorable. Notice, however, that as a general observation we
can affirm that the more compact the linker is, the greater
the number of structures are interacting with the �1 and �2
strands of the CAT domain. Finally, in terms of abundance,
we can establish the following ranking: interactions
HPX-FIB (H-F) < interactions HPX-active site (H-A)
< interactions HPX-CAT (H-C), where the symbol <
implies that a smaller amount of docking solutions show this
type of interaction.

As commented upon in the Introduction, the X-ray MMP-
12 structure (3BAO) is characterized by a less compact
arrangement (in comparison with, e.g., 1CK7) where the
HPX domain is oriented toward the rear of the CAT domain
(see Figure S4, Supporting Information). Moreover, in MMP-
12, the fourth blade of the HPX domain is oriented toward
the CAT domain as in the case of the most stable docking
solutions reported here (see below). Thus, we checked if the
orientations of the HPX domains of any of the docking
solutions collected in Figure 2 matched the orientation of
the HPX domain in MMP-12. Interestingly, a certain degree
of parallelism in the relative orientation of the HPX and CAT
exists between the MMP-12 structure and the MMP-2
docking solutions (see Figure S5, Supporting Information).

Relative Stability of the pyDock Poses. Unfortunately,
no systematic behavior exists in terms of energy, meaning
that no type of interaction is significantly more stable than
any other (see Table 1). For instance, the pose obtained as
the most stable solution in the lnk_25 set, but also that is
ranked number eight in lnk_21, is of the H-A type. One
thing that can be easily seen when analyzing Table 1 is that

docking solutions are highly biased depending on the end-
to-end distance. For example, the H-C interactions are
systematically favored in the lnk_10 solutions, whereas in
the lnk_25 set the H-A interactions are the most abundant
ones. An intermediate situation (lnk_21) allows a more even
distribution. If for the above commented reasons solutions
of the H-A type are disregarded, the most stable solution
(H-F type) is found in the lnk_21 family (this same pose
is also the second most stable one in the lnk_25 ranking).
In this structure, the actual value of the linker end-to-end
distance measured as the CR-CR distance belonging to the
last residue of CAT-FIB and the first residue of HPX is
25.6 Å, and the HPX domain interacts with the rear of the
FIB domains (see the darkest blue solution in Figure 2, rear
view of inset b).

The Fourth Blade in HPX as a Likely Interaction
Site. In the most stable pyDock solutions, it turns out that
the HPX domain interacts preferentially with the first and
the second domains of FIB via its fourth blade propeller
(see Figure S6 in the Supporting Information). Indeed, we
have confirmed that in the rest of the 10 most stable solutions
(including not only the ones corresponding to the lnk_21
but also to the lnk_l0 and lnk_25 sets), HPX interacts again
via its fourth blade. Interestingly, this is in agreement with
the behavior found in the intermolecular HPX · · ·HPX
contacts in the 1CK7 crystal structure (see Figure 1) and in
the complex between MMP-2 and the TIMP-2 inhibitor,11,35

where the HPX domain is also interacting via its fourth blade
with TIMP-2. However, the intramolecular HPX · · ·CAT
interactions in the 1CK7 structure involve mainly the first
HPX blade. It may be interesting to note that further
statistical analysis performed on 5000 docking poses showed
that a large number of solutions in which the HPX domain
is interacting via its first blade are also obtained, but they
are less stable than those involving interactions with the
fourth blade.

The HPX interaction sites can also be characterized by
mapping residue NIP values onto the protein surface. We
focused on those residues with NIP values between 1
(residues appear in the interface in all the docking solutions)
and 0 (residues are found in the docking interfaces as
frequently as randomly expected). For HPX, the maximum
NIP value is 0.3 and corresponds to the Phe650 residue. Then,

Table 1. Relative Energies (kcal/mol) for the 10 Most
Stable Docking Solutions in Each of the Three Series of
pyDockTET Docking Calculations with Different Linker
Restrictionsa

lnk_10 interaction lnk_21 interaction lnk_25 interaction

-64.51 H-C -78.56 H-F -84.32 H-A
-62.71 H-C -69.56 H-C -78.56 H-F
-62.16 H-C -69.50 H-C -77.03 H-A
-61.02 H-C -69.37 H-C -75.38 H-A
-60.75 H-C -68.56 H-F -71.20 H-A
-60.28 H-C -67.21 H-C -69.83 H-A
-59.45 H-C -66.44 H-C -69.83 H-A
-57.62 H-C -66.41 H-A -69.56 H-A
-57.06 H-C -65.16 H-C -69.50 H-A
-55.11 H-C -65.10 H-F -69.37 H-A

a Specific domains interacting for each particular solution are
indicated in the columns labeled “interaction”.
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we checked whether any residue with NIP values ranging
between 0 and 0.3 agree with those observed by Piccard et
al.35 and Morgunova et al.11 in their experimental study about
the interaction of MMP-2 and the TIMP-2 inhibitor. Ac-
cording to Piccard et al., MMP-2 recognizes the so-called
GH loop of TIMP-2 by means of Ala612, Tyr636, Leu638,
Val648, and most significantly, Phe650, located at the fourth
blade of the HPX domain. According to our calculations,
those same five residues show the highest NIP values (see
Table S1 in the Supporting Information), and more specif-
ically, residue Phe650 is playing a major role according to
both the experimental and the theoretical studies. Conse-
quently, there is a nice agreement between the theoretical
predictions concerning the nature of the HPX interaction sites
and closely related experimental data.

Protein-Protein Interaction Sites in the CAT-FIB
Domains. Few experimental studies have reported informa-
tion on the gelating binding regions of FIBs.36,37 Essentially,
gelating binding sites have been identified in each of the
three FIB subdomains and are formed by three conserved
clusters of Phe, Trp, and Tyr residues and their surrounding
region (colored in green in Figure 3a for FIB-1 and FIB-2).
The docking analyses show that HPX can interact simulta-
neously with FIB-1 and FIB-2 through a region (colored in
purple in Figure 3a) quite close to the gelating binding areas
of the two subdomains. For instance, residues Tyr314 and
Phe331 that form part of the hydrophobic cluster of FIB-2
also present positive NIP values (see Table S1, Supporting
Information). Additionally, ODA calculations show that the

region of FIB that interacts with HPX is a surface patch of
optimal desolvation energy (see Figure 3b).

We also looked at the NIP values of the CAT domains
looking for information that could help to further rationalize
the data obtained (see Figure 3c). A few residues belonging
to the CAT domain show NIP values higher than 0,
suggesting, thus, the existence of patches (colored in yellow
in Figure 3c) in the CAT domain that can likely interact
with other proteins. Those patches are quite spread along
the �1-�2 strands and the R1 and R3 helices (see Figure
3c), with no residues with NIP > 0.4; that is, no “hot spot”
residues for protein interactions can be distinguished. This
is in consonance with ODA analyses, indicating that the
molecular surface of the rear of the CAT domain has neutral
desolvation energy (see Figure 3d).

Rebuilding the Linker Region. The free energy profile
generated with the implicit GB solvent model for the end-
to-end elongation of the linker peptide shows only a
minimum located at approximately 10.5 Å (see Figure 4).
In fact, the PMF profile explores low energy states (<1.25
kcal/mol) within the 10-36 Å range. Although the use of
explicit water models would likely improve the accuracy of
the conformational free energy differences, the present PMF
calculations suggest that the amino acid sequence of the
MMP-2 linker region is intrinsically flexible in aqueous
solution and that a broad range of end-to-end distances
(10-36 Å) could be accessible at room temperature.

Besides estimating the PMF for the end-to-end elongation
of the linker peptide, each MD simulation window provided
an ensemble of representative structures having the appropri-

Figure 3. (a) Binding regions of the FIB subdomains of MMP-2 colored according to experimental (green) and theoretical
(purple) predictions. Gray and yellow surfaces correspond to the CAT and the third FIB domains, respectively. (b) The HPX
domain is represented in ribbons and its four blades colored in yellow (first blade), red (second blade), dark blue (third blade),
and green (fourth blade). The first and second domains of FIB are colored according to ODA desolvation energies. Contrary to
the blue areas, the red areas have low desolvation energy. (c) CAT domain of MMP-2 colored according to NIP values (yellow
means values ranging within 0.4-0.0). (d) ODA representation of the rear of the CAT domain.
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ate end-to-end distance in order to match the corresponding
CR-CR distance between the last CAT residue and the first
HPX residue in the most stable pyDock complexes. In this
way, and following the prescriptions detailed in the Methods
and Computational Details, we were able to rebuild the full-
length MMP-2 enzyme by connecting the CAT and HPX
through a partially relaxed peptide chain as well as fix several
bad contacts among side chains in the interaction zone
between the CAT-FIB and HPX domains. In the majority
of the 1200 full-length MMP-2 structures that were generated
from the most stable pyDock poses, interactions between the
linker residues and the nearby CAT/HPX residues are
structurally favorable. However, we also found that several
steric clashes could not be fully relaxed through the
combination of restrained minimization and MD calculations
of the involved residues. Moreover, the backbone of the
linker region tends to adopt a strained conformation in many
structures.

To translate into a scoring function the diverse structural
quality of the full-length MMP-2 models, we estimated both
the interaction energies between the CAT/HPX domains and
the linker region and the intrinsic stability of the linker
residues by means of the MM-PBSA method (see Figure
5). However, we note that neither the restricted relaxation
of the MMP-2 models generated by the rigid docking
calculations nor the limitations of the MM-PBSA methodol-
ogy for predicting binding or conformational energies of large
systems allow us to make clear-cut energetic predictions.
Nevertheless, the pyDock structures that are best fitted to
accommodate the linker residues should be well captured

by the MM-PBSA scoring function defined in eq 2 thanks
to a partial cancellation of errors. Thus, we found that the
second solution in the lnk_10 pyDockTET set, which belongs
to the H-C type (see above), generates full-length MMP-2
structures that are much more stable by tenths of a kilocalorie
per mole than the other solutions in the same set. The best
structure arising from this pyDockTET pose has an end-to-
end distance of ∼13 Å and is characterized by a rather
compact arrangement of the linker chain, which is, neverthe-
less, well fitted to the surrounding protein environment (see
Figure 5a). In the case of the lnk_21 and lnk_25 sets of
pyDockTET solutions, their relatively large end-to-end
distances are more compatible with the inclusion of the linker
residues, but it turns out that placement of the linker chain
stabilizes preferentially the pyDockTET solutions presenting
the H-F interaction instead of the H-C one. One of these
models with a CR · · ·CR separation of 24 Å is shown in
Figure 5b, in which we observe how the disposition of the
CAT-FIB and HPX domains seems particularly suitable
to accommodate the linker chain in a semiextended confor-
mation, which is relatively stable according to the MM-PBSA
calculations. Overall, the two full-length MMP-2 models
shown in Figure 5 confirm that the interdomain contacts
predicted by the pyDockTET solutions are compatible with
the actual molecular structure of the linker chain.

Summary and Conclusions

The rigid-body protein-protein docking calculations reported
in this work point out that, in the absence of crystallographic
contacts and/or other proteins, a single MMP-2 molecule in
its active form (i.e., in the absence of the pro-peptide) can
adopt different conformations in aqueous solution with
respect to that observed by X-ray crystallography. Further
details about the actual structure and flexibility of the
essential linker region connecting the MMP-2 domains are
obtained through a series of model-building operations and
MM calculations in which MD snapshots of the linker
peptide and the most stable docking solutions are combined.
On the basis of our results, we can also draw specific
conclusions concerning the multidomain structure of the
active form of the MMP-2 enzyme:

• The HPX domain tends to interact either with the rear
part of the CAT domain (preferably with the five-stranded
� sheet) or with the first and second FIB subdomains.

Figure 5. Ball-and-stick views of the linker region adapted to two pyDock solutions corresponding to the lnk_10 (a) and lnk_21
(b) sets of MD_MMP2. MM-PBSA interdomain interaction and conformational linker energies (kcal/mol) are also indicated.

Figure 4. Potential of mean force for the isolated linker
peptide.
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• The most likely interaction region of the HPX domain
is constituted by a hydrophobic cluster of residues (Ala612,
Tyr636, Leu638, Val648, and Phe650) located at its fourth blade
propeller. In fact, these residues are known to interact either
with the TIMP-2 inhibitor or with a second MMP-2 molecule
placed in the same crystallographic unit.

• The MD and PMF calculations carried out on the isolated
linker region indicate that the linker peptide can easily adopt
a large range of end-to-end distances. This seems in
consonance with the proposed interdomain flexibility in the
MMP-2 enzyme.

• The global interdomain orientations favored by the
pyDock calculations are compatible with the molecular
structure of the linker residues as confirmed by our full-length
MMP-2 models exhibiting a relaxed linker chain connecting
their CAT and HPX domains.

From a methodological point of view, we believe that the
computational protocol employed in this work, which is
essentially characterized by the rigid-body Pydock calcula-
tions and the subsequent reconstruction of linker atoms and
removal of bad contacts using all atom MM calculations,
could be of interest for other applications. Thus, this strategy,
which mixes diversity and likeness in the predicted inter-
domain conformations, can easily generate a pool of struc-
tures for which small-angle X-ray scattering patterns and/or
NMR properties could be calculated and used for data
analyses of experimental measurements.15 Similarly, the
most-likely Pydock structures could be very useful for further
computational studies aimed at the elucidation of the role
played by water molecules and protein dynamics in the
stability of interdomain conformations. In this respect, we
note that the generation of reliable docking structures like
those reported in this work for the MMP-2 enzyme could
be seen as a prerequisite before carrying out extensive MD
simulations in explicit solvent and more sophisticated free
energy calculations. As a matter of fact, further computational
and experimental work will be required in order to understand
the specific roles played by each of the MMP-2 domains
during collagenolysis.
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Abstract: We derive a new numerical approach to solving the linearized Poisson-Boltzmann
equation (PBE) by representing the protein surface as a collection of spheres in which the surface
charges can then be iteratively solved by new analytical multipole methods previously introduced
by us [Lotan, I.; Head-Gordon, T. J. Chem. Theory Comput. 2006, 2, 541.]. We show that our
Poisson-Boltzmann semianalytical method, PB-SAM, realizes better accuracy, more flexible
memory management, and at reduced cost relative to either finite difference or boundary element
method PBE solvers. We provide two new benchmarks of PBE solution accuracy to test the
numerical PBE solutions based on (1) arrays of up to hundreds of spherical low dielectric
geometries with asymmetric charges in which mutual polarization is treated exactly and (2) two
overlapping spheres with increasing charge asymmetry by solving the PB-SAM method to very
high pole order. We illustrate the strength of the PB-SAM approach by computing the potential
profile of an array of 60 T1-particle forming monomers of the bromine mosaic virus.

Introduction

The formation of protein complexes is ubiquitous in a
crowded, salty cellular environment. Since electrostatic forces
dominate the earliest of protein-protein recognition events
in the cell, various analytical and numerical continuum
theories of bulk electrolytes have been adapted for use to
describe protein complexation mechanisms on the supramo-
lecular scale.2 One popular continuum mean-field theory is
the Poisson-Boltzmann (PB) treatment, which forms the
basis of Gouy-Chapman theory3,4 in electrochemistry, and
under the low field linearized PB (LPB) approximation, the
Debye-Hückel theory in solution chemistry5 and Der-
jaguin-Landau-Verwey-Overbeek (DLVO) theory in col-
loid chemistry.6,7 Numerous techniques for solving the PB
equation exist,1,6 including both analytical or numerical
methods, and each has its drawbacks and its strengths.

Analytical methods typically allow rapid solution of the
PB equation using multipole expansions under specialized
geometries, such as spheres or cylinders. A complete PB

solution comprising one spherical macromolecule was de-
veloped by Kirkwood8 more than 70 years ago, but gener-
alization of this complete solution to two or more spherical
macromolecules proved to be more difficult, and many
different partial and approximate solutions have been
proposed.9-12 We have recently achieved a fundamental
result in deriving an analytical PB solution for computing
the screened electrostatic interaction between arbitrary
numbers of spherical proteins of arbitrarily complex charge
distributions, separated by arbitrary distance.1 While such
idealized protein geometries will typically be inappropriate
for describing complexation on a supermolecular scale, this
new analytical solution is a novel component of our new
numerical PB solver for arbitrary protein shape. It also serves
as a benchmark for the accuracy of the numerical solutions
in certain idealized test cases.

By contrast, numerical methods (see ref 13 for a recent
survey), such as finite-difference (FD)14-19 and finite-element
(FE)20-22 methods, can handle arbitrary dielectric boundaries
by solving for the PB potential on a 3-D grid or mesh.
However, there are limitations of the FE or FD formulations,
such as singularities in the potential solution because of point
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charges, that electric displacement continuity could not be
enforced across dielectric boundaries (thereby reducing the
solution accuracy and convergence rate), and forces must
be estimated from finite-difference calculations.13 But most
importantly, the requirement that the solution be solved on
a grid limits its practical application to spatial domains of
either two to three typical macromolecules at reasonably high
resolution (∼0.2 Å) or to larger numbers of macromolecules
with greatly diminished resolution and thus solution accuracy.
For example, the PBE solution for an assembled 50S
ribosomal subunit has been evaluated at 0.45 Å resolution,14

at the limit of machine memory, but to describe the preceding
assembly process that occur over much larger spatial
distances, the spatial resolution and consequently the solution
accuracy would greatly deteriorate. As such, computational
and memory cost in FD and FE methods are strictly functions
of the number of grid points and not of the number of
macromolecules described.

Boundary element (BE) methods22-29 are an attractive
alternative since they satisfy both the Dirichlet and von
Neuman boundary conditions by construction, singular
charges can be correctly treated, and most importantly the
2D solutions on the macromolecular surface removes spatial
resolution limitations imposed by the 3D grid of the FD or
FE solvers. However increasing the number of boundary
surface element results in an increasingly large dense matrix
to be solved with severe memory requirements, a problem
which scales with the number of macromolecules. Recent
acceleration of the BE approach24,26 by incorporating fast
multipole methods have rendered BE computational times
comparable to state-of-the-art software packages like the
Adaptive Poisson-Boltzmann Solver (APBS)14 based on FD
solutions.

In this work, we derive a new numerical approach to
solving the PB equation by combining the advantages of both
the boundary element and our analytical model1 formalism.
In particular, we replace the discretization of the molecule
surface into a large number (tens of thousands) of boundary
elements, by a discretization involving a smaller number (tens
to hundreds) of spheres. The surface charges can then be
iteratively solved using analytical multipole methods.1 We
show that our Poisson-Boltzmann semianalytical method,
PB-SAM, converges to the analytical solution with better
accuracy and at greatly reduced cost relative to the readily
available public domain PB solver APBS.14 Furthermore,
we define a high-quality benchmark using 140 poles to
describe the electrostatic potential for two overlapping
spheres that are models for the sharp features that are
sometimes present in real protein geometries, in which we
show that our PB-SAM solution converges to the correct
solution with the same computational cost or better than the
finite difference solution. Finally we illustrate the strength
of the PB-SAM approach by computing the potential profile
of an array of 60 T1-particle-forming monomers of the
bromine mosaic virus (PDB code 1YC6).

Theory

Mathematical Preliminaries. Our theory makes extensive
use of the spherical harmonics (SH) family of functions. The

spherical harmonic function of order n and degree m, at polar
angle θ and azimuthal angle φ, is defined per the convention
from Gumerov and Duraiswami30 as

where Pnm(x) is the associated Legendre polynomial. Note
that this definition of Ynm(θ,φ) differs from the common
convention by a �(2n + 1)/4π factor. The complex conjugate
of Ynm(θ,φ) will be denoted as Ynm(θ,φ).

We shall utilize two important properties of spherical
harmonics: their addition theorems and orthogonality. Let
r1 ) [r1,θ1,φ1] and r2 ) [r2,θ2,φ2] be two points in 3D space
specified by spherical coordinates, where r2 > r1. The
Euclidean distance |r1 - r2| between them then obeys the
addition theorems:24,31

and for the screened Yukawa potential eq 2a is modified to
read as

where κ is the inverse Debye-Huckel screening length
(described later), and k̂n(z) and ı̂n(z) are adapted modified
spherical Bessel functions defined as

In(z) and Kn(z) are the modified Bessel functions of the first
and second kind, respectively. Detailed properties of k̂n(z)
and ı̂n(z) have been described in ref 1.

The spherical harmonic functions are also orthogonal over
the surface of a unit sphere (S1)

Hence a square-integrable function g(θ,φ) on S1 can be
expanded using {Ynm} as the basis set

with the coefficients Gnm determined through the reciprocal
transform

Ynm(θ, φ) ) (-1)m�(n - |m|)!
(n + |m|)!

Pn|m|(cos θ)eimφ (1)

1
|r1 - r2|

) ∑
n)0

∞

∑
m)-n

n r1
n

r2
n+1

Ynm(θ1, φ1)Ynm(θ2, φ2) (2a)

e-κ|r1-r2|

|r1 - r2|
)

∑
n)0

∞

∑
m)-n

n r1
n

r2
n+1

în(κr1)e
-κr2k̂n(κr2)Ynm(θ1, φ1)Ynm(θ2, φ2) (2b)

k̂n(z) ) �2
π

ezzn+1/2

(2n - 1)!!
Kn+1/2(z) (3a)

în(z) ) �π
2

(2n + 1)!!

zn+1/2
In+1/2(z) (3b)

∫
φ)0

2π ∫θ)0

π
Yls(θ, φ)Ynm(θ, φ) sin θ∂θ∂φ ) 4π

2n + 1
δnlδms

(4a)

g(θ, φ) ) ∑
n)0

∞

∑
m)-n

n
2n + 1

4π
GnmYnm(θ, φ) (4b)

Gnm ) ∫
φ)0

2π ∫θ)0

π
g(θ′, φ′)Ynm(θ′, φ′) sin θ′∂θ′∂φ′ (4c)
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Setting up the Boundary Value Problem. We seek to
set up a boundary value problem for a system of Nmol

macromolecules immersed in an implicit aqueous salty
solvent. Figure 1 gives an example of the spatial domain
for which we solve the linearized PB equation (LPBE). Each
macromolecule I is embedded with NC

(I) fixed partial charge
and represented as a collection of NS

(I) overlapping spheres
with dielectric constant εin. For simplicity, we consider in
this paper the same εin for all molecules, but the model can
handle different dielectric constants. The solvent is treated
as a continuum with dielectric constant εout, with screening
effects because of mobile ions captured via the inverse Debye
length κ. The LPBE gives the potential Φ at any point r in
space R3 as

where ε is the relative dielectric function, Ffixed is the charge
density from the fixed protein partial charges, and κ )
�8πnje2/εoutkBT, where nj is the bulk concentration of
monovalent salt in the solution, e is the fundamental
electronic charge, kB the Boltzmann constant, and T the
absolute temperature. Inside each macromolecule I, the
potential Φin

(I)(r) satisfies the Poisson equation

while in the region outside all macromolecules, the potential
Φout(r) satisfies the Helmholtz equation

We first express the potential Φin
(I)(r) anywhere inside

molecule I as the sum of the potentials because of the
embedded fixed charges and a single-layer of yet unknown
reaction charges f (I)(r) on the surface dΩ(I)23,32

In our new approach, the surface of molecule I is
discretized into NS

(I) spheres. We consider each sphere k of
molecule I of radius a(I,k) in turn, and all position vectors
and coefficients are defined with the center of sphere k as
the origin. We apply the first addition theorem (eq 2a) to eq
7 to obtain

with the coefficients defined as

Notice that we have scaled the terms with rRn and rRn+1

dependence by (a(I,k))n and (a(I,k))-n, respectively. This is to
avoid machine imprecision as n becomes large. Coefficients
with (rR/a(I,k))n dependence, such as Enm

(I,k), are known as
multipole (external) coefficients, while those with a(I,k)n/rRn+1

dependence (LEnm
(I,k), LFnm(I,k), and LFSnm

(I,k)) are known
as Taylor (local) coefficients. The first sum in eq 8 represents
the potential due to fixed charges, where Enm

(i,k) sums over
NC

(I,k) fixed charges inside sphere k of molecule I, while
LEnm

(I,k) sums over the remaining NjC
(I,k) fixed charges outside

sphere k. The second sum in eq 8 gives the potential resulting
from the unknown surface charge f (I)(r); LFSnm

(I,k) and
LFnm

(I,k) account for represents reactive charges on sphere k
and on other spheres in molecule I, respectively.

In the solvent region outside the molecules, the potential
Φout(r) can be represented as the sum of Yukawa potentials
because of each molecule’s yet unknown effective surface
charges h(I)(r)23,32

The above equation valid for the exposed portion of sphere
k of molecule I. Applying addition theorem 2 (eq 2b) to eq
9, the potential on the exposed surface can be expressed as

Figure 1. Setting up the boundary value problem. The
example system is comprised of two proteins with arbitrary
charge distribution, each represented as a collection of
overlapping spheres to describe an arbitrarily shaped dielectric
boundary containing no salt, immersed in a high dielectric salty
continuum solvent. Salt screening effects are captured via the
Debye-Huckel parameter κ.

-∇[ε(r)∇Φ(r)] + κ
2Φ(r) ) 4πFfixed(r) (5)

-∇2Φin
(I)(r) ) Ffixed

(I) (r)/εin (6a)

∇2Φout(r) - κ
2Φout(r) ) 0 (6b)

Φin
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N
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1
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∞

∑
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r )n

+

( r
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n)0

∞

∑
m)-n

n

(( r

a(I,k))n
(LFnm

(I,k) +

LFSnm
(I,k)))Ynm

(I,k)(θ, φ) (8)

Enm
(I,k) ≡ ∑

R)1

N
C
(I,k)

qR

εin
( rR

a(I,k))n

Ynm
(I,k)(θR, φR) (8a)

LEnm
(I,k) ≡ ∑

R)1

N̄
C
(I,k)

qR

εin

1
rR(a(I,k)

rR )n

Ynm
(I,k)(θR, φR) (8b)

LFnm
(I,k) ≡ 1

4π ∫
dΩ(I,k)

f (I,k)(r′)
r′ (a(I,k)

r′ )n

Ynm
(I,k)(θ′, φ′)dr′ (8c)

LFSnm
(I,k) ≡ 1

4π ∫
dΩ(I,k)

f (I,k)(r′)
r′ (a(I,k)

r′ )n

Ynm
(I,k)(θ′, φ′)dr′ (8d)

Φout(r) ) ∑
I)1

Nmol ( 1
4π ∫

dΩ(I)

e-κ|r-r′|

|r - r′|h
(I)(r′)dr′) (9)
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where the coefficients are defined as

The multipole coefficient Hnm
(I,k) represents effective polar-

ization charges on sphere k of molecule I’s exposed surface.
The local coefficients LHnm

(I,k) and LHNnm
(I,k) represent

effective polarization charges on other spheres in molecule
I and on other molecules, respectively.

With eqs 8 and 10 in hand, we can impose boundary
conditions at the dielectric boundary surface rE )
(a(I,k),θE,φE) ∈ dΩE

(I,k) between each sphere k in molecule I
exposed to solvent:

The Dirichlet boundary condition (eq 11a) enforces potential
continuity across the boundary

while the von Neumann boundary condition (eq 11b)
enforces electric displacement continuity

We have introduced Fnm
(I,k) ≡ a(I,k)LFSnm

(I,k). We continue
to simplify eqs 12a and 12b by rearranging

where

The boundary equations above are valid on the solvent-
exposed surfaces of sphere k on molecule I. We need another
set of boundary equations on the buried surface rB )
[a(I,k),θB,φB] ∈ dΩB

(I,k). We shall utilize the fact that there is
no polarization charge on the buried surface, that is, f (I,k)(rB)
) h(I,k)(rB) ) 0, since there is no dielectric discontinuity. It
follows that scaled versions of the charge distributions,
f̃ (I,k)(θ,φ) ≡ (a(I,k))2f (I,k)(a(I,k),θ,φ) and h̃(I,k)(θ,φ) ≡
(a(I,k))2h(I,k)(a(I,k),θ,φ), are also zero on the buried surface.
Separately, we can express f̃ (I,k) and h̃(I,k) in terms of
Fnm

(I,k)and Hnm
(I,k) using eqs 4c, 8d, and 10a

so the “zero-charge” requirement at the buried boundary can
be imposed as

Equations 13a, 13b, 16a, and 16b specified the complete
boundary value problem, from which Fnm

(I,k)and Hnm
(I,k) can

be solved.
Solution of the Boundary Value Coefficients and

Interaction Energy. To solve for Fnm
(i,k) and Hnm

(i,k), we
need to cast the boundary value problem as a linear system
of equations. The infinite expansion series must first be
truncated at a maximum pole order p, chosen depending on
the desired level of accuracy versus computational cost (see
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(κa(I,k))2în+1(ka(I,k))

2n + 3 ](LHnm
(I,k) +

LHNnm
(I,k)) + (n + 1)εEnm

(I,k) - nεa(I,k)(LEnm
(I,k) + LFnm

(I,k)) (14b)

f̃ (I,k)(θ, φ) ) ∑
n)0

∞

∑
m)-n

n
2n + 1

4π
Fnm

(I,k)Ynm
(I,k)(θ, φ) (15a)

h̃(I,k)(θ, φ) ) ∑
n)0

∞

∑
m)-n

n
2n + 1

4π
Hnm

(I,k)
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Results). The obvious approach is to set up the boundary
equations as a linear least-squares problem (Figure 2a), by
discretizing sphere k into MB buried and ME exposed grid
points, and then finding solutions of vectors F(I,k)and H(I,k)

that best satisfy the appropriate boundary equations on all
grid points. Using the DGELSY routine (complete orthogonal
factorization) in LAPACK for (ME + MB) ) 10000 and p )
60, each sphere is solved in approximately 10 min. This is
computationally intractable if the LPBE needs to be solved
repeatedly for tens to hundreds of spheres during dynamics
simulations.

Instead, we formulated a novel approach that makes use
of spherical harmonics’ orthogonal property (eq 4). It
converts the problem to a direct matrix-vector multiply
operation (Figure 2b), which can be evaluated two-orders
of magnitude faster than the LLS approach. We first add
∑n)0

∞ ∑m)-n
n (2n + 1)((Hnm

(I,k))/(ı̂n(κa(I,k)))Ynm
(I,k)(θE,φE) to both

sides of eq 13a and divide by 4π to arrive at

where

Similarly, we add ∑n)0
∞ ∑m)-n

n (2n + 1)Fnm
(I,k)Ynm

(I,k)(θE,φE)
to both sides of eq 13b and then divide by 4π

Equations 17a and 17b (and similarly 18a and 18b) now
completely describe functions w̃H(θ,φ) (and w̃F(θ,φ)) over
the entire surface of sphere k

The above equations now have the familiar form of spherical
harmonic expansion of eq 4b, so we can directly evaluate
the coefficients in square parentheses via the reciprocal
transform eq 4c. We show below the derivation for H(I,k)

where IE, the exposed surface integral matrix, is computed
using quadrature method with Mgrid uniform surface grid
points

A similar transform to eq 20 can be written for Fnm
(I,k).

Finally, we truncate the series at pole order p to get the
iterative equations

Figure 2. Setting up the boundary equation (eqs 13a, 13b,
16a, and 16b): (a) as a linear least square solve problem and
(b) as a matrix-vector multiply operation.
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∑
s)-l

l

(Hls
(I,k)( 2l + 1

îl(κa(i,k))
- e-κa(I,k)

k̂l(κa(I,k))) +

Fls
(I,k) + XHls

(I,k))Yls
(I,k)(θ′, φ′)}Ynm

(I,k)(θ′, φ′)sin θ′dθ′dφ′

) ∑
l)0

∞

∑
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l

IE,lsnm
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Fls
(I,k) + XHls

(I,k))
(20)

IE,lsnm
(I,k) ≡ 1

4π ∫
φE
∫θE

Yls
(I,k)(θ′, φ′)Ynm

(I,k)(θ′, φ′)sin θ′dθ′dφ′ ≈

1
Mgrid

∑
k)1

ME

Yls
(I,k)(θk, φk)Ynm

(I,k)(θk, φk) (21)

Hnm
(I,k)
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) ∑

l)0
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∑
s)-l

l

IE,lsnm
(I,k) (Hls

(I,k)( 2l + 1

îl(κa(I,k))
- e-κa(I,k)
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Equations 22a and 22b, along with eqs 14a and 14b,
represent a key result of this paper. The equations are
iteratively evaluated, until the values of F(I,k) and H(I,k)

converge to a stipulated tolerance. The operations are simply
matrix-vector multiply, y ) Ax, where the vector x is
constantly updated using the latest values of F(I,k) and H(I,k).
During computation, the surface integral coefficients
IE,lsnm

(I,k), and fixed charge coefficients Enm
(I,k) and LEnm

(I,k)

are precomputed for each sphere (I,k) prior to simulation,
while LFnm

(I,k), LHnm
(I,k), and LHNnm

(I,k) are updated via
multipole-to-local operations (see implementation section
below).

In summary, our approach to solve the LPBE is as follows:
(1) For each sphere k in molecule I, we apply the addition
theorems to express the potentials Φin(r) and Φout(r) as
spherical harmonic expansions containing unknown coef-
ficients (Fnm

(I,k)and Hnm
(I,k)) representing sphere k’s polariza-

tion charges. (2) We impose boundary conditions on the
sphere surface to derive boundary equations. (3) We account
for charges from other spheres and molecules by re-
expanding their polarization coefficients (Fnm

(J,l)and Hnm
(J,l))

about the center of sphere k using “multipole-to-local”
operations. (4) We then solve the boundary equations for
Fnm

(I,k)and Hnm
(I,k) iteratively using a novel fast iterative

method (inner-iteration). (5) We repeat steps 1-4 for all
other spheres (outer-iteration) until the convergence criteria
is reached.

Convergence is monitored using relative change in H(I,k)

between the tth and (t - 1)th outer iterations

We now can calculate the interaction energies from con-
verged values of H. The interaction energy of sphere k is
the inner product of its effective charge distribution with the
potential due to external sources. The interaction energy
W(I)of each molecule I is the sum of interaction energies of
its constituent spheres

Implementation of Re-expansion Operations. To solve
for F(I,k) and H(I,k), we need to first account for the
polarization charges from all other spheres via LF(I,k), LH(I,k),
and LHN(I,k). To do this, we convert source multipoles F
and H from other spheres to target local expansions centered
at c(I,k). If the source and target spheres are well-separated
(see criterion below), the re-expansion can be accomplished

analytically through multipole-to-local operators T0 and Tκ.
The procedure for computing coefficients of T0 and Tκ has
been previously detailed in ref 1. For intra-molecular re-
expansions (i.e., from spheres j to center of sphere k in the
same molecule I)

or intermolecular re-expansions (i.e., from spheres l on
molecule J to center of sphere k in the same molecule I)

The analytical re-expansion operators are only valid when
the target center c(I,k) lies outside the bounding sphere of
the source charge distribution, so they cannot be used in cases
where source and target spheres overlap. Nonetheless, the
local expansions LF(I,k) and LH(I,k) are still well-defined and
could be directly computed using discrete versions of eqs
8c and 10b: a procedure we termed “numerical re-expan-
sion”, as described below. To our knowledge this method
of circumventing the restriction by analytical re-expansion
has not been previously documented.

We first discretize the surface of source sphere j uniformly
into Mp patches, with each patch b centered at rb

(I,j) )
[a(I,j),θb

(I,j),φb
(I,j)]. We then compute the surface charge on

the bth patch q̃b
(I,j) ) 4πq̃(I,j)(θb

(I,j),φb
(I,j))/Mp, where q̃(I,j) )

f̃ (I,j) or h̃(I,j) from eqs 15a and 15b. The local expansions of
sphere j’s multipoles recentered on k are then approximated
from eqs 8c and 10b as

where rb
(I,k) ) rb

(I,j) -(c(I,k) - c(I,j)). The re-expansion
becomes exact as Mp approaches infinity, although in practice
we find that a value of Mp ≈ 2.5p2 adequately captures
features of the surface charge distributions. Numerical re-
expansion is also used in cases where the source and target
spheres are nonoverlapping but not well-separated, which
we defined as when the distance between sphere surfaces is
less than 5 Å. At such short distance, analytical re-expansion
requires a high number of poles for a stipulated level of error.
Since both computational time and memory for T scales with
p3 it is more efficient to perform the re-expansion using direct
numerical method.

We have also derived a formula using Greengard’s error
bound33 to adaptively determine the minimum pole order
adequate for a re-expansion operation. To re-expand sphere
(J,j)’s multipole to a local expansion at target center (I,k)
within an error of εX, the pole order required is given by

Fnm
(I,k) ) ∑

l)0

p

∑
s)-l

l

IE,lsnm
(I,k) (e-κa(I,k)

[lk̂l(κa(I,k)) -

(2l + 1)k̂l+1(κa(I,k))]Hls
(I,k) + (2l + 1 - lε)Fls

(I,k) + XFls
(I,k))

(22b)

µH,t
(I,k) ≡

∑
n)0

p

∑
m)-n

n

|Hnm,t
(I,k) - Hnm,t-1

(I,k) |

1
2 ∑

n)0

p

∑
m)-n

n

|Hnm,t
(I,k) | + |Hnm,t-1

(I,k) |

(23)

W(I) ) ∑
k)1

N
S
(I)

〈LHN(I,k), H(I,k)〉 ) ∑
k)1

N
S
(I)

∑
n)0

p

∑
m)-n

n

LHNnm
(I,k)Hj nm

(I,k)

(24)

LF(I,k) ) ∑
j*k

N
S
(I)

T0
(I,k)(I,j)F(I,j); LH(I,k) ) ∑

j*k

N
S
(I)

Tκ
(I,k)(I,j)H(I,j)

(25)

LHN(I,k) ) ∑
J*I

Nmol

∑
l)1

N
S
(J)

Tκ
(I,k)(J,l)H(J,l) (26)

LFnm
(I,k) ≈ ∑

b)1

Mp fb
(I,j)

rb
(I,k)(a(I,k)

rb
(I,k) )n

Ynm(θb
(I,k), φb

(I,k)) (27a)

LHnm
(I,k) ≈ ∑

b)1

Mp hb
(I,j)

rb
(I,k)(a(I,k)

rb
(I,k) )n

e-κrb
(I,k)

k̂n(κrb
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(28b)
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where c ) (|c(I,k) - c(J,j)|)/(a(I,j)) - 1 and q̃ ) f̃ or h̃ are the
surface polarization charges. The optimal pole order is
calculated on the fly every outer iteration.

Further Implementation Details. The surface integral
coefficients IE,lsnm

(I,k) involve numerical quadratures that are
precomputed for each sphere (I,k); we have found that the
number of quadrature points should scale with pole number
as Mgrid ≈ 20p2, which we found to be adequate for capturing
the spatial features of the integrand in eq 21.

To prepare a target molecule for computation, we must
discretize it into a collection of overlapping spheres. To do
so, we first convert its PDB file to PQR format using the
PDB2PQR webserver.12,13 We then obtain its solvent
excluded surface (SES) using MSMS34 and a chosen probe
radius rp in Å. We proceed with a Monte Carlo search
algorithm to find the minimum number of spheres and
corresponding radii that satisfying the following criteria: (i)
The sphere surface must be at least d (in Å) away from the
outermost atom center. The distance d can be held constant
or set to the van de Waals radius of each atom. (ii) The
surface of the spheres cannot protrude more than t (in Å)
from the SES surface. The search is terminated when each
atom is encompassed by at least one sphere.

Finally, the code is implemented in C++ and is parallel-
ized in a shared memory framework using openMP 2.0.
Timings for PB-SAM and APBS for test cases in Results
are based on single processor runs on an Intel(R) Xeon(R)
CPU 2.27 GHz node with 24GB of physical memory; we
did this to compare PB-SAM in a serial version against the
APBS serial code. Parameters used for all APBS calculations
are available in Supporting Information. Timings for Brome
Mosaic virus calculations are performed on the same node
using 8 processors.

Results

Nonoverlapping Spherical Test Cases. We first assess
the accuracy of PB-SAM and APBS finite difference
solutions against analytical values for three test systems
involving 2, 27, and 343 nonoverlapping spherical dielectric
cavities (of diameter 20, 15, and 5 Å, respectively) with
internal charges placed near the dielectric boundaries (Table
1). For large spheres, this corresponds to a highly asymmetric
charge arrangement, while as sphere size decreases the charge

distribution approaches a monopole. The exact analytical
solution of the PBE for multiple nonoverlapping spheres has
only become available recently.1 In all cases, the salt
concentration is set to 0.05 M, corresponding to κ ) 0.07374.
We chose a low salt concentration to show a worse case
scenario for computational timings that cannot exploit an
aggressive interaction cutoff that would be legitimate at
higher physiological salt concentrations. Convergence is
reached when the relative change µH,t

(I,k) falls below 10-2 for
all spheres.

For test system 1 (two nonoverlapping spheres), we
computed the APBS solutions at four different grid resolu-
tions (0.19-1.56 Å) that are typically used in biomolecular
applications, and compared the potential value over the entire
surface against the analytical model, as well as reporting the
corresponding memory requirements and timings (Table 2).
The APBS timing scales linearly with the number of grid
points because does the memory cost that largely reached
the limit of 27 GB on our computing node at the highest
resolution we tested. At the most coarse resolution, we find
that the APBS error can be as high as ∼20% of the
theoretical result: as the APBS grid spacing decreases the
APBS accuracy increases, reaching ∼5% of the true value.
The range of our computed errors for APBS agree with the
error analysis performed by Moy et al.,35 who found that
the errors from using finite difference methods could range
from a few percent at 0.5 Å to more than 100% at 2 Å.
Given that these commonly used grid resolutions entailed
such large errors, we feel that more systematic benchmarking
should be done in the future to quantify accuracies in
numerical Poisson-Boltzmann solutions to ascertain the
impact on force and free energy computations. Using the
highest resolution grid but increasing the number of spheres
in test systems 2 and 3, the APBS solution gets corresponding
better as the charge distribution simplifies, with average
errors of ∼2% and ∼1%, respectively.

Table 3 shows that the corresponding results for our PB-
SAM model. For each system, we report the PB-SAM results

p ) log( ∑
charges onj

|q̃|

εXa(J,j)(c - 1))/log(c) - 1 (29)

Table 1. Spherical Test Systems for Comparison of APBS and PB-SAM to Analytical Model Solution in Tables 2 and 3a

test system description charge configuration [position from center], charge [e]

1 2 dielectric cavities of radius 20 Å cavity 1 [18, 0, 0], +3
cavity 2 [-18, 0, 0], -3

2 27 dielectric cavities of radius 15 Å all cavities [13, 0, 0], +1; [-13, 0, 0], -1
[0, 13, 0], +2; [0, -13, 0], -2
[0, 0, 13], +1; [0, 0, -13], -1

3 343 dielectric cavities of radius 5 Å all cavities [3, 0, 0], +1; [-3, 0, 0], -1
[0, 3, 0], +2; [0, -3, 0], -2
[0, 0, 3], +1; [0, 0, -3], -1

a Cavities have surface-to-surface separation of 1 Å from one another.

Table 2. Comparison of APBS against the Analytical
Model for Test Systems Described in Table 1

test
system

grid
points

resolution
(Å)

run
time (s)

memory
(GB)

overall
relative
error

maximum
relative
error

1 65 × 65 × 65 1.5625 3 0.08 19.7% 34.8%
1 129 × 129 × 129 0.7813 29 0.47 14.4% 24.7%
1 257 × 257 × 257 0.3906 142 3.50 11.2% 31.7%
1 513 × 513 × 513 0.1953 1315 27.8 4.9% 11.4%
2 513 × 513 × 513 0.1953 1216 27.8 1.9% 5.3%
3 513 × 513 × 513 0.1953 1421 27.8 1.1% 4.9%
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for various pole orders, to demonstrate how a user would
be able to tune into a desired level of accuracy in PB-SAM’s
using the pole order. From Table 3, it is clear that we can
quickly exceed the accuracy of the APBS solution at a
fraction of the cost and memory requirements for all three
systems. In all three test cases, very few poles (p e 40) are
needed to define a high accuracy solution, primarily because
there are no problematic deep cusp dielectric geometries in
the nonoverlapping sphere case.

Overlapping Spherical Test Cases. Our second com-
parison involves two overlapping spheres of various sizes.
In this case, no analytical solution is known, but we can
define a benchmark calculation based on a high quality PB-
SAM solution computed at p ) 140 and Mp ) 200 000 (PB-
SAM140). The one-time precomputation of the surface
integral matrix (IE) scales with p4 both in timing and storage.
We stopped generating IE at 140 poles, which took 48 h per
sphere. Before using p ) 140 as a benchmark, we have
confirmed that the overall relative difference between
potential solved using p ) 140 and lesser pole orders decays
with increasing pole order: the overall relative difference
between the p ) 130 and p ) 140 solutions are less than
0.5%.

In Table 4, we compare the relative difference in surface
potential against PB-SAM140 as sphere size increases. We
considered the worst-case scenario by placing the positive
charge close to the surface, at a fixed distance of 1.73 Å

below the cusp region, so that as sphere size grows it results
in higher asymmetry of the charge distribution. For each
sphere radius, we first compared the surface potential
computed by APBS against that of PB-SAM140 and then
perform the same comparison between PB-SAM of various
pole orders against PB-SAM140. For APBS at a maximum
grid dimension fixed at 513,3 as the system size increases
the grid resolution and accordingly the solution accuracy
deteriorate. On the other hand, the accuracy of PB-SAM is
a function of the pole order and the size of constituent spheres
(sphere resolution). Table 4 thus provides a handy estimate
of PB-SAM error to help guide our choice of sphere
resolutions and pole order for subsequent application to
realistic protein cases. For the two overlapping sphere case,
PB-SAM with 60 poles is able to achieve relative errors
comparable to APBS with comparable total solve time, and
with less memory requirements. We want to point out that
the total solve time for PB-SAM reported in Table 4 is
principally dominated by the one-time cost of surface integral
computation (1140 s), while the actual time for solving the
iterative equations, eqs 22a and 22b, are between 9 s and 2
min.

It is interesting to note that, for a fixed number of poles,
PB-SAM’s relative error increases with increasing sphere
sizes. Since the boundary equations are formulated and
solved in scaled representations, they should be independent
of sphere sizes. The two potential sources of error are if Mp

is insufficient in discriminating the positions of the source
surface charges for numerical re-expansion, or the scaled
fixed charge multipole Enm

(I,k) decays more slowly with poles
with increasing charge asymmetry. While we found that
increasing Mp by a factor of 40 resulted in no change in
potential, the term (rR/a(I,k))n in Enm

(I,k) converges slower at
large sphere radii; hence, more poles are needed to describe
the corresponding increase in charge asymmetry. In practice,
charges in realistic biomolecules are more evenly distributed;
hence, their fixed charge multipoles will converge much
faster. The convergence improves further when smaller
spheres are used to define higher resolution dielectric

Table 3. Comparison of PB-SAM against Analytical Model
for Test Systems Described in Table 1

test
system

number of
multipoles

run
time (s)

memory
(GB)

overall
relative
error

maximum
relative
error

1 30 4.3 0.023 13.5% 17.6%
1 35 12.1 0.031 4.3% 4.6%
1 40 20.7 0.051 2.4% 1.9%
2 10 1.4 0.015 13.6% 26.7%
2 15 2.3 0.021 6.4% 11.8%
2 20 7.6 0.033 2.2% 4.1%
2 30 46.5 0.082 0.4% 4.4%
3 5 22.2 0.108 4.4% 9.6%
3 10 28.4 0.167 0.1% 0.3%

Table 4. Two Overlapping Spheres with Varying Sphere Sizesa

APBS PB-SAM

sphere size
grid size

(Å)
solve time

(s)
memory

(GB)
relative
error

maximum
relative
error pole order

solve time
(s)

memory
(GB)

relative
error

maximum
relative
error

2 0.0195 960 27.8 0.6% 1.6% 20 1141 0.018 12.1% 16.1%
30 1143 0.030 7.0% 9.2%
40 1149 0.057 3.8% 5.6%
60 1209 0.230 1.5% 2.1%

5 0.0391 1018 27.8 1.6% 3.5% 20 1141 0.018 14.4% 20.6%
30 1143 0.030 7.7% 10.5%
40 1148 0.057 5.5% 7.8%
60 1315 0.229 2.3% 3.9%

15 0.1172 1,158 27.8 4.6% 9.7% 20 1141 0.018 21.7% 30.4%
30 1143 0.030 12.5% 18.4%
40 1148 0.057 8.6% 14.4%
60 1223 0.229 4.3% 6.9%

50 0.3906 1,276 27.8 16.8% 32.8% 20 1141 0.018 41.8% 36.2%
30 1142 0.030 27.7% 25.3%
40 1148 0.057 19.6% 18.2%
60 1180 0.229 11.3% 13.3%

a Comparison of the surface potential computed with APBS and PB-SAM (Mgrid ) 100k, Mp ) 2.5p2) against PB-SAM140.
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boundaries. Hence Table 4 shows that PB-SAM’s relative
error decreases with smaller spheres and higher pole, and
our simplified case with maximum charge asymmetry
provides a worse case upper bound on the relative error for
20 < p < 60. This will inform estimates of error in our
calculation of the bromine mosaic virus in the following
section.

Bromine Mosaic Virus. We have also applied our PB-
SAM method to solve for the potential around a biological
molecule, the T ) 1 particle of the brome mosaic virus
(BMV) capsid (PBD code 1YC6). The virus has been shown
to convert from T ) 3 (comprising of 180 monomers) to T
) 1 (comprising of 60 monomers) capsid under proteolytic
conditions.36 Each capsid protein monomer is comprised of
154 amino acids. To prepare the PDB file for calculation,

we converted chain A of the PDB file into PQR format using
the PDB2PQR server,37,38 which also assigned partial atomic
charges using the AMBER 99 force field.39 We then
discretized the protein into a collection of overlapping
spheres using an in-house algorithm (see implementation
details in Methods). Using discretization criteria that varies
in spatial resolution, we generated three representations of
the protein monomer with 107, 354, and 712 spheres, and
Figure 3 compares the dielectric boundary representation
against the solvent excluded surface computed using
MSMS34,40 with probe radius rp ) 1.4 Å. The generation of
107, 354, and 712 spheres took 11, 30, and 43 min,
respectively, which is typically a one-time cost if the
dielectric representation does not change during the course
of a Brownian dynamics simulation, for example. The
resulting rendered dielectric boundary in each case were then
used to generate a corresponding APBS solution on the
maximum allowed grid points of 5133 given our maximum
memory of 24GB.

Table 5 describes the computational time and memory
resources for PB-SAM to calculate the self-polarization of
one 1YC6 monomer, and the mutual polarization of an array
of 60 monomers that make up the unassembled BMV capsid.
Since it is our intention to study the dynamics of BMV capsid
assembly via Brownian dynamics in future work, we consider
the breakdown of computational cost and memory as (1) a
one time cost to prepare the surface integral of the chosen
dielectric representation of the 1YC6 monomer, (2) the one-
time cost to self-polarize each monomer, and (3) the cost to
mutually polarize the 60 monomers. In the context of a
Brownian dynamic simulation, Table 5 represents the cost
of the initialization phase that will require “cold” guesses
for F and H for steps 2 and 3, and the timings will be
nonoptimal relative to later solutions that will provide better
initial guesses as the dynamics algorithm proceeds as the
capsid assembles.

The PB-SAM computational cost depends on the
number of poles and number of spheres, and timings are
faster or slower depending on how much of the calculation
can be done in memory. We use Table 4 to guide our
choices of pole order and sphere resolution. We will focus
our PB-SAM solutions at a ∼5-7% error by choosing
pole order 20 < p < 60 and keeping average size of spheres
of the dielectric boundary representation between 2-5 Å.
For step 1, Table 5 shows the one time surface integral

Figure 3. Representations of 1YC6 monomer based on
different discretization criteria: (a) the solvent-excluded surface
computed using MSMS with p ) 1.4 Å, (b) 107 spheres with
p ) 1 Å, d ) 1 Å, t ) 2 Å, (c) 354 spheres with p ) 1 Å, d )
atomic vdW radii, t ) 1 Å, and (d) 712 spheres with p ) 1 Å,
d ) atomic vdW radii, t ) 0.5 Å.

Table 5. Computational Timing and Memory Resources Using PB-SAM for Capsid Assemblya

self-polarization mutual-polarizationnumber and
median sphere

radius poles
time to calculate

surface integrals (s) time (s) memory (GB) time (s) memory (GB)

107 spheres 40 1083 280 3.6 2589 4.4b

4.40 Å 50 4131 552 7.2
60 12336 1180 13.3

354 spheres 30 423 603 7.8
3.06 Å 40 2380 2091 7.1b 9365 13.5b

50 9079 4934 17.1b

712 spheres 20 70 271 8.6
1.91 Å 30 802 1177 17.5 16046 33.8b

40 4508 3707 14.2b

a Self-polarization of 1YC6 monomer and mutual polarization of 60 monomers of BMV capsid for various dielectric representations (Figure
3). b Memory-saving mode.

2222 J. Chem. Theory Comput., Vol. 6, No. 7, 2010 Yap and Head-Gordon



cost of the 1YC6 monomer, which scales as O(Mgridp4)
(see Methods), varies between several minutes to several
hours. However, a nice benefit is that as resolution
increases the sphere size, and hence, Mgrid decreases as
do the number of needed poles, which together mitigates
the time of calculating more spheres. The cost to self-
polarize will depend on the available memory; in memory-
saving mode the re-expansion operators T0 and TΚ are
computed on the fly, instead of being stored in memory
and hence increase the cost of the calculation. In Table
5, the self-polarization timings are based on a “cold” guess
of F(I,k) ) 0 and H(I,k) approximated using the fixed
charges, and iterated until the relative change in H(I,k) falls
below 10-2 for all spheres.

Unlike the idealized test cases in Table 1, we do not
have a benchmark “exact” solution for the 1YC6 mono-
mer, since no analytical solution exists for nonspherical
geometries, and computation of hundreds of surface
integral matrices to p ) 140 for PB-SAM is currently
intractable. Instead we can obtain error estimates of APBS
and PB-SAM by looking up corresponding PBE solution
parameters of grid size for APBS and pole and sphere
size for PB-SAM in Table 4. For the 1YC6 monomer,
the APBS result is necessarily evaluated at a low resolu-
tion of 0.22 Å on the basis of the maximum allowed grid
points of 5133 given our maximum memory of 24 GB;
Table 4 suggests that the APBS relative error would be
∼10-12% for this system. For PB-SAM, the error
estimate from Table 4 for spheres between 2-5 Å solved
to pole order 20 < p < 60, fall between 2.1 to 20.6%. Any
direct quantitative comparison between the errors of the
APBS and PB-SAM solutions is not possible since there
is no exact benchmark for this case, and we can only
provide the numerical difference between methods (which
is ∼10%) and not error between the two numerical
solutions. However, using our error estimate from Table
4, it suggests that with 30-40 poles for the representations
of 107 and 353 spheres and 20-30 poles for 712 spheres,
PB-SAM is a higher quality solution at a comparable CPU
cost and memory of the APBS solution.

Finally, we have evaluated the potential of an assembly
of 60 copies of 1YC6 monomers in a 5 × 4 × 3 array,
corresponding to a system size of 165 Å × 220 Å × 275
Å (Figure 4). The array configuration is intended to mimic
late stage assembly, at which the entire capsid system is
compact and mutual polarization becomes significant and
more difficult to converge (as opposed to the 60 monomers
being well separated). All monomers were given the same
initial guess of Fself and Hself from the converged self-
polarization step, and the computational time and memory
to calculate the total (self-and mutual) polarization is given
in Table 5. The memory for the 712-sphere representation
required 33 GB of virtual memory, which is not as efficient
if it were able to fit in the available 24 GB of physical
memory. The fact that the calculation of a high quality
solution is doable on a single standard commodity node

is a strength of the PB-SAM approach, although further
optimization will be explored in the future.

Conclusion

We have developed a novel method for solving the linearized
Poisson-Boltzmann equation by discretizing the protein
surface as a collection of spheres, in which the surface
charges can be iteratively solved by our recent analytical
solution of the PBE equations for spherical geometries in
which mutual polarization is treated exactly.1 We have
compared PB-SAM and the finite difference PB solver APBS
against two new benchmarks never before available to
compare numerical methods. First, we show that PB-SAM
converges to the analytical solution of hundreds of spheres
with better accuracy and at greatly reduced cost relative to
APBS. Second, the PB-SAM solution using 140 poles allows
us to define a high quality benchmark to describe the
electrostatic potential for two overlapping spheres that are
models for cusp-like features of protein active sites, in which
we show that our PB-SAM solution converges to the correct
solution with the same computational cost or better than the
finite difference solution. Finally we illustrate the strength

Figure 4. Array of 60 virus monomers: (a) array configuration
and (b) potential profile of a cross-section through the z ) 0
plane with twenty monomers. Contour lines at 0.05 kT.
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of the PB-SAM approach by computing the potential profile
of a close configuration of 60 T1-particle forming monom-
ers of the bromine mosaic virus (PDB code 1YC6), with
clear improvements in accuracy relative to other numerical
PB solutions, given a fixed hardware configuration of
physical memory.

Further development is necessary to enable PB-SAM’s
application in large-scale Brownian dynamic simulations. The
current version of PB-SAM expends significant computa-
tional time solving eqs 22a and 22b iteratively. This step
was implemented simply as repeated calls to the BLAS
matrix-vector multiply routine dgemV but can be accelerated
by preconditioning eqs 22a and 22b and using a more
sophisticated linear system solving method, such as general-
ized minimal residual method. We also noted during our
benchmarking studies that when our current convergence
criterion is relaxed, the resulting surface potential is un-
changed, so there is room explore a less stringent but
adequate convergence criterion. Finally, forces and torques
are required for Brownian dynamic simulation. We have
derived in reference1 how forces and torques can be
computed analytically for spherical dielectrics. The same
formulation can be extended to the overlapping sphere
representation in PB-SAM via superposition, which is
ongoing work in our lab.
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Abstract: If considering that the pronouncedly charged halide anions are ubiquitous in the
biological world, then it is interesting to ask whether the halogen-ionic bridgessthis term is named
by us to describe the interaction motif of a nonbonded halogen ion with two or more electrophiles
simultaneouslyscommonly exist in biomolecules and how they contribute to the stability and
specificity of biomolecular folding and binding? To address these problems, we herein present
a particularly systematic investigation on the geometrical profile and the energy landscape of
halogen ions interacting with and bridging between polar and charged molecular moieties in
small model systems and real crystal structures, by means of ab initio calculation, database
survey, continuum electrostatic analysis, and hybrid quantum mechanics/molecular mechanics
examination. All of these unequivocally demonstrate that this putative halide motif is broadly
distributed in biomolecular systems (>6000) and can confer a substantial stabilization for the
architecture of proteins and their complexes with nucleic acids and small ligands. This stabilization
energy is estimated to be generally more than 100 kcal ·mol-1 for gas-phase states or about 20
kcal ·mol-1 for solution conditions, which is much greater than that found in sophisticated water-
mediated (<10 kcal ·mol-1) and salt (∼ 3.66 kcal ·mol-1) bridges. In this respect, we would
expect that the proposed halogen-ionic bridge, which has long been unrecognized in the arena
of biological repertoires, could be appreciated in chemistry and biology communities and might
be exploited as a new and versatile tool for rational drug design and bioengineering.

1. Introduction

Specific ion effects play an essential role in many physico-
chemical and biological processes. Such effects exhibit a
reoccurring trend called the Hofmeister series.1 Originally,

it was thought that an ion’s influence on macromolecular
properties was caused at least in part by ‘making’ or
‘breaking’ bulk water structures.2 Recent time-resolved and
thermodynamic studies of water molecules in salt solutions,
however, shed light on that, instead of remodeling water
structures through ions, direct macromolecule-ion interac-
tions as well as the interactions with water molecules that
are bound to the macromolecules seem to be more respon-
sible for the Hofmeister effect.3

In fact, the metal cation-protein/nucleic acid interac-
tions, which are commonly known as coordinate bonding,
have been well characterized in chemistry and biology
communities. In contrast, the ubiquitous anions in biologi-
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cal systems, such as X- (where X- ) F-, Cl-, Br-, and
I-), SO4

2-, and H2PO4
-, are traditionally recognized as

counterions, and their interactions with biomolecules as
well as the effect of these interactions on biomolecular
functions have long been underappreciated in the field of
biology. Theoretically, anions, especially the small, hard
halogen ions, are expected to serve as a good hydrogen-
bond acceptor and a friendly ion-pairing partner to
specifically and nonspecifically interact with the polar
hydrogen atoms and the basic groups of biomolecules.
This point has been preliminarily rationalized by experi-
mental and theoretical studies of simple molecular com-
plexes in gas phase or vacuum conditions (see reviews).4,5

For example, the dissociation enthalpies of X- · · ·H2O and
CH3(CH2)nOH · · ·X- adducts were early determined to be
∼10-30 kcal ·mol-1 by using high-pressure mass spectrom-
etry,6-9 which are even six-fold greater than the stabiliza-
tion energy of a water dimer (∼5 kcal ·mol-1).10 The
experimentally measured energies were later systematized
by means of ab initio calculations using model systems.11-15

Close contacts between the nonbonded halogen ions and
the hydrogen atoms were observed in crystal structures of
amino acids, peptides, and related molecules as early as 30
years ago.16 In the past two decades, the interactions of
halogen ions with macromolecular systems, including col-
loids, polymers, and proteins, were investigated intensively
via nuclear magnetic resonance (NMR),17 aqueous gel
sieving chromatography,18 and vibrational sum frequency
spectroscopy19 as well as molecular dynamics simulation.20

Particularly, it was found that specific ion effects on protein
stability could be explained by incorporating the ionic
dispersion potentials into classical double-layer theory21 and
that small anions, such as F-, are prone to pair with charged
groups, while larger anions, such as I-, are more likely to
be bound on hydrophobic patches of protein surfaces.22 Very
recently and also very intriguingly, Heyda et al. have
presented computational evidence for the ion-specific inter-

actions between biological entities and halides. By employing
both nonpolarizable and polarizable force fields to simulate
the dynamic behavior of amino acid-ion systems, they
attained several clear trajectory pictures showing obvious
congregations of halogen anions around the positively
charged hydrogen atoms of basic amino acids.23

It is known that water molecule can serve as mediator to
“glue” adjacent polar groups together through hydrogen
bonds and hydrophilic forces. Traditionally, these water-
participating interactions are referred to as a water-mediated
hydrogen-bond bridge24 and a water-induced hydrophilic
interaction.25 Given that the halide anions, as mentioned
above, are shown to be effective in interaction with
biomolecules, a question would be raised naturally, that
is, whether the halogen ions can bridge between the
spatially vicinal moieties in biomolecules, just like what
the water molecules do? In other words, do the putative
halogen ion-participating interaction motifs, that we named
halogen-ionic bridges to stress their shared similarities
with water-mediated bridges, exist in the biomolecular
world? Actually, there has been at least one crystal-
lographic report clearly showing a Cl- bound functionally
between the residues Ile50/Ile50′ of HIV-1 protease and
the protonated tertiary amine of its nonpeptide inhibitor
UCSF8, a haloperidol derivative which strongly inhibits
both wild-type and mutant HIV-1 proteases (Figure 1b).26

As we know, however, this Cl- position is usually
occupied by a conserved water molecule (Figure 1a).27

To address these open questions related to the existence
and significance of halogen-ionic bridges in biological
context, in the present work we launch a systematic in-
vestigation on this putative halide motif through various
theoretical and computational approaches. First, high-level
quantum mechanical (QM) calculations were carried out for
a series of small model systems to elucidate the geometrical
preference and the energy landscape of halogen ions interact-
ing with model molecules which mimic polar and charged

Figure 1. Crystallographic evidence showing that the role of a water molecule in mediating the hydrogen-bond network in
biomoleucles can be functionally replaced by a halogen ion. Usually, a conserved water molecule (Ow) is located in the active
pocket of HIV-1 protease to mediate the hydrogen-bond network with its cognate substrates and noncognate inhibitors (PDB:
2cej) (a). However, there has an exception that a chlorine ion (Cl-) is observed at the water’s position in the complex of HIV-1
protease with its nonpeptide inhibitor UCSF8 (PDB: 1aid) (b).
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biomolecular groups. The resulting geometrical and energetic
features of such interactions subsequently recurred in an
exhaustive survey of the high-resolution crystal structures
of all the biomolecules deposited in the Protein Data Bank
(PDB),28 including proteins, nucleic acids, and their com-
plexes with small ligands. In particular, the electrostatic
property and structural basis of halogen-ionic bridges in real
biomacromolecular systems and their contributions toward
the stability and specificity of protein architecture and
protein-ligand recognition were analyzed in detail with the
Poisson-Boltzmann model and a two-layer quantum me-
chanics/molecular mechanics (QM/MM) scheme. This study
would provide solid evidence for the halogen-ionic bridges
existing in and functionalizing to biomolecules and might
give a new view to support the notion that direct ion-
macromolecule interactions, rather than indirect water struc-
tures making and breaking by ions, are more responsible for
the specific ion effects on biological systems.

2. Methods and Materials

2.1. Quantum-Mechanical (QM) Calculation. The sim-
plest model systems, i.e., water molecule (H2O) and am-
monium ion (NH4

+) in complex with four kinds of halogen
ions (F-, Cl-, Br-, and I-) and H2O (serving as the neutral
counterpart of halogen ions), were used to perform a detailed
examination of geometrical, energetic, and electronic proper-
ties associated with the interactions of halogen ions with
polar and charged groups, respectively. Potential energy
surface scans were carried out at the Møller-Plesset second-
order perturbation theory level,29 in conjunction with the
Dunning’s augmented correlation consistent basis set, MP2/
aug-cc-pVDZ. The equilibrium structures as well as corre-
sponding parameters of atoms in molecules (AIM)30 and
natural bond orbitals (NBO)31 for these complexes were
further obtained at the MP2/aug-cc-pVTZ level of theory;
the more accurate intermolecular potentials for the equilib-
rium structures were evaluated using the coupled cluster with
single, double, and noniterative triple excitations correction
term, CCSD(T)/aug-cc-pVTZ. The supermolecule approach
was employed to obtain intermolecular potentials (viz. ∆Eint

) Ecomplex - Emonomer1 - Emonomer2),32 and the associated basis
set superposition error (BSSE) was eliminated by the
standard counterpoise method of Boys and Bernardi.33 The
ideal and real intermolecular Coulombic energies
(∆Ecoul

idealand∆Ecoul
real) were calculated in terms of the classical

Coulomb’s law using the natural charges derived from NBO
analysis of the complex members in isolated and in com-
plexed states, respectively. Since Dunning’s basis set series
is unavailable for iodine, the Lanl2DZ basis set, augmented
by a set of d and f polarization functions (exponents 0.292
and 0.441, respectively) and s and p diffuse functions
(exponents0.0569and0.0330,respectively),abbr.Lanl2DZ+(df),
was used for I-. This large version of a valence electron
orbit seems to be necessary for reliably describing the outer
electronic structure of diffuse anions, and previous theoretical
calculations which used this modified effective core potential
(ECP) basis set have been shown to give reasonably good
results for the I--participating SN2 reactions34 and the

OCS · · · I- van der Waals complexes.35 Because no physical
meaning can be ascribed to regions of Cartesian space
delimited by zero-flux surfaces derived from the valence
electron densities,36 the wave functions generated from the
all electron basis set DGDZVP, but not the valence basis
set Lanl2DZ+(df), were used for AIM analysis of iodine-
containing systems.37

To inspect the interaction profile of halogen ions with the
protein moieties of interest, a thorough search for all the low-
lying energy structures of Cl- binding to the electrophilic
hydrogen atoms of six protein groups, respectively, modeled
by methanol (CH3OH) (for hydroxyl group), N-methylacetamide
(CH3CONHCH3) (for main chain’s amide), acetamide
(CH3CONH2) (for side chain’s amide), methylammonium
(CH3NH3

+) (for lysine’s ammonium), 4-methylimidazolium

(for histidine’s imidazolium), and N-methylguanidinium

(for arginine’s guanidinium), has been done at the MP2/aug-
cc-pVDZ level. No symmetries were constrained in optimi-
zation procedures, and the stability of optimized structures
was confirmed in the following vibrational frequency analysis.

A two-layer ONIOM-based QM/MM scheme38 was adopted
to fully optimize and energetically analyze the protein-ligand
interactions through halogen-ionic bridges. The central
halogen ion and the corresponding protein residues and
ligand that are directly bound to the halogen ion were
included in the QM layer and treated at a high level of density
functional theory (B3LYP/6-31+G*), while the rest atoms
were in the MM layer and treated at a low level of molecular
force field (AMBER parm96).39 In the MM layer, water
molecules were described by the TIP3P model,40 and the
restricted electrostatic potential (RESP) fitting procedure41

was employed to assign partial atomic charges for small
ligands and nonstandard amino acid atoms. Parameters that
were not found in standard AMBER force fields were defined
using the generalized amber force field (GAFF).42 Recently,
we have successfully employed this ONIOM protocol (only
slight modification) to investigate the halogen-water-
hydrogen bridges43 and the fluorine bonds44 in protein
structures and, therefore, expect that this hybrid QM/MM
methodology could be used for the halogen-ionic bridge
systems as well.

Structure optimizations, energy evaluations, and ONIOM
calculations were carried out with the help of the GAUSS-
IAN 03 suite of programs.45 AIM and NBO analyses were
implemented in AIM200046 and NBO5.0,47 respectively.

2.2. Database Survey. Pretreatment of PDB Files. Up
to January, 2010, there were 3391 protein records and 133
nucleic acid entries (solved at 3 Å or better) deposited in
the PDB in which at least one nonbonded halogen ion is
contained. These structures were extracted and treated with
following procedure: (i) removing water molecules, metal
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ions, and other cofactors, except halogen ions and small
organic ligands, (ii) repairing missing side chains of protein
residues, using the newly released SCWRL4 program,48 (iii)
assigning secondary structure class for protein residues,
according to the dictionary secondary structure of proteins
(DSSP) protocol,49 (iv) adding hydrogen atoms for all protein
and nucleic acid heavy atoms, using the REDUCE program50

(REDUCE was adopted here because this program was tested
in our previous study to be capable of precisely reproducing
the neutron diffraction-determined hydrogen’s positions),51

(v) defining protonation state of all charged residues at pH
7.0, using the PROPKA 2.0 program,52 and (vi) interpreting
structural information of small ligands, which are marked
by header ‘HETATM’ in the PDB files, using the I-
INTERPRET program.53 This program reads an assembly
of ligands in standard PDB format and writes a MOL2 file
in which the atomic states, connection manners, and neutral/
charged hydrogen’s positions are assigned in a considerable
accuracy for these ligands.

Definition of Geometrical Constraints. In order to deter-
mine the appropriate geometrical constraints used for screen-
ing effective interactions between halogen ions and biomol-
ecules in these treated PDB structures, the biomolecular
groups that perform as potential halogen ion-acceptors were
roughly classified into two types as polar and charged, which
were respectively modeled using the H2O and NH4

+, and
then, potential energy surface scans for the complexes
OH2 · · ·Cl- and NH4

+ · · ·Cl- with systematically varying in
distance dH · · ·Cl- and angle θ∠(O/N-H · · ·Cl-) have been done at

the MP2/aug-cc-pVDZ level. As a result, two two-dimen-
sional contours intuitively displaying the intermolecular
potential ∆Eint as a function of the geometrical arrangement
of the complexes were presented (Figure 2). A significant
difference between these two potential landscapes can be
seen. For the complex NH4

+ · · ·Cl-, a strong repulsion
appears at the region (red) nearby the interacting H atom,
which is surrounded by a prominently attractive area (navy
blue) and, farther out, a weak interaction domain (green)
(Figure 2b); for the OH2 · · ·Cl-, however, the intermolecular
potential is anisotropically distributed around the hydroge
(H) atom, a strong attractive potential in the “head on”
orientation (navy blue) and a weak repulsive force in the
“side on” direction (green) (Figure 2a). According to this
finding, together with the conclusions arisen from our other
investigations, the following criteria were defined to describe
the effective biological interactions involving halogen ions:
(i) For a uncharged polar group, an ellipsoid with its center
at the polar H atom and its semi-minor/semi-major axis of
3.0/3.5 Å was constructed. Only those halogen ions occurring
within the ellipsoidal space and with the forming angle θ >
120° were considered (i.e., the region encompassed by white
solid line in Figure 2a); and (ii) For a charged basic group,
the halogen ions with their distances, D, to any one of the
heavy atoms in the group less than 4.5 Å were considered.
In this way, a halogen-ionic bridge can be readily defined
as the entity in which a halogen ion effectively interacts with
two or more biomoleuclar groups simultaneously; the number

Figure 2. Potential energy surface scans for the complexes OH2 · · ·Cl- (a) and NH4+ · · ·Cl- (b) at the MP2/aug-cc-pVDZ level
of theory. In this procedure, the positions of H2O and NH4

+ with standard geometries were fixed, and then the probe Cl- was
employed to detect its interaction potentials with the fixed H2O and NH4

+ when it ranges over the plane space as shown in top
schematic diagrams. As a result, two two-dimensional contours intuitively displaying the intermolecular potential ∆Eint as a function
of the geometrical arrangement of the complexes were presented. The step sizes for d and θ in the scans were set to 0.2 A
(from 1.0 to 4.0 A) and 10° (from 90 to 180°), respectively.
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of the groups participating in bridging was called the branch
degree of this halogen-ionic bridge.

It is worth noting that, although the geometrical criteria
presented here were derived on the basis of chlorine ion (the
most abundant halogen ion found in biomolecules), this
conclusion is also applicable for three other halogen ions.

2.3. Structural and Energetic Properties of Halogen
Ions in Halogen-Ionic Bridges. Solvent accessible surface
area (SASAbrd) and packing density (PDbrd) of the bridging
halogen ions in protein context can be solved numerically
using the, respectively, Sanner’s and Voronoi Cell algorithms
implemented in the MSMS program54 and VORONOIA
python package55 with the ProtOr radii (for protein atoms),56

Shannon effective ionic radii (for halogen ions),57 and 1.4
Å radii (for water probe). Furthermore, the changes in an
ion’s hydration enthalpy (∆∆H°hydr), hydration entropy
(∆∆S°hydr), and hydration free energy (∆∆G°hydr) due to it
transfers from solvent (water) to protein interior and fixed
in a halogen-ionic bridge were estimated using the additive
models of Ooi et al.:58

where SASAbrd and SASAfree are the SASA of the studied
halogen ion in bridging and free states, respectively, and
∆H°hydr, ∆S°hydr, and ∆G°hydr are the standard hydration
enthalpy, hydration entropy, and hydration free energy of
the halogen ion, i.e., the changes in enthalpy, entropy, and
free energy when it moves from the gas phase to a solvent
at the standard conditions (1 atm and 298.15 K). The
experimentally measured values of ∆H°hydr, ∆S°hydr, and
∆G°hydr for the four kinds of halogen ions are compiled in
Table 1.

2.4. Continuum Electrostatic Analysis. The electrostatic
contribution of halogen-ionic bridges to protein stability was
ascertained via continuum electrostatic analysis by solving
Poisson-Boltzmann (PB) equation, which was implemented
in the DELPHI program60 with probe radii 1.4 Å, temper-
ature 298.15 K, ionic strength 0.145 M, and dielectric
constants 4 for protein and 80 for solvent. A grid spacing of
0.833 Å per grid, in which the longest linear dimension of

the protein occupied 60% of the lattice, was used to
determine the size of the cubic lattice, and the Debye-Hückel
(full Coulombic) boundary conditions were applied. The
PARSE set61 of partial atomic charges and atomic radii was
used for protein atoms, and the formal charge -1 and
Shannon effective ionic radii (F- 1.33, Cl- 1.81, Br- 1.96,
and I- 2.20 Å)57 were assigned for halogen ions.

The total electrostatic contribution (∆∆Gtot) to a halogen-
ionic bridge’s stability was decomposed into three terms:
(i) Bridging energy (∆∆Gbrd), which arises from the Cou-
lombic interactions between the halogen-ionic bridge’s
members (including central halogen ion and its interacting
groups) in the folded state of the protein. The ∆∆Gbrd can
be further divided into two parts: ∆∆Gbrd

grp, the generally
repulsive interaction energy between protein groups in the
bridge, and ∆∆Gbrd

hal, the always attractive interaction energy
between the protein groups and halogen ion. (ii) Desolvation
cost (∆∆Gdslv), which represents the desolvation penalties
incurred by the halogen ion and its interacting partners
transferring from a high-dielectric water solvent in the
unfolded state to the low-dielectric protein interior in the
folded state of the protein. ∆∆Gdslv can also be regarded as
the sum of two aspects: ∆∆Gdslv

hal and ∆∆Gdslv
grp, the desolvation

energies of halogen ions and protein groups, respectively.
(iii) Additional effect (∆∆Gadd), which accounts for all the
Coulombic interactions of the studied halogen-ionic bridge
with the charges in rest of the protein in the folded state of
the protein. Similarly, ∆∆Gadd is broken down into ∆∆Gadd

hal

and ∆∆Gadd
grp. These three terms can be readily computed

using a strategy proposed by Hendsch and Tidor,62 who, and
later Kumar et al.,63 had successfully applied this method to
investigate protein salt bridges. Briefly, a thermodynamic
cycle was performed to trace the changes in Coulombic and
reaction field energies of halogen-ionic bridge’s members
upon the bridge formation during protein folding. In this
procedure, electrostatic contribution to free energy change
was calculated relative to a mutation of its members to their
hydrophobic isosteres. The hydrophobic isosteres were
identical with those in the halogen-ionic bridge, except that
their partial atomic charges were set to 0. A detailed
description of this procedure can be found in refs 62 and
63. The protein moieties, which were considered in the
continuum electrostatic calculation as well as their PARSE
parameters,61 employed in this calculation are provided in
Supporting Information, Figure S1.

3. Results and Discussion

3.1. Small Model System. I. Electrostatic Potentials.
Electrostatic potentials (ESPs),64 the most intuitive physical
quantity characterizing an electronic distribution state around
a molecule or ion, are mapped on the same electronic
isodensity surfaces of Cl-, H2O, and NH3, as shown in Figure
3. The latter two have been widely used as the model of
lone-pair donors to study geometrical and energetic features
of canonical hydrogen bonding. As might be anticipated, the
Cl- performs the typical behavior of hard base with a small
radii and a high charge density, which should act as a strong
Brønsted base to accept protons donated from the hydrogen-

Table 1. Experimentally Measured Values of Hydration
Enthalpy ∆H°hydr, Hydration Entropy ∆S°hydr, and Hydration
Free Energy ∆G°hydr for Halogen Ions (T ) 298.15 K)

halogen ion
∆G°hydr

(kcal ·mol-1)a
∆H°hydr

(kcal ·mol-1)a
-T∆S°hydr

(kcal ·mol-1)b

F- -101.9 -111.5 9.6
Cl- -73.9 -79.5 5.6
Br- -70.6 -76.1 5.5
I- -59.5 -62.3 2.8

a From ref 59. b -T∆S°hydr is obtained by subtracting ∆H°hydr

from ∆G°hydr.

∆∆Hhydr° ) ∆Hhydr° · (SASAbrd - SASAfree

SASAfree
) (1)

∆∆Shydr° ) ∆Shydr° · (SASAbrd - SASAfree

SASAfree
) (2)

∆∆Ghydr° ) ∆Shydr° · (SASAbrd - SASAfree

SASAfree
) (3)
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bond donors, such as serine hydroxyl and lysine ammonium.
By contrast, these conventional Lewis bases, H2O and NH3,
are apparently more ‘soft’ than the Cl-, given by the less
negative electrostatic potential at their lone-pair sites. In this
respect, the Cl-, and also the other three halogen ions,
expectantly can form strong (ionic) hydrogen bonds, as
compared to covalently bonded O and N atoms and can even
pair to positively charged biomolecular moieties through
ionic bonds.

3.2. Small Model System. II. Intermolecular Interac-
tions. To quantitatively characterize the interaction profile
of different halogen ions with polar and charged hydrogen
atoms, Figure 4 shows the intermolecular potentials and the
Coulombic energies for the complex model systems of H2O
and NH4

+ with F-, Cl-, Br-, and I-, as a function of the

intermolecular O/N · · ·X- distances. Also plotted are, for
comparison purposes, the potential and Coulombic curves
of H2O and NH4

+ interacting with the oxygen atom of H2O,
the neutral counterpart of halogen ions. At a first glance,
the interactions of halogen ions with H2O and NH4

+ are, as
that inferred from ESPs, markedly stronger than that of H2O
lone-pairs with the same hydrogen donors. For example, the
well depth of the OH2 · · · I- potential curve, the most weak
complex in the OH2 · · ·X- series, was predicted to be 9.20
kcal ·mol-1, which is more than two-fold of the optimal
dissociation energy (4.19 kcal ·mol-1) of the water dimer
(Figure 4a). This difference would increase to six-fold when
the hydrogen donor H2O is replaced by NH4

+ (∼120
kcal ·mol-1 for NH4

+ · · ·X- vs ∼20 kcal ·mol-1 for
NH4

+ · · ·OH2) (Figure 4d). Comparison of intermolecular
potentials to ideal and real Coulombic energies for both
OH2 · · ·OH2 (Figure 4b) and OH2 · · ·Cl- (Figure 4c) adducts
preliminarily sheds light on the physical nature of these
interactions; OH2 · · ·Cl- bonding is dominated by an elec-
trostatic force, given by the good agreement of its potential
curve with the corresponding real Coulombic curve. The
charge transfers (CTs) seem to be significant in the
OH2 · · ·Cl- system, which is implied by the large deviation
of the real Coulombic curve from the corresponding ideal
one (the former was calculated based on the real charge
distribution in the complex system, whereas the latter based
on the atomic charges of isolated complex members). In

Figure 3. Electrostatic potential distribution, in Hartrees, at
the 0.0004 electrons Bohr-3 isodensity surfaces of Cl-, H2O,
and NH3.

Figure 4. (a) Intermolecular potentials for the complexes of H2O with F-, Cl-, Br-, I-, and H2O. (b) Comparison of intermolecular
potential to ideal and real Coulombic energies for complex OH2 · · ·OH2. (c) Comparison of intermolecular potential to ideal and
real Coulombic energies for complex OH2 · · ·Cl-. (d) Intermolecular potentials for the complexes of NH4

+ with F-, Cl-, Br-, I-,
and H2O. (e) Comparison of intermolecular potential to ideal and real Coulombic energies for complex NH4

+ · · ·OH2. (f) Comparison
of intermolecular potential to ideal and real Coulombic energies for complex NH4

+ · · ·Cl-. All of energetic data plotted here were
determined at the MP2/aug-cc-pVDZ (or MP2/Lanl2DZ+(df) for iodine) level of theory. Limited by space, comparisons of
intermolecular potentials to Coulombic energies for the complexes of H2O and NH4

+ with F-, Br-, and I- are provided in the
Supporting Information, Figures S2 and S3.
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contrast, the real Coulombic curve of the OH2 · · ·OH2 dimer
is coincidentally well with the ideal, indicating only a slight
CT accompanied with the formation of this complex. These
phenomena basically recurred when we investigated the
complex systems of NH4

+ · · ·OH2 (Figure 4e) and
NH4

+ · · ·Cl- (Figure 4f), albeit not completely recurred. Most
unexpectedly, the real Coulombic curve of the doubly
charged NH4

+ · · ·Cl-, unlike that of OH2 · · ·Cl-, is almost
on the above of and deviated considerably from the
intermolecular potential curve, this phenomenon is quite
obvious in the region nearby curve minimum. It means that,
besides the electrostatic effect, there also exists other
chemical force(s) to contribute the NH4

+ · · ·Cl- attraction,
but what is (are) it? As we know, the NH4

+ · · ·Cl- complex
can also be viewed as formed by NH3 with HCl, if
considering that the proton bound between N+ and Cl- is
always mobile. In this regard, the H · · ·Cl- interaction
(maybe written as Hδ+-Clδ- bond is more suitable) is, to
some extent, imparted with a covalent component and
thereby tagged with an additional stabilization energy to
enhance its bonding strength. This hypothesis will be proved
by topological analysis of electron density and chemical
bonding in these model systems (vide post).

3.3. Small Model System. III. Geometrical, Energetic,
And Electronic Analyses. The complex model systems of
H2O and NH4

+ with F-, Cl-, Br-, and I- were further fully
optimized at the MP2/aug-cc-pVTZ (or MP2/Lanl2DZ+(df)
for iodine) level with the angle θ∠(O/N-H · · ·X-) frozen in 180°
to avoid secondary interactions between halogen ions and
other hydrogen atoms in these systems. The equilibrium
structures and corresponding molecular graphs, which were
generated by AIM analysis of the MP2 optimized geometries,

are shown in Figure 5 and parametrized as that listed in Table
2. It is evident that the halogen ions in all complexes have
a pronounced interaction with the hydrogen donors, rational-
ized by the presence of bond paths linking the nuclei of X-

and H. In addition, the interatomic separations between
halogen and hydrogen are always longer than corresponding
O-H bonds in OH2 · · ·X-, but this is converse in the
NH4

+ · · ·X- series (due to the proton transfers). Specifically,
the H · · ·F distance in equilibrium NH4

+ · · ·F- structure is
only 0.957 Å, which follows the typical feature of open-
shell (shared) interactions. Hence, rather than the nonbonded
intermolecular force, it would better be recognized as a polar
covalent or ionic bond. Qualitative graphic conclusions could
be substantiated by quantitative examination of the geo-
metrical, energetic, and electronic parameters associated with
these interactions (Table 2). The first and most straightfor-
ward evidence is the particularly high interaction energies
(up to 175 kcal ·mol-1) attached to the NH4

+ · · ·X- associa-
tions, these values fall within the normal range of the bond
energies of covalent and ionic bonds. By contrast, the
intermolecular potentials of OH2 · · ·X- are only a tenth of
that found in corresponding NH4

+-involved adducts, satisfy-
ing the definition of ionic hydrogen bonds by Meot-Ner.65

Second, the unshared attribute for the OH2 · · ·X- and the
shared character for the NH4

+ · · ·X- can be clearly charac-
terized by the electronic topological parameters (including
electron density Fb, Laplacian of the electron density ∇2Fb,
ellipticity εb, and electronic energy density Hb) at the bond
critical points (BCPs) of H · · ·X- bond paths (as marked in
Figure 5). For example, Fb and∇2Fb of OH2 · · ·X- were
predicted to be in the range of 0.006-0.096 and 0.037-0.121
au, respectively, which are basically consistent with or

Figure 5. Equilibrium structures and corresponding molecular graphs for complex model systems OH2 · · ·F- (a), OH2 · · ·Cl- (b),
OH2 · · ·Br- (c), OH2 · · · I- (d), NH4

+ · · ·F- (e), NH4
+ · · ·Cl- (f), NH4

+ · · ·Br- (g), and NH4
+ · · · I- (h). In the equilibrium structures,

the shorter one of the bonding between O/N and H and between X and H is plotted as a solid line, while the longer one is plotted
as a dotted line. Bond lengths are shown in Å. Optimizations were performed at the MP2/aug-cc-pVTZ (or MP2/Lanl2DZ+(df)
for iodine) level with the angle θ∠(O/N-H · · ·X-) frozen in 180° to avoid secondary interactions between halogen ions and other
hydrogen atoms in these systems. Molecular graphs were generated by AIM analysis of corresponding MP2-optimized geometries.
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slightly larger than that proposed for (nonionic) hydrogen
bonds (i.e., 0.002-0.035 and 0.024-0.139 au, respec-
tively),66 but these quantities are noticeable in the
NH4

+ · · ·X- repertoire. In addition, the negative values of
Hb for the both OH2 · · ·X- and NH4

+ · · ·X- suggest that these
two kinds of interactions are stronger than conventional
hydrogen bonding, which usually has a positive Hb.66 The
last but most importantly, NBO population analysis of the
natural atomic and bond orbits in these complexes depicted
a clearer profile for the chemical nature of interactions
involving halogen ions. As listed in Table 2, the Wiberg67

and natural localized molecular orbital/natural population
analysis (NLMO/NPA)68 bond indices of the NH4

+ · · ·X-

interactions are quite significant with respect to Cl-, Br-,
and, particularly, I- (close or greater than 0.6) but relatively
lower in F--containing system. This is inconsistent with that
reflected in interaction energies ∆Eint, which enhances in the
order of NH4

+ · · · I- < NH4
+ · · ·Br- < NH4

+ · · ·Cl- <
NH4

+ · · ·F-. It must be recalled here that most of bond orders
(BOs), such as the Wiberg and NLMO/NPA discussed here,
generally underestimate for polar covalent bonds, since the
ionic bond component in these polar covalent bonds is almost
ignored by BOs. Compared to those found in NH4

+ · · ·Br-/
Cl-/I- complexes, the relatively small degree of charge
transfers (∆qF

- ) 0.36) and the dominant Coulombic effect
(∆Ecoul

real )-119.17 kcal ·mol-1) unravel a marked ionic bond
character associated with the NH4

+ · · ·F- interaction, because
these electrostatic properties are always related to the ionic
bonding.69 Furthermore, it must be reminded here that
complicated biological context would undermine the “idea
fashion” (as that in small model systems) of halogen ions
approaching charged hydrogen atoms, giving rise to a more
important role of the nondirectional ionic bonding than the
directional covalent bonding in the interactions involving not
only F- but also other three halogen ions.

Overall, halogen ions in physiological environment are
presumed to adopt three types of interactions to bridge
between biomolecular moieties: (i) ionic hydrogen bonding
with polar hydrogen atoms, such as those in amide and
hydroxyl group; (ii) ionic bonding with positively charged
species, such as ammonium, imidazolium, and guanidinium;
and (iii) covalent bonding with the hydrogen atoms of proton
donors (this interaction type must have a “good” geometrical
arrangement as compared to ionic bonding). It should be
noted here that this division is not absolute and most of the
real cases must be compatible simultaneously with two or
even three of these interaction types.

3.4. Real Biomolecular System. I. PDB Survey of
Halogen-Ionic Bonding. The PDB (January, 2010 release)
contains 3391 and 133 entries of X-ray crystal structures (at
resolutions of 3.0 Å or better) of proteins and nucleic acids
showing 11 852 and 1345 nonbonded halogen ions, respec-
tively (total 37 F-, 9966 Cl-, 1065 Br-, and 2129 I-). The
pronouncedly unbalanced numbers of different halogen ions
found in biomolecules mirror the variance in chemical
activity and the natural abundance of these halogens. Fluorine
is the most active element in halogens and usually exists in
combined state. Hence, only a few of free fluorine ions were
observed in the survey. However, the also chemically active

chlorine ions were found to be quite abundant in biological
systems. This could be attributed to the important physi-
ological function of the chlorine ions in keeping, for example,
electrical neutrality, acid-base balance, and correct pressure
of cell and body. Using the criteria described in Section 2.2,
we selected the halogen ions in effective interaction (for
convenience, termed as halogen-ionic bonding) with the polar
hydrogen atoms and positively charged groups of biomol-
ecules to define a reliable set of solid biological contacts
involving halogen ions, which consists of 20 826, 793, and
174 halogen-ionic bonding with proteins, nucleic acids, and
small ligands, respectively. Considering the prominent
magnitude of halogen-ionic bonding with protein moieties,
we herein give a detailed inspection on the geometrical
characteristics and distribution of this kind of interactions.

Relative halophilicity of different protein moieties was
assessed using their contact rates (CRs) with halogen ions,
which were simply defined as the ratio of those in effective
interaction with halogen ions to all presented in our data
set. As might be expected, three charged moieties, i.e.
ammonium, imidazolium, and guanidinium, have the highest
propensity to pair with halogen ions, with their CRs of 2.34,
4.32, and 5.47‰, respectively. In the remaining polar
moieties, the side chain’s amide performs as well in the
halophilicity (CR ) 1.62‰), whereas the main chain’s amide
and hydroxyl group exhibit a relatively halophobic feature
(CRs < 1‰). The difference in halophilicity between polar
and charged protein moieties well echoes the bonding
strength variation among small model systems and also
reflects the electrostatic nature of biological halogen-ionic
bonding. These conclusions could be further visualized by
superposing halogen ions around their common protein
moieties and by comparing the distribution states of these
superposed halogen ions to corresponding MP2-determined
low-lying energy structures, as shown in Figure 6. It can be
seen that the main chain’s amide and hydroxyl group hold
only one hydrogen site to accommodate halogen ions, hence,
their halophilicity is lower than the congeneric side chain’s
amide, which provides two hydrogen sites for halogen ions.
The polyatomic imidazolium and guanidinium have a large
surface to contact with surrounding halogen ions and thus
show the highest halophilicity, while the smaller ammonium
can only possess a moderately strong halophilicity. Besides,
the distribution preferences of halogen ions around different
protein moieties are compatible with the Cl- locations in
corresponding low-lying energy structures. For example, the
arrangement patterns of Cl- in interaction with three charged
moieties in low-lying energy structures are clearly mirrored
as the presence of local halogen ion-dense regions in the
statistical distribution plots, although the contacting angle
of halogen ions with these charged moieties has been entirely
ignored when we performed the PDB survey.

Despite the significant unbalancedness of four kinds of
halogen ions occurring in a biological environment, the
contacting behavior of different halogen ions with protein
moieties could also be analyzed in terms of the frequency
distributions of geometrical parameters of halogen-ionic
bonds (HIBs) retrieved from the PDB. It is shown that the
geometrical profile of polar HIBs (bonding between halogen
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ions and polar protein groups) is in agreement with those
received from statistical examination of water-halide ion
interactions in the CSD70 and routine hydrogen bonds in
protein crystals,71 albeit the d values of HIBs seem to be
slightly larger than that of hydrogen bonds (Figure 7a). This
is not unexpected if considering that these polar HIBs are
natural of ionic hydrogen bonds, and the longer interatomic
separations between H and X- in polar HIBs than those
between H and O/N in routine hydrogen bonds are apparently
owing to the larger radii of halogen ions (except fluorine
ion) relative to oxygen and nitrogen atoms. Moreover, from
the frequency distributions of bond lengths D derived from
polar and charged HIBs (Figure 7bc), it can be readily
appreciated that the D values also increase with the size of
halogen ions, i.e. F- · · ·Y/Y+ < Cl- · · ·Y/Y+ < Br- · · ·Y/
Y+ < I- · · ·Y/Y+. Interestingly, the peak positions of D
distributions for three polar HIBs (Cl- · · ·Y, Br- · · ·Y, and
I- · · ·Y) and for three charged HIBs (Cl- · · ·Y+, Br- · · ·Y+,
and I- · · ·Y+) are completely consistent, as both series
located at the 3.25, 3.45, 3.65 Å bins, respectively (F- · · ·Y
and F- · · ·Y+ were not considered here because their
numbers found in the PDB are too small to generate

statistically significant conclusions), and these peak locations
are uniformly accompanied with a red-shift of about 0.2 Å
relative to equilibrium distances in corresponding small
model complexes (see Table 2). The elongating of HIBs in
biomolecules could be ascribed to steric hindrance and
constraint in complicated biological context. Furthermore,
although polar and charged HIBs have a coherency in their
D peak locations, the whole profile of their D distributions
is solidly distinct, particularly in the regions to the right of
the peak positions (Figure 7b and c). Compared to polar
HIBs, charged are more long-range and hold a considerable
number with bond lengths D > 4.0 Å. This can be reflected
in the intermolecular potential curves derived from small
model systems (Figure 4a and d). At the 4.5 Å separation,
for example, intermolecular potentials for OH2 · · ·X- models
are only about -7 kcal ·mol-1, while for NH4

+ · · ·X-,
models are of striking values as more than -80 kcal ·mol-1.
The fundamental difference between polar and charged HIBs
in long-range interaction behavior reveals and substantiates
their natures of ionic hydrogen bonding and ionic bonding,
respectively.

Figure 6. The first row showing the distribution states of halogen ions around different protein moieties retrieved from the PDB.
The second row showing the low-lying energy structures of Cl- in complex with corresponding protein moieties obtained by a
thorough MP2/aug-cc-pVDZ search (to render this figure more readable, multiple low-lying energy sites of Cl- in complex with
the same moiety are artificially resettled in a subplot).

Figure 7. (a) Polar scatter plot of θ vs d for halogen-ionic bonding with polar hydrogen atoms of proteins retrieved from the
PDB. Histogram distributions of D (in 0.1 bins) for halogen-ionic bonding with: (b) polar and (c) charged moieties of proteins
retrieved from the PDB. θ is the angle ∠(O-H · · ·X-) for hydroxyl groups or the angle ∠(N-H · · ·X-) for amides; d is the interatomic
distance between X and polar H in polar moieties; D is the interatomic distance between X and heavy atom Y, where Y is the
antecedent of the interacting polar H in polar moieties or the nearest heavy atom in charged moieties.
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3.5. Real Biomolecular System. II. PDB Survey of
Halogen-Ionic Bridges. On the basis of the HIBs retrieved
from the PDB, we have defined a distinct data set consisting
of 6406 biological halogen-ionic bridges; each of them is
composed of a halogen ion and several biomolecular moieties
that are directly bound to the halogen ion through HIBs. This
substantial magnitude of halogen-ionic bridges found here
is remarkably more than the numbers of halogen bonds
(113)72 and halogen-water-hydrogen bridges (106)43 sur-
veyed in previous works, implying an non-negligible role
of the halogen-ionic bridges in biological systems. We further
classified these halogen-ionic bridges into four groups
according to their locations, i.e., 4910 in protein interiors,
1132 at protein-protein interfaces, 273 at protein-nucleic
acid interfaces, and 91 at protein-small ligand interfaces.
A classification list of these halogen-ionic bridges is tabulated
in Supporting Information, Tables S1-S4.

Halogen-Ionic Bridges in Protein Interiors (Figure 8a).
A considerable number of halogen-ionic bridges stand in
protein interiors and are thought to be functional in figuring
the advanced structure of protein architectures. Formation
of halogen-ionic bridges in the low dielectric environment
due to protein folding causes a large desolvation penalty,
which can be, more or less, compensated by the favorable
electrostatic interactions both between the halogen ions and
their oppositely charged partners and between the halogen-
ionic bridges and their protein surroundings. In the next
section, we will provide computational evidence supporting
that halogen-ionic bridges are generally stabilizing toward
protein architectures, and this stabilization tendency is quite
significant as compared to the diverse salt bridges described
previously. In addition, most of the halogen-ionic bridges
in proteins are formed between sequentially farther residues
in comparison with salt bridges, which usually pair within
the vicinal residue blocks.63 The average number of amino
acids separating the halogen-ionic bridging residues is 24.01,
this is far beyond that to be considered in the hierarchical
model of protein folding.73 Hence, halogen-ionic bridges in
proteins are most likely to be formed later than the “molten
globule” phase of the folding.

Halogen-Ionic Bridges at Protein-Protein Interfaces (Figure
8b). Owing to the chemically natural similarity between
protein-protein interface and protein interior,74 halogen-ionic
bridges at the interfaces are supposed to confer stability and
specificity for protein binding as much as that for protein

folding. In fact, halogen-ionic bridges seem to be more
effective in contributing to protein binding rather than to
folding because the binding does not need too much of a
degree of packing the halogen-ionic bridging groups from
the already structured protein monomers to complex, thus
leading to a lesser desolvation penalty.

Halogen-Ionic Bridges at Protein-Nucleic Acid Interfaces
(Figure 8c). Almost all of the halogen-ionic bridges across
protein-nucleic acid interfaces were found in huge, com-
plicated ribosomes. Since ribosome growth is an exhaustive
process which involves a series of molecular operation steps,
such as protein/rRNA splicing, folding, and packing,75 the
role played by halogen-ionic bridges in the ribosomes should
be different to those in protein complexes, which are
normally formed by direct, rigid protein-protein association.
Visual inspection of these ribosomal halogen-ionic bridges
found that they are usually located at the regions where
protein and rRNA atoms are fully buried but not in sufficient
contact with each other, the halogen ions occupy at the
cavities embedded within these atoms and interact with
vicinal polar groups. On this point, the halogen-ionic bridges
at protein-nucleic acid (rRNA) interfaces could be regarded
as structural fillers to refine the shape complementarity and
to tune the local conformation of the interface structures.

Halogen-Ionic Bridges at Protein-Small Ligand Interfaces
(Figure 8d). Although limited numbers of halogen-ionic
bridges were observed at the protein-small ligand interfaces,
we will demonstrate that they do play an important role in
inhibitor recognition and binding, at least by HIV-1 protease
and PDK1 kinase, using the QM/MM scheme (see Section
3.7). Statistical analysis unraveled that halogen-ionic bridges
at protein-ligand interfaces share a similar solvent acces-
sibility (measured by SASA) and fluctuation rate (measured
by isotropic B-factor) with those ligand-bound water mol-
ecules,76 but they usually stand in multifurcated form
(measured by branch degree) and are packed tightly by
surrounding protein and ligand atoms (measured by packing
density). In general, the halogen-ionic bridge, if it exists, is
shown to be essential in assisting the ligand positioning in
the protein active pocket because only the accurate ligand
location can result in the bridge with optimal geometry and
thus highest stability (this will be rationalized by QM/MM
procedure).

The mean statistics of structural and energetic parameters
for the 6042 halogen-ionic bridges found in proteins (includ-

Figure 8. Some examples of halogen-ionic bridges in biomolecules. (a) Bromine-ionic bridge in protein interior (PDB: 1doc). (b)
Iodine-ionic bridge at protein-protein interface (PDB: 2vgz). (c) Chlorine-ionic bridge at protein-rRNA interface (PDB: 1jj2). (d)
Chlorine-ionic bridge at protein-small ligand interface (PDB: 2j90).

Halogen-Ionic Bridges J. Chem. Theory Comput., Vol. 6, No. 7, 2010 2235



ing protein interiors and interfaces) are compiled in Table
3. Nearly 35% of halogen-ionic bridging amino acids are
located at a protein helix region, and the remainders (∼65%)
are approximately equivalently distributed in strand, turn,
and loop. This assignment agrees to the abundance of these
secondary structure classes observed in native proteins.77

Comparison of the average B-factors between bridging and
nonbridging halogen ions suggested that halogen ions are
generally less mobile when they are bound in halogen-ion
bridges than when they are out of the bridges, given by
∼20% difference in their average B-factor values. This
phenomenon has also been observed for the water-mediated
bridges in protein crystals.76 In addition, the fluorine-ionic
bridge has a large branch degree and packing density as
compared to the other three; this could be reflected in the
significant desolvation effect accompanied with the fluorine-
ionic bridge formation. As can be seen in Table 3, the
average percentage of reduction in the SASA when the F-

transfer from solvent to bridges is 87.7%; this, coupled with
its prominent thermodynamic effect of hydration, gives rise
to the F- with a noticeable value in ∆∆G°hydr, ∆∆H°hydr,
and -T∆∆S°hydr. In contrast, the desolvation penalties of
bridging Cl-, Br-, and I- have only about two-thirds of that
with the bridging F-. In this regard, the desolvation profile
of formation of different halogen-ionic bridges is compatible
with the specific ion effects observed experimentally, i.e.,
F- is referred as kosmotrope, whereas Cl-, Br-, and I- are
called chaotropes.3

3.6. Real Biomolecular System. III. Continuum
Electrostatic Analysis. Based on conventional biochemical
intuition, one would expect halogen-ionic bridges to be
stabilizing toward the folded conformations of proteins.
However, we should be cautious of this notion, recalling that
some salt bridges have been demonstrated to be destabilizing
for protein structures since their desolvation penalties, due
to the burial of ionizable salt-bridging groups in the low
dielectric protein interior during protein folding, are not fully
recovered by favorable electrostatic interactions in the folded
state.78-80 So, we herein performed continuum electrostatic
calculations on a panel of high-quality halogen-ionic bridges
derived from monomeric protein crystal structures to answer
questions like do the halogen-ionic bridges generally stabilize
protein architectures and whether they confer more stability
for proteins than traditional salt bridges? Since all the
calculations are essentially based upon the atomic coordinates
provided in protein PDB files, the accuracy of the results
gained from the continuum electrostatic analysis is highly
dependent on the quality of the protein structures in which
the studied halogen-ionic bridges are contained. Therefore,
we used a set of monomeric protein structures with high
resolution (e1.8 Å) and low homology (sequence identity
<30% between any two proteins) taken from the current
(October 14, 2009 updated) PDB-REPRDB list of struc-
tures.81 From this list, we culled the halogen-ionic bridges
satisfying the criteria as defined in Section 2.2, and also
which the positions of the central halogen ions possess a
high precision (occupancy ) 1 and B-factor <30 Å2).
Consequently, 241 high-quality halogen-ionic bridges dis-
tributed in 189 monomeric proteins were selected for T
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continuum electrostatic analysis. Only monomeric proteins
are considered here because our primary interest is the effect
of halogen-ionic bridges on protein folding rather than on
protein binding. The detailed information about these selected
halogen-ionic bridges and their electrostatic energy terms are
collected in Supporting Information, Table S5.

A total of 204 (84.6%) out of the 241 halogen-ionic bridges
in our data set are stabilizing (∆∆Gtot < 0). This stabilization
energy ∆∆Gtot, as shown in Figure 9a, is a compromise
between the favorable electrostatic interaction within the
bridge (∆∆Gbrd < 0) as well as the interaction of the bridge
with the charges in the rest of the protein (∆∆Gadd < 0) and
the unfavorable desolvation penalty (∆∆Gdslv > 0) of the
polar/charged bridge due to its burial in low-dielectric protein
interior. On average, halogen-ionic bridge formations incur
a desolvation penalty ∆∆Gdslv of +16.54 kcal ·mol-1. This
penalty is over paid by the bridging energy term ∆∆Gbrd of
-20.41 kcal ·mol-1. The electrostatic interactions of halogen-
ionic bridges with the rest of the proteins are generally
attractive with an average ∆∆Gadd of -14.53 kcal ·mol-1,
which assists the bridging energy term to ultimately over-
come the desolvation energy penalty, making the halogen-
ionic bridge stabilizing. This free energy profile presented
here for halogen-ionic bridge is coincident with that proposed
previously for salt bridge,63 but each energy term in the
halogen-ionic bridge is much greater than that in the salt
bridge (Figure 9a). Consequently, the stabilization effect of
halogen-ionic bridge appears to be quite significant in
comparison to that of salt bridge, given by the substantial
difference in their total stabilization energies ∆∆Gtot (-18.29
for halogen-ionic bridge vs -3.66 kcal ·mol-1 for salt
bridge).

Breaking down of these energy terms in halogen-ionic
bridge into two parts separately associated with the halogen
ion and the bridging protein groups could provide a further
insight into the energy composition of the bridge. From
Figure 9a, it is seen that: (i) the bridging energy, ∆∆Gbrd, is
made up of a dominant attraction term of halogen ion with
its interacting groups (∆∆Gbrd

hal ) -24.36 kcal ·mol-1) and
a marginal repulsion term among these groups (∆∆Gbrd

hal )
+3.96 kcal ·mol-1); (ii) the desolvation penalty, ∆∆Gdslv, is
the sum of two nearly equivalent terms as +7.86 kcal ·mol-1

accounting for the desolvation of halogen ion (∆∆Gdslv
hal ) and

+8.78 kcal ·mol-1 for desolvating protein groups (∆∆Gdslv
grp).

As can be seen, the value of desolvation penalty for bridging
halogen ions calculated using the continuum electrostatic
approach is significantly lesser than those obtained from the
empirical additive model, as described earlier (see Table 3).
This is because the additive model only gives consideration
in the “net” hydration effect of halogen ions. It equals the
move of halogen ions from a solvent to a gas-phase
condition, regardless of the fact that the dielectric constant
in protein interiors is actually greater than 1 and the folded
proteins are not of infinite extent, so the halogen ions in
bridging state can also interact with solvent;62 and (iii) the
additional effect, ∆∆Gadd, seems to have arisen from a strong
electrostatic attraction between the halogen ion and the rest
of the protein (∆∆Gadd

hal ) -14.32 kcal ·mol-1) and from a
quite weak term of the bridging groups interacting with the
rest of the protein (∆∆Gadd

grp ) -0.20 kcal ·mol-1). However,
one should beware of this statement, considering that these
two mean quantities are accompanied with large standard
deviations, indicating a significant variance within the sample
scatters. In fact, most of ∆∆Gadd

hal and ∆∆Gadd
grp in our data set

fall into a wide scope ranging from -80 to +80 kcal ·mol-1,
with few even getting more than +120 kcal ·mol-1. More-
over, there exists a negative linear correlation between
∆∆Gadd

hal and ∆∆Gadd
grp (Figure 9b), well reflecting the op-

positely charged feature of halogen ion and its bridging
groups in interaction with the same charges in the protein
region out of the bridge.

3.7. Real Biomolecular System. IV. QM/MM Calcula-
tion. Recently, several specific intermolecular forces involved
in ligand recognition and binding by protein receptors have
been investigated in detail by means of the hybrid QM/MM
methodology.82-84 These works manifested that, if reason-
ably collocated with a MM context, it is possible to apply
the expensive QM method to treat the nonbonding interac-
tions of interest in the whole biomacromolecular framework.
In order to give quantitative insight into the role and
significance of halogen-ionic bridges in protein-ligand
recognition and to explore their relevance to rational drug
design, we herein addressed an ONIOM-based QM/MM
study on two paradigms of chlorine-ionic bridges function-

Figure 9. (a) Average energy terms in 241 halogen-ionic bridges formed in monomeric proteins and their comparisons with that
in 222 salt bridges. The error bar ranges within ( standard deviation. (b) Negative linear correlation with a correlation coefficient
r ) 0.702 between ∆∆Gadd

hal and ∆∆Gadd
grp.

Halogen-Ionic Bridges J. Chem. Theory Comput., Vol. 6, No. 7, 2010 2237



alizing to the binding of inhibitors by their targets. The first
one is in the earlier mentioned complex of HIV-1 protease
(HIV-1 PR) with a nonpeptide inhibitor UCSF8. Here, we
used the crystal structure of its mutant, i.e. HIV-1 PR Q7K-
UCSF8 complex, which has a similar inhibition profile (Ki

) 15 µM), similar kinetic parameters but higher resolution
level (solved at 1.9 Å) when compared to the wild type, as
template to perform QM/MM analysis (PDB: 2aid).26 The
second is located at the binding interface of 3-phosphoi-
nositide-dependent kinase 1 (PDK1) with its selective
inhibitor BX-320, an aminopyrimidine derivative which can
specifically bind to the catalytic domain of PDK1 at a nmol
level of affinity (IC50 ) 39 nM) (PDB: 1z5m).85 These two
complex structures were submitted to an ONIOM minimiza-
tion procedure, as described in Section 2.1, followed by
single-point energy analyses of the optimized model layers
using the rigorous MP2/aug-cc-pVDZ theory. For the purpose
of comparison, halide anion-removed versions of these two
complexes were also analyzed in the same way.

HIV-1 PR Q7K-UCSF8 Complex. Although the crystal
structure of this complex was solved at a higher resolution
level (1.9 Å), the larger thermal B-factors for atoms of
UCSF8 (< B g 68.6 Å2) versus all atoms in the protein (<
B g 30.3 Å2) suggest that the inhibitor position was not
determined quite precisely.26 This point can be validated by
detecting van der Waals (vdW) clashes between Q7K and
UCSF8 in both the complex crystal structure and the
ONIOM-optimized structure. The small probe technique
implemented in the PROBE program86 was employed to
fulfill this purpose, and the result is a graphic diagram
visualizing the distribution of collisions around the UCSF8.
From Figure 10a, it should be appreciated here that ONIOM

optimization can give a substantial refinement for the active
region of the complex crystal structure, as shown by the fact
that most of the bad overlaps at the crystal interface were
eliminated after the ONIOM minimization procedure. The
optimized UCSF8 conformations, with or without chlorine
ion, are superposed on the crystal structure (Figure 10b), from
which the root-mean-square deviations (RMSDs) of chlorine
ion-containing and chlorine ion-removed ligand structures
relative to the crystal one were computed to be, respectively,
1.18 and 1.97 Å. The former is far below the X-ray
diffraction resolution of the studied crystal, whereas the latter
is above of the resolution, indicating that the optimized model
structures should be reliable and the absence of chlorine ion
would throw a considerable effect on the ligand arrangement
in Q7K binding pocket. Noteworthily, in the optimized
structure, the N-H bond of UCSF8 amine moiety is
elongated remarkably as much as to 1.50 Å, manifesting that
there exists a significant trend of proton transfer toward the
chlorine ion, which is consistent with that found earlier in
small model systems. Energy analysis further revealed a
noticeable effect of the proton transfer contributing to the
complex stabilization. Interaction energy between the chlo-
rine ion and UCSF8 was predicted to be -121.10
kcal ·mol-1, this value is far more than that when a water
molecule is placed at the same position of the chlorine ion
(-15.97 kcal ·mol-1). In addition, the chlorine ion is shown
to be also effective in interaction with the residues Ile50 and
Ile50’ of Q7K, on account of the strong intermolecular
potential of -40.03 kcal ·mol-1. In conclusion, the chlorine-
ionic bridge should be important in assisting the specific
binding of Q7K by UCSF8 and in maintaining the complex
conformation and stability.

Figure 10. Stereoview of ONIOM-optimized UCSF8 structures in HIV-1 PR Q7K binding pocket. (a) Visualizing vdW clashes
between UCSF8 and Q7K in crystal and optimized complex structures. Blue dots for wide contacts (>0.25 A), green or yellow
dots for good contacts (green for close contacts and yellow for slight overlaps, < 0.2 A), and red spikes for bad overlaps (g0.4
A). (b) Superposition of the chlorine ion-containing (red) and chlorine ion-removed (yellow) structures to crystal structure (blue).
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PDK1-BX-320 Complex. ONIOM optimization of the huge
BX-320 molecule in the PDK1 binding pocket was an
exhaustive process, but the resulting BX-320 structure had
only a little conformational change relative to original crystal
structure (RMSD ) 0.73 Å). As shown in Figure 11a, the
optimized BX-320 structure is nearly perfectly superposed
on the crystal, with slight fluctuations over whole molecular
heavy atoms. Each of the two N-H bonds in the flexible
chain of BX-320 forms a typical ionic hydrogen bond with
the chlorine ion that is bound to the residues Lys111 and
Thr222 of PDK1. Intriguingly, the bromine atom on the BX-
320 pyrimidine ring seems to be in weak interaction with
the chlorine ion through a nonlinear halogen bond,87-89 as
claimed by their interatomic distance being shorter than the
sum of respective van der Waals radii (3.34 < 3.66 Å)57,90

and their angle ∠(C-Br · · ·Cl-) meeting the criterion defined
by Auffinger et al. for biological halogen bonds (121.3° >
120°).72 Topological analysis of the electron density in the
optimized model layer confirmed the existence of a bond
path linking the nuclei of Br and Cl-. However, the value
(0.0132 au) of electron density Fb at the BCP for this
interaction was predicted to be much smaller than that for
two N-H · · ·Cl- interactions (0.0365 and 0.0313 au), imply-
ing a very weak halogen bond in comparison to the strong
ionic hydrogen bonds in this model. The Br · · ·Cl- halogen
bond can be, therefore, considered as secondary interaction
contributions to the H · · ·Cl- hydrogen bonds that conduct
the formation of the chlorine-ionic bridge. At the MP2/aug-
cc-pVDZ level, the interaction energies of the chlorine ion
with BX-320 and PDK1 were calculated to be -34.02 and
-131.62 kcal ·mol-1, respectively. This noticeable energy
level involved in the chlorine-ionic bridge should contribute
considerably to the binding affinity of BX-320, though the
desolvation penalty is not deducted from the QM-calculated
interaction energies. The functionality of the chlorine ion in

the PDK1 active site can be intuitively characterized by
comparing the optimized conformations of chlorine ion-
containing and chlorine ion-removed complexes. It can be
seen from Figure 11b that BX-320 structure exhibits an
obvious motion when the chlorine ion is taken off from the
complex, leading to a large RMSD (1.94 Å) relative to that
optimized with the chlorine ion. In addition, the chlorine ion-
containing structure can be fitted into the 2Fo-Fc electron-
density map fairly well, but the chlorine ion-removed one,
especially at its two ends, departs from the 2.2σ contour
appreciably, indicating a nonignorable effect of the chlorine
ion on the native architecture of this system.

4. Conclusions

The main aim of this study is to prove the existence and
significance of the putative halogen-ionic bridges in biomo-
lecular systems. To achieve this, we present a comprehensive
investigation on the geometrical profile and energy landscape
of biological interactions involving halide anions. High-level
ab initio calculations on small model systems preliminarily
unveil the noticeable stabilization and the typical bonding
character of halogen ion complexes with polar and charged
groups. Database surveys of massive crystal structures deposited
in the PDB further reveal a considerable number of geo-
metrically preferential contacts between the nonbonded halogen
ions and the electrophilic moieties of proteins, nucleic acids,
and small ligands; these contacts are used to define a distinct
data set consisting of 6406 biological halogen-ionic bridges.
Continuum electrostatic analyses and hybrid quantum mechan-
ics/molecular mechanics (QM/MM) examinations ultimately
give a quantitative pronouncement for the important role of
halogen-ionic bridges in conferring stability and specificity for
protein folding and protein-ligand binding. All of these
forebode that the halogen-ionic bridges should widely exist in

Figure 11. Stereoview of ONIOM-optimized BX-320 structures in PDK1 binding pocket. (a) Superposition of the chlorine ion-
containing (red) and chlorine ion-removed (yellow) structures to crystal structure (blue). (b) Superposition of chlorine ion-containing
(red) with chlorine ion-removed (yellow) structures in 2Fo-Fc electron-density map (shown contoured at 2.2σ).
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and solidly functionalize to biomolecules. We, therefore, expect
that this newly proposed halide motif, with respect to its
substantial magnitude and marked stabilization in biological
context, could be exploited as a novel and versatile tool for
rational drug design and bioengineering.
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Abstract: The effective Hamiltonian-molecular orbital and valence bond (EH-MOVB) method
based on nonorthogonal block-localized fragment orbitals has been implemented in the program
CHARMM for molecular dynamics simulations of chemical and enzymatic reactions, making
use of semiempirical quantum mechanical models. Building upon ab initio MOVB theory, we
make use of two parameters in the EH-MOVB method to fit the barrier height and the relative
energy between the reactant and product state for a given chemical reaction to be in agreement
with experimental or high-level ab initio or density functional results. Consequently, the EH-
MOVB method provides a highly accurate and computationally efficient QM/MM model for
dynamics simulation of chemical reactions in solution. The EH-MOVB method is illustrated by
examination of the potential energy surface of the hydride transfer reaction from trimethylamine
to a flavin cofactor model in the gas phase. In the present study, we employed the semiempirical
AM1 model, which yields a reaction barrier that is more than 5 kcal/mol too high. We use a
parameter calibration procedure for the EH-MOVB method similar to that employed to adjust
the results of semiempirical and empirical models. Thus, the relative energy of these two diabatic
states can be shifted to reproduce the experimental energy of the reaction, and the barrier height
is optimized to reproduce the desired (accurate) value by adding a constant to the off-diagonal
matrix element. The present EH-MOVB method offers a viable approach to characterizing solvent
and protein-reorganization effects in the realm of combined QM/MM simulations.

1. Introduction

Combined quantum mechanical and molecular mechanical
(QM/MM) methods offer an excellent opportunity for
studying chemical and electron transfer reactions in solution
and in biological systems.1-3 In principle, the accuracy of
combined QM/MM potentials can be systematically im-
proved; however, it is still time-demanding to carry out QM/
MM simulations using ab initio wave function theory (WFT)
or density functional theory (DFT) for subsystems consisting
of more than 100 atoms in the QM region. Consequently, it

is useful to develop efficient QM/MM techniques that can
be made accurate for specific chemical and biomolecular
applications, yet sufficiently fast for extensive conformational
sampling. Aside from the brute force approach by increasing
the level of theory and the size of basis set, there are two
other ways to achieve this goal. The first is to parametrize
purely empirical energy functions to model a specific
process,4,5 and the second is to parametrize quantum me-
chanical models against experimental data with specific
reaction parameters (SRP) for a given class of reactions.6-9

In this article, we describe an effective Hamiltonian approach
based on the molecular orbital-valence bond (MOVB) theory
developed in our laboratories for the treatment of reactive
potential surfaces of reactions.10-12 In particular, we illustrate
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this novel QM/MM technique in the hydride transfer reaction
from trimethyl ammonium ion to flavin cofactor.

The mixed molecular orbital and valence bond (MOVB)
theory,10,11 initially developed at the ab initio level and
recently extended to multistate density functional theory
(called MSDFT or, equivalently, VBDFT),13 is designed to
treat reactive potential energy surfaces for chemical reactions
and electron transfer processes. In this approach, the whole
process is described with two or more resonating configura-
tions, including the reactant and product states. In each
specific state, molecular orbitals (MOs) are strictly localized
within individual fragments of a molecular system.14-20 How-
ever, the block-localized molecular orbitals (BLMOs) are still
delocalized within each orbital block, making the MOVB
method extremely efficient in comparison with ab initio valence
bond theory.21-25 Key features of the MOVB and MSDFT
theories include (1) that the BLMOs (or block-localized
Kohn-Sham orbitals)13 within each fragment are orthogonal,
which makes it computationally efficient, and (2) that the
BLMOs between different fragments are nonorthogonal,11,13,20

which retains important characters of valence bond (VB) theory.
In the limiting case in which there is one fragment, MOVB
and MSDFT reduce exactly to the standard Hartree-Fock
theory and Kohn-Sham DFT, respectively.

Recently, we introduced an effective Hamiltonian MOVB
approach,26 in which the ab initio electronic matrix elements
are adjusted to yield accurate barrier height and reaction
enthalpy. This approach has an apparent similarity in the
“calibration” process used to adjust the barrier height and
the energy of reaction in semiempirical or empirical valence
bond models,27-32 although the theory and algorithm of
MOVB are based on ab initio WFT and DFT approaches to
define VB electronic configuration states. Effective Hamil-
tonian approaches are widely used in many different
areas.33-40 A major advantage of the EH-MOVB approach
is that all VB matrix elements, including off-diagonal terms,
are determined by an electronic structure method, which
depends explicitly on all degrees of freedom in the system.
In the empirical and semiempirical valence bond approaches,
typically a simple function, depending on one degree of
freedom, or a constant is used to treat the off-diagonal matrix
elements in a VB-like Hamiltonian.27,30,31,41 Note that
empirical multiconfigurational models have been described
to fit the energy, gradient, and Hessian of ab initio potential
surfaces40,42-44 using Gaussian and polynomial functions45,46

or Shepard interpolation.47-49

In this paper, we show that the EH-MOVB method can be
constructed using semiempirical QM models such as the Austin
model 1 (AM1),50 parametrization model 3 (PM3),51 or Recife
model 1 (RM1)52 to yield the barrier height for a chemical
reaction in agreement with experiments or with ab initio results.
In the following, we first present the theoretical background,
followed by computational details. Results and discussions are
presented next. Finally, the paper concludes with a summary
of the major findings of this study and future perspectives.

2. Method

A. The Mixed Molecular Orbital and Valence Bond
(MOVB) Theory. In MOVB,10-12,21 we use one Slater
determinant wave function constructed using nonorthogonal
block-localized molecular orbitals (BLMO) to define the
reactant and product configurations. These electronic con-
figurations are called diabatic states. The use of localized
orbitals within molecular fragments has been explored by
many groups in different applications such as reducing basis
set superposition errors in weakly bound complexes,17-19,53,54

and it has been used in other contexts.14-16,55-61 For the
hydride transfer reaction between trimethylamine, (CH3)3N
(TMA-H), and a flavin cofactor (Nf+) model (hereafter
simply called flavin), the wave function of the reactant
diabatic state, Ψr(R) (see Scheme 1), is defined by a single
Slater determinant wave function in which molecular orbitals
are block-localized on the two subsystems:

where R specifies all Cartesian atomic coordinates of the
system and Â is an antisymmetrization operator. The nota-
tions �r

TMA-H and �r
Nf+ in eq 1 specify the products of

occupied BLMOs that are defined as linear combinations of
atomic orbitals located on atoms in fragments TMA-H and
Nf+, respectively (Scheme 1). Similarly, the wave function
of the product state (Scheme 1), Ψp(R), is expressed as

where �p
TMA+

and �p
H-Nf denote the products of occupied

BLMOs expanded over basis orbitals on atoms in fragments
TMA+ and H-Nf, respectively (Scheme 1).

It is important to note that the MOs within each fragment
for each state are constrained to be orthogonal, but they are

Scheme 1. Schematic Representation of the
Block-Localization of Molecular Orbitals within Individual
Molecular Fragments for the Reactant Diabatic State (left)
and the Product Diabatic State (right) for the Hydride
Transfer Reaction between Trimethylamine (TMA-H) and a
Model for the Flavin Cofactor (Nf+)a

a Atoms and charges in each rectangle specify the molecular block
defined by the corresponding Lewis structure within which molecular
orbitals are localized. The antisymetric wave function constructed from
the two blocks on the left-hand side of the arrow, TMA-H and Nf+,
defines the reactant diabatic state, whereas that for the blocks on
the right-hand side, TMA+ and H-Nf, define the product diabatic state.

Ψr(R) ) Â{�r
TMA-H�r

Nf+} (1)

Ψp(R) ) Â{�p
TMA+

�p
H-Nf} (2)
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nonorthogonal between different fragments.11 Consequently,
the MOVB model retains key characteristic features of
valence bond theory in the use of nonorthogonal orbitals.
The structure of the transformation matrix for the reactant
and product states is block-diagonal.

where Cr and Cp are the matrices of molecular orbital
coefficients for the reactant and product states, respectively.11

Note that the dimensions of the matrix elements in eq 3 are
different as the hydride atom is grouped in different blocks.
The total number of electrons within each fragment of each
diabatic state is also fixed according to the corresponding
Lewis structure (Scheme 1), and there is no chemical bond
between the two fragments in each state.

In the present EH-MOVB model employing a semiem-
pirical method, a special situation must be considered because
of the neglect of diatomic differential overlap (NDDO)
approximation.62 The two-center, one-electron integral be-
tween two atoms that are located in different blocks is not
included in the Fock matrix of either block, and it must be
treated specifically. Note that these integrals are formally
ignored in the NDDO approximation, but they are also treated
as an exception in standard semiempirical methods because
of the importance of these integrals in describing chemical
bonding.50 In MOVB, when the two bonding atoms involved
in bond formation are in different molecular blocks (frag-
ments), the two-center, one-electron integral is not treated
by the standard semiempirical model, and the exclusion of
this type of resonance integral affects the bonding properties
as the chemical bonds are partially formed and broken across
different blocks (fragments) at the transition state. Conse-
quently, we need to include these resonance integrals for
the corresponding bonds in the diabatic energy term as
follows. For the reactant state in the present hydride transfer
reaction, the reactant state diabatic energy is given as follows:

and the energy for the product state is

where SHN and SCH are the s-type overlap integrals between
the acceptor nitrogen atom and the transferring hydrogen
atom, and between the donor carbon atom and the migrating
hydrogen atom, specified by the subscripts respectively, and
�sp(X) ) [�s(X) + 3�p(X)]/4 at X ) N or C and the �’s
being the standard semiempirical parameters for these
atoms.50,51 The use of s-type overlap integrals in eqs 4 and
5 is to preserve rotation invariance. In eqs 4 and 5, we treat
RHN and RCH as semiempirical parameters, adjusted to yield
the corresponding bond distances in agreement with DFT
energies at the transition state. These two parameters
associated with bonding interactions may also be considered

as EH-MOVB parameters, in addition to the two parameters
to adjust diabatic coupling results.

The MOVB wave function for the reactive system is
written as a linear combination of the diabatic states.

where ar and ap are the configurational coefficients for the
reactant and product diabatic states, respectively.15,16,20,26

The potential energy of the adiabatic ground state, Vg(R), is
the lower energy root of the secular equation.

where V(R) is the adiabatic potential energy, Hrr(R) and
Hpp(R) are the Hamiltonian matrix elements for the reactant
and product diabatic states, respectively, Hrp(R) ) Hpr(R) is
the exchange integral (off-diagonal matrix element), and
Srp(R) ) Spr(R) is the overlap integral between the two
diabatic states.

The Hamiltonian matrix elements in eq 7 are given as
follows:11,13

where the subscripts a and b specify either the reactant (r)
or the product (p) state or both; Enuc is the nuclear Coulomb
energy; Sab and Dab are the overlap integral and density
matrix over nonorthogonal determinant wave functions; and
h, J, and K are the standard one-electron, Coulomb, and
exchange matrices. It is important to note that eq 8 is a
general formula that is valid for ab initio and semiempirical
WFT as well as for standard Kohn-Sham DFT.13 In the
latter case, the exchange integral K is replaced by the
exchange-correlation potential.13

In reference,20 we described two special situations to
optimize the wave function of eq 6. In the first case, which
is called the consistent diabatic configurations (CDC)
MOVB, both the orbital coefficients (eq 3) and configura-
tional coefficients are optimized as in the multiconfiguration
self-consistent field method. An alternative approach is to
variationally optimize the reactant and product state sepa-
rately, followed by optimizing the configuraitonal coefficient
in eq 6 with the orbital coefficients kept fixed. The latter
configuration interaction procedure is called the variational
diabatic configuration (VDC) MOVB to emphasize that the
diabatic states are individually optimized. Both CDC and
VDC states are useful in condensed phase simulations,
although their applications will be addressed in future
publications.

B. Effective Hamiltonian MOVB. We aim to develop
an efficient (e.g., capable of carrying out nanosecond to
microsecond dynamics simulations using the current com-
puter architecture) and accurate (within 1 to 2 kcal/mol of
experimental barrier height) QM/MM method for simulation
of enzymatic reactions and chemical processes in solution
using MOVB. Although ab initio MOVB and multistate

Cr ) (Cr
TMA-H 0

0 Cr
Nf+ ) and Cp ) (Cp

TMA+
0

0 Cp
H-Nf ) (3)

Hrr(R) ) 〈Ψr(R)|H|Ψr(R)〉 + RHNSHN
1
2

[�s(H) + �sp(N)]

(4)

Hpp(R) ) 〈Ψp(R)|H|Ψp(R)〉 + RCHSCH
1
2

[�s(H) + �sp(C)]

(5)

Φg(R) ) arΨr(R) + apΨp(R) (6)

| Hrr(R) - V(R) Hrp(R) - Srp(R)V(R)
Hpr(R) - Spr(R)V(R) Hpp(R) - V(R) | ) 0 (7)

Hab ) Sab{Tr[(Dab)
Th] + 1

2
Tr[(Dab)

TJDab]

-1
4

Tr[(Dab)
TKDab] + Enuc}

(8)
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VBDFT provide a natural choice, and the former has indeed
been applied to a number of condensed phase reac-
tions,10-12,59,63 it is still very time-demanding to carry out
routine free energy simulations, in which a large number of
atoms are treated quantum-mechanically. To this end, we
have implemented the MOVB method into the CHARMM
package,64 based on the NDDO approximations.62,65 The
present implementation represents a significant advance in
combined QM/MM methodology because (a) semiempirical
methods are computationally efficient, allowing for statistical
mechanical sampling in molecular dynamics simulations, and
(b) the computational accuracy can be conveniently achieved
using the nonorthogonal block-localized orbital approach
described here.26

Experience shows that the qualitative features of the
potential surface for chemical processes can be adequately
represented by semiempirical models, such as AM1,50

PM3,51 or the self-consistent charge tight-bonding density
functional algorithm (SCC-DFTB).66 Consequently, we
define and describe the reactant and product diabatic states
using a semiempirical Hamiltonian. The quantitative errors
in the computed barrier height and the energy of reaction
inherited in the semiempirical method are eliminated by
adjusting the EH-MOVB matrix elements26 in a similar way
to that in empirical or semiempirical VB models.27,30,31,41

It should be realized that all combined QM/MM methods
are semiempirical models in that one has to employ empirical
potential functions such as the Lennard-Jones terms to
approximate the quantum mechanical exchange repulsion and
dispersion interactions between the QM and MM regions.
Thus, the adjustment of the EH-MOVB matrix elements is
no stranger to combined QM/MM methodologies.

Specifically, we introduce a parameter in the off-diagonal
Hamiltonian matrix element Hrp, which is optimized in order
to reproduce the barrier height for a given chemical reaction:

In eq 9, Hrp is the MOVB off-diagonal matrix element
that is determined directly (eq 8) using a given semiempirical
model, γrp is a parameter that affects dominantly the
computed barrier height, and Hrp

EH is the total effective
Hamiltonian (EH) resonance (exchange) integral. Another
formalism that we have explored is to scale the off-diagonal
matrix element as follows:26

Both options can be useful, depending on the performance
of the semiempirical model and the specific reaction con-
sidered, and both are available options in our implementation
in CHARMM. In eq 9, the resonance integral is shifted by
a constant value, whereas the scaling procedure in eq 10
affects the dependence of the resonance integral on the
overlap between the reactant and product diabatic states. For
the hydride transfer reaction between trimethylamine and
flavin, we found that eq 9 yields the best results, and it is
employed in the present study.

The second parameter that we introduce in the EH-MOVB
model is the adjustment of the relative energy between the

reactant and product diabatic states. Thus, if necessary, the
diagonal MOVB matrix element for the product state, Hpp,
is shifted by an amount of ∆ε to yield the desired energy of
reaction for the process of interest:

The value of the parameter ∆ε is readily estimated as
follows:

where ∆EMOVB ) Hpp(Rp) - Hrr(Rr), which is the relative
energy of the unshifted reactant and product diabatic state
at their corresponding equilibrium geometries Rr and Rp, and
∆Eexpt is the experimental energy of reaction.

The procedure outlined above (eqs 9-12) is identical to
that used in the parameter “calibration” of empirical valence
bond models, such as that in refs 32 and 41, or more
generally, of the semiempirical valence bond,27-31 which
allows the energies (barrier height and reaction energy) to
be readily fitted to their targets exactly. In general, however,
it is much more challenging to “calibrate” the variation of
molecular structure along the entire reaction path, especially
the precise geometry of the transition state. The sophistication
of the mathematical algorithm used by Schlegel and Son-
nenberg is a remarkable reflection of the difficulty in
constructing an accurate potential energy surface employing
empirical valence bond models.45,46 The changes of the
structural properties, including bond order and force constant,
are critically important if one is interested in computing
kinetic isotope effects, particularly the error-sensitive second-
ary effects (2° KIEs), for enzymatic reactions. Inaccuracy
can easily be hidden in the large primary KIEs because they
typically involve a significant loss of zero-point effects. Thus,
agreement with the experiment in primary KIEs, which could
be simply due to the loss of the reactant state stretching
mode, is not necessarily an indication of good geometry at
the transition state. In fact, it is essential to examine both
the optimized structure and energy at the transition state to
validate the quality of a two-state (or multistate) model
against high-level electronic structural data.20,26,45,46

To this end, the off-diagonal matrix element in EH-MOVB
(eq 9) is an explicit function of all degrees of freedom of
the system, i.e., Hrp(R) ) 〈Ψr(R)|H|Ψp(R)〉.10-13,20,26 Con-
sequently, the full-dimensional potential surface can be
adequately represented as accurately as the accuracy of the
level of the electronic structure method permits, and the
transition structure for a reaction can be obtained in accord
with that optimized from WFT or DFT calculations. Note
that the approach outlined in eqs 9-12 is in principle
analogous to that used in effective Hamiltonian valence bond
methods to parameterically model the ab initio matrix
elements to reproduce the exact high-level results.33-40,42-49

3. Computational Details

All calculations are carried out using CHARMM c34a2,67

modified with the implementation of the present EH-MOVB.
The current QM/MM module in CHARMM at the semiem-
pirical level, called SQUANTUM,68 was implemented in our

Hrp
EH ) Hrp + γrp (9)

Hrp
EH ) �rpHrp (10)

Hpp
EH ) Hpp + ∆ε (11)

∆ε ) ∆Eexpt - ∆EMOVB (12)
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group by Nam and Walker in 2004, based on a Fortran90
code.69 SQUANTUM has been incorporated into the standard
distribution and has become the default QM/MM module of
CHARMM since version c33a1. The EH-MOVB method
was implemented by Song in collaboration with Xie, and it
has become a part of the SQUANTUM module with
additional options to define the number of states and the
number of blocks in each state as well as the associated
options. The EH-MOVB method can provide a rigorous
valence bond-like model for studying chemical reactions such
that the users can conveniently calibrate the model to yield
a potential energy surface with the desired barrier height and
reaction energy as well as optimized geometry at the
transition state. It should be noted that the present EH-MOVB
is not a simple quantum mechanical representation of the
ideas of empirical valence bond or semiempirical valence
bond models such as the London-Eyring-Polanyi-Sato for-
malism. EH-MOVB is deeply rooted in the traditional
approach of Heitler-London-Slater-Pauling function of va-
lence bond theory.

The EH-MOVB module at the semiempirical level is
computationally fast; for large systems, the computational
bottleneck using our QM/MM potential is in the treatment
of the classical long-range electrostatic effects with particle-
mesh Ewald (PME) rather than the QM calculation itself. In
addition, two options are available for determining the
diabatic and adiabatic ground state energies: (1) the consistent
diabatic state (CDC) method and (2) the variational diabatic
state (VDC) model.20 For those who are interested in using
the energy gap between the product and reactant diabatic
state as the reaction coordinate,70 the VDC diabatic states
should be used, since the variational diabatic state is of
interest in this case.10-12 The VDC determinants also
provides the basis states in configuration interaction calcula-
tions to give the adiabatic ground state potential energy
surface. On the other hand, if geometrical parameters are
used to define the reaction coordinate on the adiabatic ground
state potential surface, the CDC model is appropriate since
this method yields the optimal adiabatic ground-state energy,
and analytical gradients can be computed. Note that the CDC
method is analogous to multiconfiguration self-consistent
field (MCSCF) theory,20,26 whereas the VDC approach is
akin to a configuration interaction (CI) method.10-12

DFT calculations are carried out using Gaussian 0371

modified to include the M06-2X functionals.72,73 The
6-31+G(d) basis set is used throughout for all calculations.
Geometries for the hydride transfer reaction between trim-
ethylamine and flavin cofactor along the reaction coordinate
defined below are optimized using the 6-31+G(d) basis set
at each level of theory. The recently developed M06-2X
functional, which produces similar energies in comparison
with MP2 single point calculations, is used to calibrate the
EH-MOVB model.

To describe the change in energy and wave function of
the two Lewis bond states as the reaction takes place, we
define the reaction coordinate here as the difference between
the bond lengths of the central hydrogen atom, which is
transferred, to the donor atom (C) of TMA-H and to the
acceptor atom (N) of Nf+:

Of course, one can use other definitions to monitor the
progress of the reaction, including the difference between
the corresponding bond orders or energies of the two Lewis
bond states. The geometrical variable, corresponding to the
asymmetric bond stretch coordinate, is a good choice and
chemically intuitive.

4. Results and Discussion

The main goal of this study is to develop an effective
Hamiltonian within MOVB theory to study chemical reac-
tions in solution and in enzymes using CHARMM as a
combined QM/MM potential. We hope to illustrate that the
procedure can be conveniently used by biochemists as a
research tool to help interpret experimental findings, with a
straightforward calibration of the EH-MOVB model. We use
the hydride transfer reaction from trimethylamine to a flavin
cofactor model. The discussion of dynamics simulations is
beyond the scope of this report and will be reported
separately. We first carry out ab initio electronic structural
calculations using DFT to yield the structures and energies
along the hydride transfer reaction pathway. Then, we
optimize the EH-MOVB Hamiltonian to reproduce the “high-
level” data. The qualitative features and quantitative results
of the diabatic configurations and the adiabatic potential
surface will be discussed.

The adiabatic ground state potential energy surfaces
determined using DFT with the B3LYP and M06-2X
functionals are compared with the standard semiempirical
AM1 model and the EH-MOVB method in Figure 1 as a
function of the reaction coordinate Rc (eq 13) for the hydride
transfer reaction between trimethylamine and a flavin co-
factor. Optimized structures at the reactant state and product
state complex and the transition state are illustrated in Figure
2 along with key structural parameters. The M06-2X density
functional calculations yield an estimated barrier height of
17.4 kcal/mol and a relative energy of -6.1 kcal/mol between
the product and reactant states. The popular hybrid B3LYP
method underestimates the hydride transfer barrier at 15.1
kcal/mol. The semiempirical AM1 energy profile is quali-
tatively correct, but it contains two main problems; the
computed energy of activation is 22.6 kcal/mol, about 5 kcal/
mol too high, compared with the M06-2X value, and the
predicted energy of reaction is too endothermic by 6.4 kcal/
mol. The latter error is completely transferred into the MOVB
relative energies of the reactant and product diabatic states,
which can be easily corrected by shifting the product state
up by an equal amount, which has no effect on gradient
evaluations (Table 1). With an increase in the strength of
diabatic coupling between the reactant and product states at
the transition state, the barrier height can be lowered, and
using the parameters listed in Table 1, we obtained an
activation energy of 18.1 kcal/mol for the hydride transfer
between trimethylamine and flavin and an energy of reaction
of -4.4 kcal/mol. We note that the AM1 model finds another
configuration in which the donor N-C-H unit is roughly
coplanar with the flavin ring, and it is slightly lower in energy
(by about 2 kcal/mol) than the configuration in which TMA

Rc ) R(C - H) - R(H - N) (13)
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is under the plane of the flavin ring. The latter configuration
is more closely aligned with the structure found in the active
site in the human histone lysine-specific demethylase (LSD1)
structure,74 which is most relevant to the hydride transfer
reaction pathway.

The optimized geometries at the reactant, product, and
transition states from EH-MOVB(AM1) calculations are in
accord with those obtained using M06-2X density functional
theory. In particular, the donor (C-H) and acceptor (H-N)
distances from the hydride atom transferred are 1.29 and 1.29
Å, respectively, which may be compared with the DFT
(B3LYP) values of 1.27 and 1.31 Å. The potential energy
surface about bond angles and torsional angles is relatively
flat, and the accord between EH-MOVB(AM1) and M06-
2X is reasonable (Figure 2).

The minimum energy path (MEP) for the hydride transfer
from trimethylamine to flavin has been optimized as a
function of the reaction coordinate defined by eq 13. In the
present study, we have constrained the hydride migration to
be collinear with the donor (C) and acceptor (N) atoms,
whereas all other degrees of freedom are fully minimized
using the ABNR algorithm in CHARMM.64 The potential
energy curves for the reactant and product diabatic states
are shown in Figure 3 along with that for the adiabatic ground
state. The reactant state potential shows a steady increasing
as the reaction coordinate changes from the reactant to the
product side. On the other hand, the potential energy surface
is somewhat leveled off for the product state when the
molecular geometry is in the reactant state configuration. The
trend of the two diabatic potential energy curves is consistent
with heterolytic bond cleavages of the reactant (C-H) and
the product (N-H) species. At the diabatic state crossing
point, which corresponds roughly to the location of the
transition state of the hydride transfer reaction, the diabatic
state is ca. 40 kcal/mol in energy above the adiabatic ground
state, suggesting that there is significant electronic coupling
between the reactant and product states. The coupling energy
is similar to values determined for proton transfer and
nucleophilic substitution reactions using ab initio WFT and
DFT.10-13,20,26

Figure 4 exhibits the same potential curves shown in
Figure 3, but they are plotted against the diabatic energy
difference, or the energy-gap reaction coordinate.

Figure 1. Computed potential energy profile along the minimum
energy path (Rc ) R[C-H] - R[H-N]) for the hydride transfer
reaction between trimethylamine and the flavin model using
EH-MOVB(AM1) (in red), AM1 (in light blue), B3LYP/6-31G(d)
(in navy blue), and M06-2X/6-31G(d) (in green).

Figure 2. Optimized geometries for the reactant and product
complexes and the transition state for the hydride transfer
reaction depicted in Scheme 1. MOVB results are listed first,
followed by DFT values in parentheses. Distances are given
in angstroms and angles in degrees.

Table 1. EH-MOVB Parameters Used in This Studya

RCH RHN ∆ε (kcal/mol) γrp (eV)

0.9 1.0 8.0 1.5

a The AM1 model is used to define the diabatic reactant and
product states for the hydride transfer reaction between
trimehylamine and a model flavin cofactor.

Figure 3. Computed potential energy surfaces for the diabatic
reactant state (blue), the diabatic product state (green), and
the adiabatic ground state (red) along the minimum energy
path.

∆E ) Hrr - Hpp (14)
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Figure 4 shows that the minimum energy potential surface
for the adiabatic ground state and those for the diabatic states
can be fully represented with the use of either a geometrical
or an energy-gap reaction coordinate when the reaction
profile is determined by optimizing the geometrical reaction
coordinate.

For reactions in solutions or in enzymes, it is of interest
to consider the effects of solvent or protein reorganization,
and this is often presented using the energy-gap reaction
coordinate (eq 14). Although this is easily modeled using
an empirical force field to represent the diabatic states, it is
far from straightforward if a combined QM/MM potential
is employed. The MOVB theory is the first and only QM/
MM approach at this time to provide well-defined diabatic
states for condensed phase simulations, and ab initio MOVB-
QM/MM methods have been utilized in the study of solvent
effects and reorganization energies for several reactions in
solution.10-13 Of course, empirical potential functions have
been used extensively to describe the energy-gap coordi-
nate.41,75,76 The present EH-MOVB approach in the context
of a QM electronic structure theory can be conveniently
calibrated to yield accurate results and applied to enzymatic
catalysis using the program CHARMM. The free energy
reaction profile as a function of the energy-gap reaction
coordinate is typically obtained through a coupled free energy
perturbation simulation,10,11,41 which drives the solvent and
protein configurations from the reactant state to the product
state using a reference potential (which is also called a
mapping potential),41VRP(R), and umbrella sampling that
transforms the biased simulations with VRP(R) into the true
adiabatic ground-state potential surface, Vg(R).

The reference potential is typically expressed as a mixture
of the diabatic reactant and product energy through a
coupling parameter λ:

where λ is a parameter that varies from 0 (reactant) to 1
(product), and R specifies the instantaneous geometry of the
system. In the present study of the model hydride transfer

from TMA-H to flavin (Nf+), we optimized the reference
minimum-energy path (RMEP) defined by eq 15. Then, using
the geometries along this reference minimum-energy path,
we carried out single-point energy calculations to determine
the adiabatic ground state energy. Note that this “RMEP” is
not the true adiabatic ground-state MEP (Figures 3 and 4)
determined using the EH-MOVB potential, Vg(R), because
the structures are optimized using different potential energy
surfaces.

Figure 5 depicts the diabatic potential energies and the
adiabatic ground state energy, along with the reference
potential (eq 15), as a function of the coupling parameter.
Since the reference potential is dominantly determined by
the reactant diabatic state when λ is less than 0.5, there is a
rapid geometry change in the hydride transfer coordinate,
which is not explicitly specified by the coupling parameter
λ and cannot be effectively restrained to yield a smooth
variation. Consequently, there is a sudden change in the
molecular geometry as the hydride is fully transferred to the
carbon atom, corresponding to a geometrical description of
Rc ) -0.7 Å to Rc ) -1.8 Å. The ground-state potential
is shown as a function of the geometrical reaction coordinate
in Figure 6. This is accompanied by a rather steep increase
in the reactant diabatic state and the adiabatic ground state
potential in the region of λ ) 0.4 and 0.5 (Figure 5).
Interestingly, the overall reference potential shows smoother
variations (curve in maroon) due to the compensating
contributions from the product diabatic state. The computed
barrier height is 18.3 kcal/mol along the RMEP, similar to
that of the MEP for the hydride transfer.

Figure 7 recasts the data illustrated in Figure 5, but the
adiabatic ground state potential energy surface Vg(R) is
plotted against the energy-gap reaction coordinate ∆E. In
contrast to Figures 5 and 6, the potential Vg(R) appears to
be surprisingly smooth, despite the fact that part of the
geometrical variations along the reaction path in fact is
discontinuous in Figure 5. Figure 7 shows that a nonsmooth
geometrical transition that gives rise to an abrupt energy
change can be hidden behind the seeming smooth energy

Figure 4. Computed potential energy surfaces in Figure 3
for the diabatic reactant state (blue), the diabatic product state
(green), and the adiabatic ground state (red) represented as
a function of the energy difference between the reactant and
product diabatic states (i.e., the energy-gap reaction coordi-
nate).

VRP(λ) ) (1 - λ)Hrr(R) + λHpp(R) (15)

Figure 5. Computed potential energy profiles for the reactant
(blue) and product (green) diabatic states along with the
adiabatic ground state (red) and the reference potential as a
function of the coupling parameter linearly connecting the
reactant and product potentials. This reaction path is called
the reference minimum energy path, which has a different
meaning from that of Figure 1.
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curve when the adiabatic ground-state potential is given as
a function of a geometry-implicit coordinate such as the
energy-gap representation. This observation suggests that it
is critically important to report and show both energy results
and the corresponding geometries of the reactive molecule
in calculations that employ the reference potential of eq 15.

Before we leave this section, we consider the procedure
used in condensed phase and enzyme calculations.10,11,41 In
this case, the reference potential of eq 15 will be used in a
series of discrete free energy perturbation simulations with
fixed values of λi to yield the free energy differences as λi

changes from 0 to 1. Thus, the free energy at λ relative to
the reactant state (λ0 ) 0) is determined as follows:

where 〈...〉i specifies an ensemble average over the potential
VRP(λi); the summation runs to a value λ ) λi+1. Here, the
use of the arbitrary reference potential is purely for the
purpose of moving the system to go from molecular
configurations corresponding to the reactant state ensemble
into the product state. To obtain the free energy of the true

ground state potential surface, governed by the distribution
e-Vg(∆E)/RT, an umbrella sampling-like procedure is applied
to the configurations sampled on the basis of the distribution
of e-VRP(λi)/RT. Thus,

where the quantity FRP
i (∆E) is the normalized distribution

of configurations that have a value of ∆E in the ensemble
sampled by the reference potential VRP(λi).

An important distinction that should be made is that the
procedure outlined in eqs 16 and 17 yields the free energy
profile, or the potential of mean force, as a function of an
ensemble of configurations, all having the energy gap ∆E.
Obviously, it is not and should not be compared with the
potential energy surface. Furthermore, the “reaction path”
mapped by eq 16 is not the minimum energy path of the
adiabatic ground state, nor the reference minimum energy
path. Thus, the energy computed, either by averaging over
all configurations sampled on the basis of eq 16 or by
selecting a single structure of its ensemble, is not directly
comparable to results rigorously defined by the MEP. Obvi-
ously, it can be deceptive when potential energies free
energies obtained along the minimum energy path and or
single-point energy calculations on selected geometries from
a statistical ensemble are mixed together and compared
without rigorously specifying their origins.

5. Conclusions

The effective Hamiltonian-molecular orbital and valence
bond (EH-MOVB) method based on nonorthogonal block-
localized molecular orbitals has been implemented into the
program CHARMM for molecular dynamics simulations of
chemical and enzymatic reactions, making use of semiem-
pirical quantum mechanical methods. Building upon previous
results using ab initio MOVB theory, we introduce two
parameters in the EH-MOVB method, along with the addition
of the two-center, one-electron integrals across different
molecular blocks which may be considered as parameters,
such that the barrier height and the relative energy between
the reactant and product state for a given chemical reaction
can be fitted in good agreement with experimental or high-
level ab initio and DFT results. The EH-MOVB method
provides a highly accurate and computationally efficient QM/
MM model for dynamics simulation of chemical reactions
in solution. The MOVB theory is the first and currently the
only QM/MM method that allows the potential of mean force
to be determined as a function of the energy-gap reaction
coordinate for characterization of solvent reorganization
effects.

The EH-MOVB method is illustrated by examination of
the potential energy surface of the hydride transfer reaction
from trimethylamine to a flavin cofactor model in the gas
phase. In the present study, we employ the semiempirical
AM1 model, which yields a qualitatively correct energy
profile along the minimum energy path (Figure 1). However,
as in most practical applications using semiempirical Hamil-
tonians, the quantitative results are not satisfactory. Tradi-

Figure 6. Potential energy profile for the hydride transfer
reaction between methylamine and the model flavin cofactor
plotted against the geometrical reaction coordinate (eq 14)
following the reference minimum energy path in Figure 5.

Figure 7. Computed potential energy profiles for the reactant
(blue) and product (green) diabatic states and the adiabatic
ground state (red) as a function of the energy gap-reaction
coordinate for structures obtained along the reference mini-
mum energy path in Figure 5.

∆GRP(λ) ) -RT ∑
i)0

λ

ln〈e-[VRP(λi+1)-VRP(λi)]/RT〉i (16)

∆G(∆E) ) ∆GRP(λi) - RT ln{FRP
i (∆E)〈e-[Vg-VRP(λi)]/RT〉i}

(17)
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tionally, there is no systematic way of improving the
semiempirical model, even though the qualitative features
of structure and energy are reasonable. In EH-MOVB, the
barrier height is optimized to reproduce the desired (accurate)
value in the gas phase (i.e., the intrinsic performance of the
effective Hamiltonian) either by scaling or by adding a
constant to the off-diagonal matrix element. The present EH-
MOVB method offers an alternative approach to character-
ization of solvent and protein-reorganization effects in the
realm of truly combined QM/MM simulations.
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